1
|
García-Giménez JL, Garcés C, Romá-Mateo C, Pallardó FV. Oxidative stress-mediated alterations in histone post-translational modifications. Free Radic Biol Med 2021; 170:6-18. [PMID: 33689846 DOI: 10.1016/j.freeradbiomed.2021.02.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Epigenetic regulation of gene expression provides a finely tuned response capacity for cells when undergoing environmental changes. However, in the context of human physiology or disease, any cellular imbalance that modulates homeostasis has the potential to trigger molecular changes that result either in physiological adaptation to a new situation or pathological conditions. These effects are partly due to alterations in the functionality of epigenetic regulators, which cause long-term and often heritable changes in cell lineages. As such, free radicals resulting from unbalanced/extended oxidative stress have been proved to act as modulators of epigenetic agents, resulting in alterations of the epigenetic landscape. In the present review we will focus on the particular effect that oxidative stress and free radicals produce in histone post-translational modifications that contribute to altering the histone code and, consequently, gene expression. The pathological consequences of the changes in this epigenetic layer of regulation of gene expression are thoroughly evidenced by data gathered in many physiological adaptive processes and in human diseases that range from age-related neurodegenerative pathologies to cancer, and that include respiratory syndromes, infertility, and systemic inflammatory conditions like sepsis.
Collapse
Affiliation(s)
- José-Luis García-Giménez
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia- INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Concepción Garcés
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia- INCLIVA, Valencia, 46010, Spain
| | - Carlos Romá-Mateo
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia- INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia- INCLIVA, Valencia, 46010, Spain; Associated Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.
| |
Collapse
|
2
|
Patel F, Parwani K, Patel D, Mandal P. Metformin and Probiotics Interplay in Amelioration of Ethanol-Induced Oxidative Stress and Inflammatory Response in an In Vitro and In Vivo Model of Hepatic Injury. Mediators Inflamm 2021; 2021:6636152. [PMID: 33953643 PMCID: PMC8064785 DOI: 10.1155/2021/6636152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
Alcohol-induced liver injury implicates inflammation and oxidative stress as important mediators. Despite rigorous research, there is still no Food and Drug Administration (FDA) approved therapies for any stage of alcoholic liver disease (ALD). Interestingly, metformin (Met) and several probiotic strains possess the potential of inhibiting alcoholic liver injury. Therefore, we investigated the effectiveness of combination therapy using a mixture of eight strains of lactic acid-producing bacteria, commercialized as Visbiome® (V) and Met in preventing the ethanol-induced hepatic injury using in vitro and in vivo models. Human HepG2 cells and male Wistar rats were exposed to ethanol and simultaneously treated with probiotic V or Met alone as well as in combination. Endoplasmic reticulum (ER) stress markers, inflammatory markers, lipid metabolism, reactive oxygen species (ROS) production, and oxidative stress were evaluated, using qRT-PCR, Oil red O staining, fluorimetry, and HPLC. In vitro, probiotic V and Met in combination prevented ethanol-induced cellular injury, ER stress, oxidative stress, and regulated lipid metabolism as well as inflammatory response in HepG2 cells. Probiotic V and Met also promoted macrophage polarization towards the M2 phenotype in ethanol-exposed RAW 264.7 macrophage cells. In vivo, combined administration of probiotic V and Met ameliorated the histopathological changes, inflammatory response, hepatic markers (liver enzymes), and lipid metabolism induced by ethanol. It also improved the antioxidant markers (HO-1 and Nrf-2), as seen by their protein levels in both HepG2 cells as well as liver tissue using ELISA. Hence, probiotic V may act, in addition to the Met, as an effective preventive treatment against ethanol-induced hepatic injury.
Collapse
Affiliation(s)
- Farhin Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, 388421 Anand, Gujarat, India
| | - Kirti Parwani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, 388421 Anand, Gujarat, India
| | - Dhara Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, 388421 Anand, Gujarat, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, 388421 Anand, Gujarat, India
| |
Collapse
|
3
|
Pawinska M, Szczurko G, Luczaj-Cepowicz E, Marczuk-Kolada G, Holownia A. Cytotoxicity and Oxidative Stress Induction by Root Canal Sealers in Human Periodontal Ligament Fibroblasts: An in vitro Study. IRANIAN ENDODONTIC JOURNAL 2021; 16:164-175. [PMID: 36704398 PMCID: PMC9735252 DOI: 10.22037/iej.v16i3.29449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 01/28/2023]
Abstract
Introduction The aim of the study was to investigate the in vitro cytotoxicity, the profile of cell death, and the level of oxidative stress in human periodontal ligament fibroblasts (HPdLFs) after exposure to selected root canal sealers. Methods and Materials Freshly mixed or set Endomethasone N (EN), RealSeal (RSEAL), Roeko Seal Automix (RSA), and Sealapex (SP) were incubated with HPdLFs. Fluorescein isothiocyanate (FITC)-annexin V (AnV) and propidium iodide (PI) staining followed by flow cytometry was used to identify the effects of the materials on cell viability and the profile of cell death. 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) with fluorescence-activated cell sorting was used to determine reactive oxygen species (ROS) formation in HPdLFs. Statistical analyses were performed using one-way ANOVA followed by post hoc tests, and significance was determined at P<0.05. Results All materials reduced the viability of the cultured cells compared with the controls (P<0.05). Fresh SP and EN, and set RSA generated an increase of necrotic cells (P<0.05), whilst fresh RSEAL and RSA induced an elevation of apoptotic cells (P<0.001). Set RSEAL caused a rise in both apoptotic and necrotic cells compared with the controls (P<0.05). Fresh EN, RSEAL, and SP resulted in increased intracellular ROS generation compared with the negative control (P<0.001), whilst fresh RSA and all set materials were ineffective. Conclusions This in vitro study showed us the materials tested were characterized by differentiated cytotoxic effects on HPdLFs. The fresh and set forms of sealers were capable of eliciting toxic action, inducing apoptosis and/or necrosis in HPdLFs. The toxic effects of fresh EN, RSEAL, and SP might have been due to the induction of oxidative stress in human periodontal fibroblasts. The cytotoxicity of RSA seemed to be related to the involvement of other mechanisms.
Collapse
Affiliation(s)
- Malgorzata Pawinska
- Department of Integrated Dentistry, Medical University of Bialystok, Poland; ,Corresponding author: Małgorzata Pawińska, Department of Integrated Dentistry, Medical University of Bialystok, Poland
| | - Grzegorz Szczurko
- Department of Integrated Dentistry, Medical University of Bialystok, Poland;
| | | | | | - Adam Holownia
- Department of Pharmacology, Medical University of Bialystok, Poland
| |
Collapse
|
4
|
Wu Q, Cai C, Guo P, Chen M, Wu X, Zhou J, Luo Y, Zou Y, Liu AL, Wang Q, Kuang Z, Fang J. In silico Identification and Mechanism Exploration of Hepatotoxic Ingredients in Traditional Chinese Medicine. Front Pharmacol 2019; 10:458. [PMID: 31130860 PMCID: PMC6509242 DOI: 10.3389/fphar.2019.00458] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDS AND AIMS Recently, a growing number of hepatotoxicity cases aroused by Traditional Chinese Medicine (TCM) have been reported, causing increasing concern. To date, the reported predictive models for drug induced liver injury show low prediction accuracy and there are still no related reports for hepatotoxicity evaluation of TCM systematically. Additionally, the mechanism of herb induced liver injury (HILI) still remains unknown. The aim of the study was to identify potential hepatotoxic ingredients in TCM and explore the molecular mechanism of TCM against HILI. MATERIALS AND METHODS In this study, we developed consensus models for HILI prediction by integrating the best single classifiers. The consensus model with best performance was applied to identify the potential hepatotoxic ingredients from the Traditional Chinese Medicine Systems Pharmacology database (TCMSP). Systems pharmacology analyses, including multiple network construction and KEGG pathway enrichment, were performed to further explore the hepatotoxicity mechanism of TCM. RESULTS 16 single classifiers were built by combining four machine learning methods with four different sets of fingerprints. After systematic evaluation, the best four single classifiers were selected, which achieved a Matthews correlation coefficient (MCC) value of 0.702, 0.691, 0.659, and 0.717, respectively. To improve the predictive capacity of single models, consensus prediction method was used to integrate the best four single classifiers. Results showed that the consensus model C-3 (MCC = 0.78) outperformed the four single classifiers and other consensus models. Subsequently, 5,666 potential hepatotoxic compounds were identified by C-3 model. We integrated the top 10 hepatotoxic herbs and discussed the hepatotoxicity mechanism of TCM via systems pharmacology approach. Finally, Chaihu was selected as the case study for exploring the molecular mechanism of hepatotoxicity. CONCLUSION Overall, this study provides a high accurate approach to predict HILI and an in silico perspective into understanding the hepatotoxicity mechanism of TCM, which might facilitate the discovery and development of new drugs.
Collapse
Affiliation(s)
- Qihui Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Clinical Research Laboratory, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
| | - Chuipu Cai
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pengfei Guo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiling Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqin Wu
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jingwei Zhou
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunxia Luo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yidan Zou
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ai-lin Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zaoyuan Kuang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
5
|
Dong S, Chen QL, Song YN, Sun Y, Wei B, Li XY, Hu YY, Liu P, Su SB. Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis. J Toxicol Sci 2016; 41:561-72. [PMID: 27452039 DOI: 10.2131/jts.41.561] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The classic toxicity of carbon tetrachloride (CCl4) is to induce liver lesion and liver fibrosis. Liver fibrosis is a consequence of chronic liver lesion, which can progress into liver cirrhosis even hepatocarcinoma. However, the toxicological mechanisms of CCl4-induced liver fibrosis remain not fully understood. We combined transcriptomic and proteomic analysis and biological network technology, predicted toxicological targets and regulatory networks of CCl4 in liver fibrosis. Wistar rats were treated with CCl4 for 9 weeks. Histopathological changes, hydroxyproline (Hyp) contents, serum ALT and AST in the CCl4-treated group were significantly higher than that of CCl4-untreated group. CCl4-treated and -untreated liver tissues were examined by microarray and iTRAQ. The results showed that 3535 genes (fold change ≥ 1.5, P < 0.05) and 1412 proteins (fold change ≥ 1.2, P < 0.05) were differentially expressed. Moreover, the integrative analysis of transcriptomics and proteomics data showed 523 overlapped proteins, enriched in 182 GO terms including oxidation reduction, response to oxidative stress, inflammatory response, extracellular matrix organization, etc. Furthermore, KEGG pathway analysis showed that 36 pathways including retinol metabolism, PPAR signaling pathway, glycolysis/gluconeogenesis, arachidonic acid metabolism, metabolism of xenobiotics by cytochrome P450 and drug metabolism. Network of protein-protein interaction (PPI) and key function with their related targets were performed and the degree of network was calculated with Cytoscape. The expression of key targets such as CYP4A3, ALDH2 and ALDH7A1 decreased after CCl4 treatment. Therefore, the toxicological mechanisms of CCl4-induced liver fibrosis may be related with multi biological process, pathway and targets which may provide potential protection reaction mechanism for CCl4 detoxication in the liver.
Collapse
Affiliation(s)
- Shu Dong
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dong D, Zhong W, Sun Q, Zhang W, Sun X, Zhou Z. Oxidative products from alcohol metabolism differentially modulate pro-inflammatory cytokine expression in Kupffer cells and hepatocytes. Cytokine 2016; 85:109-19. [PMID: 27314544 DOI: 10.1016/j.cyto.2016.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
Abstract
Pro-inflammatory cytokines play a vital role in the pathogenesis of alcoholic steatohepatitis. The present study was to determine the role of alcohol-induced oxidative stress in modulating cytokine production. A rat model of alcohol consumption was used to determine alcohol-induced hepatic cytokine expression. Chronic alcohol exposure caused lipid accumulation, oxidative stress, and inflammation in the livers of Wistar rats. The role of oxidative stress in regulating cell type-specific cytokine production was further dissected in vitro. Lipopolysaccharide (LPS) dose-dependently upregulated TNF-α, MIP-1α, MCP-1, and CINC-1 in Kupffer cells-SV40, whereas TNF-α dose-dependently induced CINC-1, IP-10, and MIP-2 expression in H4IIEC3 hepatoma cells. An additive effect on cytokine production was observed in both Kupffer cells-SV40 and hepatocytes when combined hydrogen peroxide with LPS or TNF-α, respectively, which was associated with NF-κB activation and histone H3 hyper-acetylation. Unexpectedly, an inhibitory effect of 4-hydroxynonenal on cytokine production was revealed in LPS-treated Kupffer cells-SV40. Mechanistic study showed that 4-hydroxynonenal significantly enhanced mRNA degradation of TNF-α, MCP-1, and MIP-1α, and decreased the protein levels of MCP-1 in LPS-stimulated Kupffer cells-SV40 through reducing the phosphorylation of mRNA binding proteins. This study suggests that Kupffer cells and hepatocytes express distinct pro-inflammatory cytokines/chemokines in response to alcohol intoxication, and oxidative products (4-hydroxynonenal) differentially modulate pro-inflammatory cytokine/chemokine production via NF-κB signaling, histone acetylation, and mRNA stability.
Collapse
Affiliation(s)
- Daoyin Dong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Wei Zhong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Qian Sun
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA; Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Wenliang Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Xinguo Sun
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA; Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|