1
|
Witt E, Petersen EB, Alzayadneh E, Courtney RJ, Brouillette MJ, Wang Q, Sakyi MY, Watson NAD, Rivas D, Bi J, Culver L, Balk K, Reis C, Uaroon S, McClintic KA, Hatfield S, Worthington KS, Sander EA, Traverso G, Otterbein LE, Goetz JE, Fredericks DC, Byrne JD. Composite Hyaluronic Acid Gas-Entrapping Materials to Promote Wound Healing. Biomacromolecules 2025; 26:201-208. [PMID: 39746190 PMCID: PMC11733945 DOI: 10.1021/acs.biomac.4c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Tissue repair is often impaired in pathological states, highlighting the need for innovative wound-healing technologies. This study introduces composite hyaluronic acid gas-entrapping materials (GEMs) delivering carbon monoxide (CO) to promote wound healing in pigs. These composite materials facilitate burst release followed by sustained release of CO over 48 h. In a porcine full-thickness wound model, CO-GEMs significantly accelerated wound closure compared to the standard-of-care dressing (Tegaderm). Wound area closure with CO-GEMs was 68.6% vs 56.8% on day 14, 41.0% vs 25.1% on day 28, and 26.9% vs 11.8% on day 42, effectively reducing healing time by 14 days. Histological analysis revealed increased epithelialization and neovascularization with reduced inflammation. These findings demonstrate the potential of CO-GEMs as a topical therapeutic to enhance tissue repair in clinically relevant models, supporting further testing for wound-healing applications.
Collapse
Affiliation(s)
- Emily Witt
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
- Department
of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Emily B. Petersen
- Department
of Orthopedics and Rehabilitation, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Eyas Alzayadneh
- Department
of Pathology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ryan J. Courtney
- Carver
College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Marc J. Brouillette
- Department
of Orthopedics and Rehabilitation, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Qi Wang
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
- Carver
College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Maxwell Y. Sakyi
- Department
of Orthopedics and Rehabilitation, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Nicole A. D. Watson
- Department
of Orthopedics and Rehabilitation, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Dominic Rivas
- Department
of Orthopedics and Rehabilitation, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Jianling Bi
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
- Department
of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Lindsey Culver
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
| | - Kyle Balk
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
- Department
of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Colin Reis
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
- Department
of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Slyn Uaroon
- Department
of Otolaryngology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kaitlyn A. McClintic
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
| | - Samual Hatfield
- Carver
College of Medicine, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kristan S. Worthington
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
| | - Edward A. Sander
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
| | - Giovanni Traverso
- Division
of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Leo E. Otterbein
- Department
of Surgery, Beth Israel Deaconess Medical
Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- College
of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jessica E. Goetz
- Department
of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Orthopedics and Rehabilitation, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Douglas C. Fredericks
- Department
of Orthopedics and Rehabilitation, University
of Iowa, Iowa City, Iowa 52242, United States
| | - James D. Byrne
- Department
of Biomedical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
- Department
of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
2
|
Zhang JJ, Ni P, Song Y, Gao MJ, Guo XY, Zhao BQ. Effective protective mechanisms of HO-1 in diabetic complications: a narrative review. Cell Death Discov 2024; 10:433. [PMID: 39389941 PMCID: PMC11466965 DOI: 10.1038/s41420-024-02205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder with persistent hyperglycemia caused by a variety of underlying factors. Chronic hyperglycemia can lead to diverse serious consequences and diversified complications, which pose a serious threat to patients. Among the major complications are cardiovascular disease, kidney disease, diabetic foot ulcers, diabetic retinopathy, and neurological disorders. Heme oxygenase 1 (HO-1) is a protective enzyme with antioxidant, anti-inflammatory and anti-apoptotic effects, which has been intensively studied and plays an important role in diabetic complications. By inducing the expression and activity of HO-1, it can enhance the antioxidant, anti-inflammatory, and anti-apoptotic capacity of tissues, and thus reduce the degree of damage in diabetic complications. The present study aims to review the relationship between HO-1 and the pathogenesis of diabetes and its complications. HO-1 is involved in the regulation of macrophage polarization and promotes the M1 state (pro-inflammatory) towards to the M2 state (anti-inflammatory). Induction of HO-1 expression in dendritic cells inhibits them maturation and secretion of pro-inflammatory cytokines and promotes regulatory T cell (Treg cell) responses. The induction of HO-1 can reduce the production of reactive oxygen species, thereby reducing oxidative stress and inflammation. Besides, HO-1 also has an important effect in novel programmed cell death such as pyroptosis and ferroptosis, thereby playing a protective role against diabetes. In conclusion, HO-1 plays a significant role in the occurrence and development of diabetic complications and is closely associated with a variety of complications. HO-1 is anticipated to serve as a novel target for addressing diabetic complications, and it holds promise as a potential therapeutic agent for diabetes and its associated complications. We hope to provide inspiration and ideas for future studies in the mechanism and targets of HO-1 through this review.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Ping Ni
- Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Yi Song
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Man-Jun Gao
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Xi-Ying Guo
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| | - Bao-Qing Zhao
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| |
Collapse
|
3
|
Ye S, Jin N, Liu N, Cheng F, Hu L, Zhang G, Li Q, Jing J. Gases and gas-releasing materials for the treatment of chronic diabetic wounds. Biomater Sci 2024; 12:3273-3292. [PMID: 38727636 DOI: 10.1039/d4bm00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Chronic non-healing wounds are a common consequence of skin ulceration in diabetic patients, with severe cases such as diabetic foot even leading to amputations. The interplay between pathological factors like hypoxia-ischemia, chronic inflammation, bacterial infection, impaired angiogenesis, and accumulation of advanced glycosylation end products (AGEs), resulting from the dysregulation of the immune microenvironment caused by hyperglycemia, establishes an unending cycle that hampers wound healing. However, there remains a dearth of sufficient and effective approaches to break this vicious cycle within the complex immune microenvironment. Consequently, numerous scholars have directed their research efforts towards addressing chronic diabetic wound repair. In recent years, gases including Oxygen (O2), Nitric oxide (NO), Hydrogen (H2), Hydrogen sulfide (H2S), Ozone (O3), Carbon monoxide (CO) and Nitrous oxide (N2O), along with gas-releasing materials associated with them have emerged as promising therapeutic solutions due to their ability to regulate angiogenesis, intracellular oxygenation levels, exhibit antibacterial and anti-inflammatory effects while effectively minimizing drug residue-induced damage and circumventing drug resistance issues. In this review, we discuss the latest advances in the mechanisms of action and treatment of these gases and related gas-releasing materials in diabetic wound repair. We hope that this review can provide different ideas for the future design and application of gas therapy for chronic diabetic wounds.
Collapse
Affiliation(s)
- Shuming Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Neng Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Nan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Feixiang Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Liang Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Qi Li
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
4
|
Witt E, Leach AJ, Bi J, Hatfield S, Cotoia AT, McGovern MK, Cafi AB, Rhodes AC, Cook AN, Uaroon S, Parajuli B, Kim J, Feig V, Scheiflinger A, Nwosu I, Jimenez M, Coleman MC, Buchakjian MR, Bosch DE, Tift MS, Traverso G, Otterbein LE, Byrne JD. Modulation of diabetic wound healing using carbon monoxide gas-entrapping materials. DEVICE 2024; 2:100320. [PMID: 38911126 PMCID: PMC11192243 DOI: 10.1016/j.device.2024.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Diabetic wound healing is uniquely challenging to manage due to chronic inflammation and heightened microbial growth from elevated interstitial glucose. Carbon monoxide (CO), widely acknowledged as a toxic gas, is also known to provide unique therapeutic immune modulating effects. To facilitate delivery of CO, we have designed hyaluronic acid-based CO-gas-entrapping materials (CO-GEMs) for topical and prolonged gas delivery to the wound bed. We demonstrate that CO-GEMs promote the healing response in murine diabetic wound models (full-thickness wounds and pressure ulcers) compared to N2-GEMs and untreated controls.
Collapse
Affiliation(s)
- Emily Witt
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Alexander J Leach
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jianling Bi
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Samual Hatfield
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alicia T Cotoia
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403, USA
| | - Megan K McGovern
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Arielle B Cafi
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Ashley C Rhodes
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Austin N Cook
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Slyn Uaroon
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Department of Otolaryngology, University of Iowa, Iowa City, IA, 52242, USA
| | - Bishal Parajuli
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jinhee Kim
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, ON M5S 1A8, Canada
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Vivian Feig
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alexandra Scheiflinger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ikenna Nwosu
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Miguel Jimenez
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, ON M5S 1A8, Canada
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mitchell C Coleman
- Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Marisa R Buchakjian
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Department of Otolaryngology, University of Iowa, Iowa City, IA, 52242, USA
| | - Dustin E Bosch
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael S Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - James D Byrne
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
- Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
5
|
Nielsen VG. Novel Toxicodynamic Model of Subcutaneous Envenomation to Characterize Snake Venom Coagulopathies and Assess the Efficacy of Site-Directed Inorganic Antivenoms. Int J Mol Sci 2023; 24:13939. [PMID: 37762243 PMCID: PMC10530349 DOI: 10.3390/ijms241813939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Venomous snake bite adversely affects millions of people yearly, but few animal models allow for the determination of toxicodynamic timelines with hemotoxic venoms to characterize the onset and severity of coagulopathy or assess novel, site-directed antivenom strategies. Thus, the goals of this investigation were to create a rabbit model of subcutaneous envenomation to assess venom toxicodynamics and efficacy of ruthenium-based antivenom administration. New Zealand White rabbits were sedated with midazolam via the ear vein and had viscoelastic measurements of whole blood and/or plasmatic coagulation kinetics obtained from ear artery samples. Venoms derived from Crotalus scutulatus scutulatus, Bothrops moojeni, or Calloselasma rhodostoma were injected subcutaneously, and changes in coagulation were determined over three hours and compared to samples obtained prior to envenomation. Other rabbits had ruthenium-based antivenoms injected five minutes after venom injection. Viscoelastic analyses demonstrated diverse toxicodynamic patterns of coagulopathy consistent with the molecular composition of the proteomes of the venoms tested. The antivenoms tested attenuated venom-mediated coagulopathy. A novel rabbit model can be used to characterize the onset and severity of envenomation by diverse proteomes and to assess site-directed antivenoms. Future investigation is planned involving other medically important venoms and antivenom development.
Collapse
Affiliation(s)
- Vance G Nielsen
- Department of Anesthesiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
6
|
Butler K, Brinker CJ, Leong HS. Bridging the In Vitro to In Vivo gap: Using the Chick Embryo Model to Accelerate Nanoparticle Validation and Qualification for In Vivo studies. ACS NANO 2022; 16:19626-19650. [PMID: 36453753 PMCID: PMC9799072 DOI: 10.1021/acsnano.2c03990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
We postulate that nanoparticles (NPs) for use in therapeutic applications have largely not realized their clinical potential due to an overall inability to use in vitro results to predict NP performance in vivo. The avian embryo and associated chorioallantoic membrane (CAM) has emerged as an in vivo preclinical model that bridges the gap between in vitro and in vivo, enabling rapid screening of NP behavior under physiologically relevant conditions and providing a rapid, accessible, economical, and more ethical means of qualifying nanoparticles for in vivo use. The CAM is highly vascularized and mimics the diverging/converging vasculature of the liver, spleen, and lungs that serve as nanoparticle traps. Intravital imaging of fluorescently labeled NPs injected into the CAM vasculature enables immediate assessment and quantification of nano-bio interactions at the individual NP scale in any tissue of interest that is perfused with a microvasculature. In this review, we highlight how utilization of the avian embryo and its CAM as a preclinical model can be used to understand NP stability in blood and tissues, extravasation, biocompatibility, and NP distribution over time, thereby serving to identify a subset of NPs with the requisite stability and performance to introduce into rodent models and enabling the development of structure-property relationships and NP optimization without the sacrifice of large populations of mice or other rodents. We then review how the chicken embryo and CAM model systems have been used to accelerate the development of NP delivery and imaging agents by allowing direct visualization of targeted (active) and nontargeted (passive) NP binding, internalization, and cargo delivery to individual cells (of relevance for the treatment of leukemia and metastatic cancer) and cellular ensembles (e.g., cancer xenografts of interest for treatment or imaging of cancer tumors). We conclude by showcasing emerging techniques for the utilization of the CAM in future nano-bio studies.
Collapse
Affiliation(s)
- Kimberly
S. Butler
- Molecular
and Microbiology, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - C. Jeffrey Brinker
- Department
of Chemical and Biological Engineering and the Comprehensive Cancer
Center, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hon Sing Leong
- Department
of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto M5G 1L7, Canada
- Biological
Sciences Platform, Sunnybrook Hospital, Toronto M4N 3M5, Canada
| |
Collapse
|
7
|
Leal EC, Carvalho E. Heme Oxygenase-1 as Therapeutic Target for Diabetic Foot Ulcers. Int J Mol Sci 2022; 23:ijms231912043. [PMID: 36233341 PMCID: PMC9569859 DOI: 10.3390/ijms231912043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
A diabetic foot ulcer (DFU) is one of the major complications of diabetes. Wound healing under diabetic conditions is often impaired. This is in part due to the excessive oxidative stress, prolonged inflammation, immune cell dysfunction, delayed re-epithelialization, and decreased angiogenesis present at the wound site. As a result of these multifactorial impaired healing pathways, it has been difficult to develop effective therapeutic strategies for DFU. Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in heme degradation generating carbon monoxide (CO), biliverdin (BV) which is converted into bilirubin (BR), and iron. HO-1 is a potent antioxidant. It can act as an anti-inflammatory, proliferative, angiogenic and cytoprotective enzyme. Due to its biological functions, HO-1 plays a very important role in wound healing, in part mediated through the biologically active end products generated by its enzymatic activity, particularly CO, BV, and BR. Therapeutic strategies involving the activation of HO-1, or the topical application of its biologically active end products are important in diabetic wound healing. Therefore, HO-1 is an attractive therapeutic target for DFU treatment. This review will provide an overview and discussion of the importance of HO-1 as a therapeutic target for diabetic wound healing.
Collapse
Affiliation(s)
- Ermelindo Carreira Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (E.C.L.); (E.C.); Tel.: +351-239-820-190 (E.C.L. & E.C.)
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (E.C.L.); (E.C.); Tel.: +351-239-820-190 (E.C.L. & E.C.)
| |
Collapse
|
8
|
Krukowska K, Magierowski M. Carbon monoxide (CO)/heme oxygenase (HO)-1 in gastrointestinal tumors pathophysiology and pharmacology - possible anti- and pro-cancer activities. Biochem Pharmacol 2022; 201:115058. [PMID: 35490732 DOI: 10.1016/j.bcp.2022.115058] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Gastrointestinal (GI) tract cancers pose a significant pharmacological challenge for researchers in terms of the discovery of molecular agents and the development of targeted therapies. Although many ongoing clinical trials have brought new perspectives, there is still a lack of successful long-term treatment. Several novel pharmacological and molecular agents are being studied in the prevention and treatment of GI cancers. On the other hand, pharmacological tools designed to release an endogenous gaseous mediator, carbon monoxide (CO), were shown to prevent the gastric mucosa against various types of injuries and exert therapeutic properties in the treatment of GI pathologies. In this review, we summarized the current evidence on the role of CO and heme oxygenase 1 (HO-1) as a CO producing enzyme in the pathophysiology of GI tumors. We focused on a beneficial role of HO-1 and CO in biological systems and common pathological conditions. We further discussed the complex and ambiguous function of the HO-1/CO pathway in cancer cells with a special emphasis on molecular and cellular pro-cancerous and anti-cancer mechanisms. We also focused on the role that HO-1/CO plays in GI cancers, especially within upper parts such as esophagus or stomach.
Collapse
Affiliation(s)
- Kinga Krukowska
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Poland
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Poland.
| |
Collapse
|
9
|
Pathak V, Roemhild K, Schipper S, Groß-Weege N, Nolte T, Ruetten S, Buhl EM, El Shafei A, Weiler M, Martin L, Marx G, Schulz V, Kiessling F, Lammers T, Koczera P. Theranostic Trigger-Responsive Carbon Monoxide-Generating Microbubbles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200924. [PMID: 35363403 DOI: 10.1002/smll.202200924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Carbon monoxide (CO) is a gaseous signaling molecule that modulates inflammation, cell survival, and recovery after myocardial infarction. However, handling and dosing of CO as a compressed gas are difficult. Here, light-triggerable and magnetic resonance imaging (MRI)-detectable CO release from dimanganese decacarbonyl (CORM-1) are demonstrated, and the development of CORM-1-loaded polymeric microbubbles (COMB) is described as an ultrasound (US)- and MRI-imageable drug delivery platform for triggerable and targeted CO therapy. COMB are synthesized via a straightforward one-step loading protocol, present a narrow size distribution peaking at 2 µm, and show excellent performance as a CORM-1 carrier and US contrast agent. Light irradiation of COMB induces local production and release of CO, as well as enhanced longitudinal and transversal relaxation rates, enabling MRI monitoring of CO delivery. Proof-of-concept studies for COMB-enabled light-triggered CO release show saturation of hemoglobin with CO in human blood, anti-inflammatory differentiation of macrophages, reduction of hypoxia-induced reactive oxygen species (ROS) production, and inhibition of ischemia-induced apoptosis in endothelial cells and cardiomyocytes. These findings indicate that CO-generating MB are interesting theranostic tools for attenuating hypoxia-associated and ROS-mediated cell and tissue damage in cardiovascular disease.
Collapse
Affiliation(s)
- Vertika Pathak
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Karolin Roemhild
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
- Institute of Pathology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Sandra Schipper
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
- Department of General, Visceral and Transplantation Surgery, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Nicolas Groß-Weege
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Teresa Nolte
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Stephan Ruetten
- Electron Microscopy, Institute of Pathology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy, Institute of Pathology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Asmaa El Shafei
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Marek Weiler
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Lukas Martin
- Department of Intensive Care Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Volkmar Schulz
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
- Department of Pharmaceutics, Utrecht University, Utrecht, 3584CG, The Netherlands
- Department of Targeted Therapeutics, University of Twente, Enschede, 7522 NB, The Netherlands
| | - Patrick Koczera
- Institute for Experimental Molecular Imaging, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
- Department of Intensive Care Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Clinic, 52074, Aachen, Germany
| |
Collapse
|
10
|
Thomas JM, Vidhyapriya P, Sivan AK, Sakthivel N, Sivasankar C. Synthesis, spectroscopic, CO‐releasing ability, and anticancer activity studies of [Mn(CO)
3
(L–L)Br] complexes: Experimental and density functional theory studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jisha Mary Thomas
- Catalysis and Energy Laboratory, Department of Chemistry Pondicherry University (A Central University) Puducherry India
| | - Pitchavel Vidhyapriya
- Department of Biotechnology Pondicherry University (A Central University) Puducherry India
| | - Akhil K. Sivan
- Catalysis and Energy Laboratory, Department of Chemistry Pondicherry University (A Central University) Puducherry India
| | - Natarajan Sakthivel
- Department of Biotechnology Pondicherry University (A Central University) Puducherry India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory, Department of Chemistry Pondicherry University (A Central University) Puducherry India
| |
Collapse
|
11
|
Topical application of sustained released-carbon monoxide promotes cutaneous wound healing in diabetic mice. Biochem Pharmacol 2022; 199:115016. [PMID: 35331735 DOI: 10.1016/j.bcp.2022.115016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/13/2023]
Abstract
Clinical incidences of pressure ulcers in the elderly and intractable skin ulcers in diabetic patients are increasing because of the aging population and an increase in the number of diabetic patients worldwide. Although various agents are used to treat pressure and skin ulcers, these ulcers are often refractory and deteriorate the patients' quality of life. Therefore, a novel therapeutic agent with a novel mechanism of action is required. Carbon monoxide (CO) contributes to many physiological and pathophysiological processes, including anti-inflammatory activity; therefore, it can be a therapeutic gaseous molecule. Recent studies have revealed that CO accelerates wound healing in gastrointestinal tract injuries. However, it remains unclear whether CO promotes cutaneous wound healing. Therefore, we aimed to evaluate the therapeutic effects of topical application of a CO-containing solution and elucidate the underlying mechanism. A full-thickness skin wound generated on the back of diabetic mice was treated topically with CO or vehicle. Sustained release of CO was achieved using polyacrylic acid (PAA) as a thickener. The administration of CO-containing PAA aqueous solution resulted in a significant acceleration in wound recovery without elevating serum CO levels in association with increased angiogenesis and supported by elevated expression of vascular endothelial growth factor mRNA in the wound granulomatous tissues. These data suggest that CO might represent a novel therapeutic agent for the treatment of cutaneous wounds.
Collapse
|
12
|
Grambow E, Sorg H, Sorg CGG, Strüder D. Experimental Models to Study Skin Wound Healing with a Focus on Angiogenesis. Med Sci (Basel) 2021; 9:medsci9030055. [PMID: 34449673 PMCID: PMC8395822 DOI: 10.3390/medsci9030055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
A large number of models are now available for the investigation of skin wound healing. These can be used to study the processes that take place in a phase-specific manner under both physiological and pathological conditions. Most models focus on wound closure, which is a crucial parameter for wound healing. However, vascular supply plays an equally important role and corresponding models for selective or parallel investigation of microcirculation regeneration and angiogenesis are also described. In this review article, we therefore focus on the different levels of investigation of skin wound healing (in vivo to in virtuo) and the investigation of angiogenesis and its parameters.
Collapse
Affiliation(s)
- Eberhard Grambow
- Department of General, Visceral, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, 18057 Rostock, Germany
- Correspondence:
| | - Heiko Sorg
- Department of Health, University of Witten/Herdecke, Alfred-Herrhausen-Str. 50, 58455 Witten, Germany;
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Klinikum Westfalen, Am Knappschaftskrankenhaus 1, 44309 Dortmund, Germany
| | - Christian G. G. Sorg
- Chair of Management and Innovation in Health Care, Department of Management and Entrepreneurship, Faculty of Management, Economics and Society, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58455 Witten, Germany;
| | - Daniel Strüder
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery “Otto Körner”, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
13
|
Takagi T, Naito Y, Higashimura Y, Uchiyama K, Okayama T, Mizushima K, Katada K, Kamada K, Ishikawa T, Itoh Y. Rectal administration of carbon monoxide inhibits the development of intestinal inflammation and promotes intestinal wound healing via the activation of the Rho-kinase pathway in rats. Nitric Oxide 2021; 107:19-30. [PMID: 33340673 DOI: 10.1016/j.niox.2020.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
The inhalation of carbon monoxide (CO) gas and the administration of CO-releasing molecules were shown to inhibit the development of intestinal inflammation in a murine colitis model. However, it remains unclear whether CO promotes intestinal wound healing. Herein, we aimed to evaluate the therapeutic effects of the topical application of CO-saturated saline enemas on intestinal inflammation and elucidate the underlying mechanism. Acute colitis was induced with trinitrobenzene sulfonic acid (TNBS) in male Wistar rats. A CO-saturated solution was prepared via bubbling 50% CO gas into saline and was rectally administrated twice a day after colitis induction; rats were sacrificed 3 or 7 days after induction for the study of the acute or healing phases, respectively. The distal colon was isolated, and ulcerated lesions were measured. In vitro wound healing assays were also employed to determine the mechanism underlying rat intestinal epithelial cell restitution after CO treatment. CO solution rectal administration ameliorated acute TNBS-induced colonic ulceration and accelerated ulcer healing without elevating serum CO levels. The increase in thiobarbituric acid-reactive substances and myeloperoxidase activity after induction of acute TNBS colitis was also significantly inhibited after CO treatment. Moreover, the wound healing assays revealed that the CO-saturated medium enhanced rat intestinal epithelial cell migration via the activation of Rho-kinase. In addition, the activation of Rho-kinase in response to CO treatment was confirmed in the inflamed colonic tissue. Therefore, the rectal administration of a CO-saturated solution protects the intestinal mucosa from inflammation and accelerates colonic ulcer healing through enhanced epithelial cell restitution. CO may thus represent a novel therapeutic agent for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Tomohisa Takagi
- Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan; Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yasuki Higashimura
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tetsuya Okayama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuhiro Katada
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuhiro Kamada
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
14
|
Ganesh GV, Ramkumar KM. Macrophage mediation in normal and diabetic wound healing responses. Inflamm Res 2020; 69:347-363. [PMID: 32146517 DOI: 10.1007/s00011-020-01328-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/23/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The failure in timely healing of wounds is a central feature in chronic wounds that leads to physiological, psychological and economic burdens. Macrophages have been demonstrated to have various functions in wounds including host defense, the promotion and resolution of inflammation, the removal of apoptotic cells and tissue restoration following injury. Accumulated evidence suggests that macrophage dysfunction is a component of the pathogenesis of non-healing wounds. While the overall signaling cascades have been well understood, their complex interplay and a detailed characterization of events that are disrupted in chronic wounds have still not emerged satisfactorily. METHODS The existing literature was reviewed to summarize the regulation of macrophage polarization in wound closure and dysregulation in non-healing wounds. Further, the review also underscored the role of Nrf2 in promoting macrophage-mediated regulation in wound responses and in particular, macrophage involvement in iron homeostasis that is impaired in chronic wounds such as in diabetes. RESULTS The mechanisms involved in the reprogramming of macrophage subtypes in chronic wounds are still emerging. Furthermore, treating non-healing wounds has increasingly been shifting focus from generic treatments to the development of targeted therapies. Increasing evidence suggests the need for modeling wound tissue in vitro which may very well serve a critical aspect to characterize the relevant factors that sustain chronic wounds in vivo such as the constant iron overload at the wound site from recurrent infection and bleeding. CONCLUSION The development of targeted therapies and also developing a reliable means to monitor assisted healing of chronic wounds are two major goals to be pursued. In addition, identifying molecular targets that can regulate macrophages to aid tissue restoration in chronic wounds would serve the crucial step in realizing both aforementioned goals.
Collapse
Affiliation(s)
- Goutham V Ganesh
- Life Science Division, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, 603 203, India.,Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Kunka Mohanram Ramkumar
- Life Science Division, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, 603 203, India.
| |
Collapse
|
15
|
Abstract
Background The study of the mechanisms controlling wound healing is an attractive area within the field of biology, with it having a potentially significant impact on the health sector given the current medical burden associated with healing in the elderly population. Healing is a complex process and includes many steps that are regulated by coding and noncoding RNAs, proteins and other molecules. Nitric oxide (NO) is one of these small molecule regulators and its function has already been associated with inflammation and angiogenesis during adult healing. Results Our results showed that NO is also an essential component during embryonic scarless healing and acts via a previously unknown mechanism. NO is mainly produced during the early phase of healing and it is crucial for the expression of genes associated with healing. However, we also observed a late phase of healing, which occurs for several hours after wound closure and takes place under the epidermis and includes tissue remodelling that is dependent on NO. We also found that the NO is associated with multiple cellular metabolic pathways, in particularly the glucose metabolism pathway. This is particular noteworthy as the use of NO donors have already been found to be beneficial for the treatment of chronic healing defects (including those associated with diabetes) and it is possible that its mechanism of action follows those observed during embryonic wound healing. Conclusions Our study describes a new role of NO during healing, which may potentially translate to improved therapeutic treatments, especially for individual suffering with problematic healing.
Collapse
|
16
|
Kottelat E, Lucarini F, Crochet A, Ruggi A, Zobi F. Correlation of MLCTs of Group 7 fac
-[M(CO)3
]+
Complexes (M = Mn, Re) with Bipyridine, Pyridinylpyrazine, Azopyridine, and Pyridin-2-ylmethanimine Type Ligands for Rational photoCORM Design. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Emmanuel Kottelat
- Department of Chemistry; Faculty of Sciences; University of Fribourg; Chemin de Musée 9, 1700 Fribourg Switzerland
| | - Fiorella Lucarini
- Department of Chemistry; Faculty of Sciences; University of Fribourg; Chemin de Musée 9, 1700 Fribourg Switzerland
| | - Aurelien Crochet
- Department of Chemistry; Faculty of Sciences; University of Fribourg; Chemin de Musée 9, 1700 Fribourg Switzerland
| | - Albert Ruggi
- Department of Chemistry; Faculty of Sciences; University of Fribourg; Chemin de Musée 9, 1700 Fribourg Switzerland
| | - Fabio Zobi
- Department of Chemistry; Faculty of Sciences; University of Fribourg; Chemin de Musée 9, 1700 Fribourg Switzerland
| |
Collapse
|
17
|
Bauer T, Stepic R, Wolf P, Kollhoff F, Karawacka W, Wick CR, Haumann M, Wasserscheid P, Smith DM, Smith AS, Libuda J. Dynamic equilibria in supported ionic liquid phase (SILP) catalysis: in situ IR spectroscopy identifies [Ru(CO)xCly]n species in water gas shift catalysis. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02199b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ru-based SILP systems efficiently catalyze the low-temperature water-gas shift reaction (WGSR).
Collapse
Affiliation(s)
- Tanja Bauer
- Lehrstuhl für Physikalische Chemie II
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- D-91058 Erlangen
- Germany
| | - Robert Stepic
- PULS Gruppe
- Lehrstuhl für Theoretische Physik I
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- D-91052 Erlangen
- Germany
| | - Patrick Wolf
- Lehrstuhl für Chemische Reaktionstechnik
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- D-91058 Erlangen
- Germany
| | - Fabian Kollhoff
- Lehrstuhl für Physikalische Chemie II
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- D-91058 Erlangen
- Germany
| | - Weronika Karawacka
- Lehrstuhl für Physikalische Chemie II
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- D-91058 Erlangen
- Germany
| | | | - Marco Haumann
- Lehrstuhl für Chemische Reaktionstechnik
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- D-91058 Erlangen
- Germany
| | - Peter Wasserscheid
- Lehrstuhl für Chemische Reaktionstechnik
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- D-91058 Erlangen
- Germany
- Erlangen Catalysis Resource Center and Interdisciplinary Center Interface-Controlled Processes
| | - David M. Smith
- Ruđer Bošković Institute
- HR-10002 Zagreb
- Croatia
- Computer Chemie Centrum
- Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Ana-Sunčana Smith
- PULS Gruppe
- Lehrstuhl für Theoretische Physik I
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- D-91052 Erlangen
- Germany
| | - Jörg Libuda
- Lehrstuhl für Physikalische Chemie II
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- D-91058 Erlangen
- Germany
- Erlangen Catalysis Resource Center and Interdisciplinary Center Interface-Controlled Processes
| |
Collapse
|
18
|
Loboda A, Jozkowicz A, Dulak J. Carbon monoxide: pro- or anti-angiogenic agent? Comment on Ahmad et al. (Thromb Haemost 2015; 113: 329–337). Thromb Haemost 2017; 114:432-3. [DOI: 10.1160/th15-01-0082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
|
19
|
Qiao L, Zhang N, Huang JL, Yang XQ. Carbon monoxide as a promising molecule to promote nerve regeneration after traumatic brain injury. Med Gas Res 2017; 7:45-47. [PMID: 28480031 PMCID: PMC5402346 DOI: 10.4103/2045-9912.202909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Carbon monoxide (CO) is known as a toxic gas. Although there have been many studies on both toxic and protective effects of CO, most of these studies lack novelty, except for Eng H Lo team's study on the therapeutic effect of CO on brain injuries. In this commentary, we summarize the potential application value of CO in the treatment of some clinical diseases, especially its protective effect and nerve regeneration in brain injuries, hoping that our interest in CO could promote related clinical application studies.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Anatomy, Center of Regenerative Medicine, the Second Military Medical University, Shanghai, China
| | - Ning Zhang
- Department of Naval Aviation, the Second Military Medical University, Shanghai, China
| | - Jun-Long Huang
- Department of Naval Aviation, the Second Military Medical University, Shanghai, China
| | - Xiang-Qun Yang
- Department of Anatomy, Center of Regenerative Medicine, the Second Military Medical University, Shanghai, China
| |
Collapse
|
20
|
Effects of Remote Ischemic Preconditioning on Heme Oxygenase-1 Expression and Cutaneous Wound Repair. Int J Mol Sci 2017; 18:ijms18020438. [PMID: 28218659 PMCID: PMC5343972 DOI: 10.3390/ijms18020438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 12/26/2022] Open
Abstract
Skin wounds may lead to scar formation and impaired functionality. Remote ischemic preconditioning (RIPC) can induce the anti-inflammatory enzyme heme oxygenase-1 (HO-1) and protect against tissue injury. We aim to improve cutaneous wound repair by RIPC treatment via induction of HO-1. RIPC was applied to HO-1-luc transgenic mice and HO-1 promoter activity and mRNA expression in skin and several other organs were determined in real-time. In parallel, RIPC was applied directly or 24h prior to excisional wounding in mice to investigate the early and late protective effects of RIPC on cutaneous wound repair, respectively. HO-1 promoter activity was significantly induced on the dorsal side and locally in the kidneys following RIPC treatment. Next, we investigated the origin of this RIPC-induced HO-1 promoter activity and demonstrated increased mRNA in the ligated muscle, heart and kidneys, but not in the skin. RIPC did not change HO-1 mRNA and protein levels in the wound 7 days after cutaneous injury. Both early and late RIPC did not accelerate wound closure nor affect collagen deposition. RIPC induces HO-1 expression in several organs, but not the skin, and did not improve excisional wound repair, suggesting that the skin is insensitive to RIPC-mediated protection.
Collapse
|
21
|
Katada K, Takagi T, Uchiyama K, Naito Y. Therapeutic roles of carbon monoxide in intestinal ischemia-reperfusion injury. J Gastroenterol Hepatol 2015; 30 Suppl 1:46-52. [PMID: 25827804 DOI: 10.1111/jgh.12742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal ischemia-reperfusion (I-R) injury is a complex, multifactorial, pathophysiological process with high morbidity and mortality, leading to serious difficulty in treatment. The mechanisms involved in the pathogenesis of intestinal I-R injury have been examined in detail and various therapeutic approaches for intestinal I-R injury have been developed; however, existing circumstances have not yet led to a dramatic change of treatment. Carbon monoxide (CO), one of the by-products of heme degradation by heme oxygenase (HO), is considered as a candidate for treatment of intestinal I-R injury and indeed HO-1-derived endogenous CO and exogenous CO play a pivotal role in protecting the gastrointestinal tract from intestinal I-R injury. Interestingly, anti-inflammatory effects of CO have been elucidated sufficiently in various cell types including endothelial cells, circulating leukocytes, macrophages, lymphocytes, epithelial cells, fibroblast, organ-specific cells, and immune-presenting cells. In this review, we herein focus on the therapeutic roles of CO in intestinal I-R injury and the cell-specific anti-inflammatory effects of CO, clearly demonstrating future therapeutic strategies of CO for treating intestine I-R injury.
Collapse
Affiliation(s)
- Kazuhiro Katada
- Molecular Gastroenterology and Hepatology, Graduate School of Medial Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
22
|
Beck I, Hotowy A, Sawosz E, Grodzik M, Wierzbicki M, Kutwin M, Jaworski S, Chwalibog A. Effect of silver nanoparticles and hydroxyproline, administeredin ovo, on the development of blood vessels and cartilage collagen structure in chicken embryos. Arch Anim Nutr 2014; 69:57-68. [DOI: 10.1080/1745039x.2014.992179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Ahanger AA, Leo MD, Gopal A, Kant V, Tandan SK, Kumar D. Pro-healing effects of bilirubin in open excision wound model in rats. Int Wound J 2014; 13:398-402. [PMID: 24947136 DOI: 10.1111/iwj.12319] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 05/23/2014] [Accepted: 05/25/2014] [Indexed: 11/30/2022] Open
Abstract
Bilirubin, a by-product of heme degradation, has an important role in cellular protection. Therefore, we speculated that bilirubin could be of potential therapeutic value in wound healing. To validate the hypothesis, we used a full-thickness cutaneous wound model in rats. Bilirubin (30 mg/kg) was administered intraperitoneally every day for 9 days. The surface area of the wound was measured on days 0, 2, 4, 7 and 10 after the creation of the wound. The granulation tissue was collected on day 10 post-wounding for analysing various parameters of wound healing. Bilirubin treatment accelerated wound contraction and increased hydroxyproline and glucosamine contents. mRNA expression of pro-inflammatory factors such as intercellular cell adhesion molecule-1 (ICAM-1) and tumour necrosis factor-α (TNF-α) were down-regulated and that of anti-inflammatory cytokine interleukin-10 (IL-10) was up-regulated. The findings suggest that bilirubin could be a new agent for enhancing cutaneous wound healing.
Collapse
Affiliation(s)
- Azad A Ahanger
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly, India
| | - Marie D Leo
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anu Gopal
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly, India
| | - Vinay Kant
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly, India
| | - Surendra K Tandan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
24
|
Feger M, Fajol A, Lebedeva A, Meissner A, Michael D, Voelkl J, Alesutan I, Schleicher E, Reichetzeder C, Hocher B, Qadri SM, Lang F. Effect of carbon monoxide donor CORM-2 on vitamin D3 metabolism. Kidney Blood Press Res 2013; 37:496-505. [PMID: 24247848 DOI: 10.1159/000355730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Carbon monoxide (CO) interferes with cytochrome-dependent cellular functions and acts as gaseous transmitter. CO is released from CO-releasing molecules (CORM) including tricarbonyl-dichlororuthenium (II) dimer (CORM-2), molecules considered for the treatment of several disorders including vascular dysfunction, inflammation, tissue ischemia and organ rejection. Cytochrome P450-sensitive function include formation of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) by renal 25-hydroxyvitamin D3 1-alpha-hydroxylase (Cyp27b1). The enzyme is regulated by PTH, FGF23 and klotho. 1,25(OH)2D3 regulates Ca(2+) and phosphate transport as well as klotho expression. The present study explored, whether CORM-2 influences 1,25(OH)2D3 formation and klotho expression. METHODS Mice were treated with intravenous CORM-2 (20 mg/kg body weight). Plasma 1,25(OH)2D3 and FGF23 concentrations were determined by ELISA, phosphate, calcium and creatinine concentrations by colorimetric methods, transcript levels by quantitative RT-PCR and protein expression by western blotting. Fgf23 mRNA transcript levels were further determined in rat osteosarcoma UMR106 cells without or with prior treatment for 24 hours with 20 µM CORM-2. RESULTS CORM-2 injection within 24 hours significantly increased FGF23 plasma levels and decreased 1,25(OH)2D3 plasma levels, renal Cyp27b1 gene expression as well as renal klotho protein abundance and transcript levels. Moreover, treatment of UMR106 cells with CORM-2 significantly increased Fgf23 transcript levels. CONCLUSION CO-releasing molecule CORM-2 enhances FGF23 expression and release and decreases klotho expression and 1,25(OH)2D3 synthesis. © 2013 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Martina Feger
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bijjem KRV, Padi SSV, lal Sharma P. Pharmacological activation of heme oxygenase (HO)-1/carbon monoxide pathway prevents the development of peripheral neuropathic pain in Wistar rats. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:79-90. [DOI: 10.1007/s00210-012-0816-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 11/22/2012] [Indexed: 12/19/2022]
|
26
|
Motterlini R, Haas B, Foresti R. Emerging concepts on the anti-inflammatory actions of carbon monoxide-releasing molecules (CO-RMs). Med Gas Res 2012; 2:28. [PMID: 23171578 PMCID: PMC3536644 DOI: 10.1186/2045-9912-2-28] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/07/2012] [Indexed: 02/08/2023] Open
Abstract
Carbon monoxide-releasing molecules (CO-RMs) are a class of organometallo compounds capable of delivering controlled quantities of CO gas to cells and tissues thus exerting a broad spectrum of pharmacological effects. CO-RMs containing transition metal carbonyls were initially implemented to mimic the function of heme oxygenase-1 (HMOX1), a stress inducible defensive protein that degrades heme to CO and biliverdin leading to anti-oxidant and anti-inflammatory actions. Ten years after their discovery, the research on the chemistry and biological activities of CO-RMs has greatly intensified indicating that their potential use as CO delivering agents for the treatment of several pathological conditions is feasible. Although CO-RMs are a class of compounds that structurally diverge from traditional organic-like pharmaceuticals, their behaviour in the biological environments is progressively being elucidated revealing interesting features of metal-carbonyl chemistry towards cellular targets. Specifically, the presence of carbonyl groups bound to transition metals such as ruthenium, iron or manganese appears to make CO-RMs unique in their ability to transfer CO intracellularly and amplify the mechanisms of signal transduction mediated by CO. In addition to their well-established vasodilatory activities and protective effects against organ ischemic damage, CO-RMs are emerging for their striking anti-inflammatory properties which may be the result of the multiple activities of metal carbonyls in the control of redox signaling, oxidative stress and cellular respiration. Here, we review evidence on the pharmacological effects of CO-RMs in models of acute and chronic inflammation elaborating on some emerging concepts that may help to explain the chemical reactivity and mechanism(s) of action of this distinctive class of compounds in biological systems.
Collapse
Affiliation(s)
- Roberto Motterlini
- INSERM U955, Equipe 3, Faculty of Medicine, University Paris-Est Creteil, Creteil, France.
| | | | | |
Collapse
|
27
|
Lang E, Qadri SM, Jilani K, Zelenak C, Lupescu A, Schleicher E, Lang F. Carbon monoxide-sensitive apoptotic death of erythrocytes. Basic Clin Pharmacol Toxicol 2012; 111:348-55. [PMID: 22726235 DOI: 10.1111/j.1742-7843.2012.00915.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/19/2012] [Indexed: 11/29/2022]
Abstract
Carbon monoxide (CO) intoxication severely interferes with the oxygen-transporting function of haemoglobin. Beyond that, CO participates in the regulation of apoptosis. CO could be generated from CO-releasing molecules (CORM), such as the tricarbonyl-dichlororuthenium (II) dimer (CORM-2), which is presently considered for the treatment of vascular dysfunction, inflammation, tissue ischaemia and organ rejection. CORM-2 is at least partially effective by modifying gene expression and mitochondrial potential. Erythrocytes lack nuclei and mitochondria but may undergo suicidal cell death or eryptosis, characterized by cell shrinkage and phospholipid scrambling of the cell membrane. Eryptosis is triggered by the increase in cytosolic Ca²⁺ activity ([Ca²⁺](i)). The present study explored whether CORM-2 influences eryptosis. To this end, [Ca²⁺](i) was estimated from Fluo-3-fluorescence, cell volume from forward scatter, phospholipid scrambling from annexin-V-binding and haemolysis from haemoglobin release. CO-binding haemoglobin (COHb) was estimated utilizing a blood gas analyser. As a result, exposure of erythrocytes for 24 hr to CORM-2 (≥5 μM) significantly increased COHb, [Ca²⁺](i) , forward scatter, annexin-V-binding and haemolysis. Annexin-V-binding was significantly blunted by 100% oxygen and was virtually abolished in the nominal absence of Ca²⁺. In conclusion, CORM-2 stimulates cell membrane scrambling of erythrocytes, an effect largely due to Ca²⁺ entry and partially reversed by O₂.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Li PN, Li H, Wu ML, Wang SY, Kong QY, Zhang Z, Sun Y, Liu J, Lv DC. A cost-effective transparency-based digital imaging for efficient and accurate wound area measurement. PLoS One 2012; 7:e38069. [PMID: 22666449 PMCID: PMC3364188 DOI: 10.1371/journal.pone.0038069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/30/2012] [Indexed: 01/08/2023] Open
Abstract
Wound measurement is an objective and direct way to trace the course of wound healing and to evaluate therapeutic efficacy. Nevertheless, the accuracy and efficiency of the current measurement methods need to be improved. Taking the advantages of reliability of transparency tracing and the accuracy of computer-aided digital imaging, a transparency-based digital imaging approach is established, by which data from 340 wound tracing were collected from 6 experimental groups (8 rats/group) at 8 experimental time points (Day 1, 3, 5, 7, 10, 12, 14 and 16) and orderly archived onto a transparency model sheet. This sheet was scanned and its image was saved in JPG form. Since a set of standard area units from 1 mm2 to 1 cm2 was integrated into the sheet, the tracing areas in JPG image were measured directly, using the “Magnetic lasso tool” in Adobe Photoshop program. The pixel values/PVs of individual outlined regions were obtained and recorded in an average speed of 27 second/region. All PV data were saved in an excel form and their corresponding areas were calculated simultaneously by the formula of Y (PV of the outlined region)/X (PV of standard area unit) × Z (area of standard unit). It took a researcher less than 3 hours to finish area calculation of 340 regions. In contrast, over 3 hours were expended by three skillful researchers to accomplish the above work with traditional transparency-based method. Moreover, unlike the results obtained traditionally, little variation was found among the data calculated by different persons and the standard area units in different sizes and shapes. Given its accurate, reproductive and efficient properties, this transparency-based digital imaging approach would be of significant values in basic wound healing research and clinical practice.
Collapse
Affiliation(s)
- Pei-Nan Li
- Department of Orthopedic Surgery, First Clinical College, Dalian Medical University, Dalian, China
| | - Hong Li
- Department of Cell Biology, College of Medical Sciences, Dalian Medical University, Dalian, China
| | - Mo-Li Wu
- Department of Cell Biology, College of Medical Sciences, Dalian Medical University, Dalian, China
| | - Shou-Yu Wang
- Department of Orthopedic Surgery, First Clinical College, Dalian Medical University, Dalian, China
| | - Qing-You Kong
- Department of Cell Biology, College of Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhen Zhang
- Department of Orthopedic Surgery, First Clinical College, Dalian Medical University, Dalian, China
| | - Yuan Sun
- Department of Cell Biology, College of Medical Sciences, Dalian Medical University, Dalian, China
| | - Jia Liu
- Department of Cell Biology, College of Medical Sciences, Dalian Medical University, Dalian, China
| | - De-Cheng Lv
- Department of Orthopedic Surgery, First Clinical College, Dalian Medical University, Dalian, China
- * E-mail:
| |
Collapse
|