1
|
Mao S, Wang X, Li M, Liu H, Liang H. The role and mechanism of hydrogen sulfide in liver fibrosis. Nitric Oxide 2024; 145:41-48. [PMID: 38360133 DOI: 10.1016/j.niox.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/20/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Hydrogen sulfide (H2S) is the third new gas signaling molecule in the human body after the discovery of NO and CO. Similar to NO, it has the functions of vasodilation, anti-inflammatory, antioxidant, and regulation of cell formation. Enzymes that can produce endogenous H2S, such as CSE, CSB, and 3-MST, are common in liver tissues and are important regulatory molecules in the liver. In the development of liver fibrosis, H2S concentration and expression of related enzymes change significantly, which makes it possible to use exogenous gases to treat liver diseases. This review summarizes the role of H2S in liver fibrosis and its complications induced by NAFLD and CCl4, and elaborates on the anti-liver fibrosis effect of H2S through the mechanism of reducing oxidative stress, inhibiting inflammation, regulating autophagy, regulating glucose and lipid metabolism, providing theoretical reference for further research on the treatment of liver fibrosis with H2S.
Collapse
Affiliation(s)
- Shaoyu Mao
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xuemei Wang
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Miaoqing Li
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hanshu Liu
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongxia Liang
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Jian Y, Feng S, Huang A, Zhu Z, Zhang J, Tang S, Jin L, Ren M, Dong P. Integrative mRNA and microRNA Analysis Exploring the Inducing Effect and Mechanism of Diallyl Trisulfide (DATS) on Potato against Late Blight. Int J Mol Sci 2023; 24:ijms24043474. [PMID: 36834885 PMCID: PMC9962630 DOI: 10.3390/ijms24043474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Potato late blight, caused by Phytophthora infestans, leads to a significant reduction in the yield and value of potato. Biocontrol displays great potential in the suppression of plant diseases. Diallyl trisulfide (DATS) is a well-known natural compound for biocontrol, although there is little information about it against potato late blight. In this study, DATS was found to be able to inhibit the hyphae growth of P. infestans, reduce its pathogenicity on detached potato leaves and tubers, and induce the overall resistance of potato tubers. DATS significantly increases catalase (CAT) activity of potato tubers, and it does not affect the levels of peroxidase (POD), superoxide dismutase (SOD), and malondialdehyde (MDA). The transcriptome datasets show that totals of 607 and 60 significantly differentially expressed genes (DEGs) and miRNAs (DEMs) are detected. Twenty-one negatively regulated miRNA-mRNA interaction pairs are observed in the co-expression regulatory network, which are mainly enriched in metabolic pathways, biosynthesis of secondary metabolites, and starch and sucrose metabolism based on the KEGG pathway. Our observations provide new insight into the role of DATS in biocontrol of potato late blight.
Collapse
Affiliation(s)
- Yongfei Jian
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
| | - Shun Feng
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
- Sanya Nanfan Research Institute, School of Horticulture, Hainan University, Haikou 570228, China
| | - Airong Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
| | - Zhiming Zhu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
- Hongshen Honors School, Chongqing University, Chongqing 401331, China
| | - Jiaomei Zhang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
| | - Shicai Tang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
| | - Liang Jin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Correspondence: (M.R.); (P.D.)
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
- Correspondence: (M.R.); (P.D.)
| |
Collapse
|
3
|
Guan F, Ding Y, He Y, Li L, Yang X, Wang C, Hu M. Involvement of adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 in diallyl trisulfide-induced cytotoxicity in hepatocellular carcinoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:457-468. [PMID: 36302621 PMCID: PMC9614402 DOI: 10.4196/kjpp.2022.26.6.457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
It has been demonstrated that APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) is involved in the regulation of several growth-related signaling pathways and thus closely associated with the development and progression of some cancers. Diallyl trisulfide (DAT), a garlic-derived bioactive compound, exerts selective cytotoxicity to various human cancer cells through interfering with pro-survival signaling pathways. However, whether and how DAT affects survival of human hepatocellular carcinoma (HCC) cells remain unclear. Herein, we tested the hypothesis of the involvement of APPL1 in DAT-induced cytotoxicity in HCC HepG2 cells. We found that Lys 63 (K63)-linked polyubiquitination of APPL1 was significantly decreased whereas phosphorylation of APPL1 at serine residues remained unchanged in DAT-treated HepG2 cells. Compared with wild-type APPL1, overexpression of APPL1 K63R mutant dramatically increased cell apoptosis and mitigated cell survival, along with a reduction of phosphorylation of STAT3, Akt, and Erk1/2. In addition, DAT administration markedly reduced protein levels of intracellular TNF receptor-associated factor 6 (TRAF6). Genetic inhibition of TRAF6 decreased K63-linked polyubiquitination of APPL1. Moreover, the cytotoxicity impacts of DAT on HepG2 cells were greatly attenuated by overexpression of wild-type APPL1. Taken together, these results suggest that APPL1 polyubiquitination probably mediates the inhibitory effects of DAT on survival of HepG2 cells by modulating STAT3, Akt, and Erk1/2 pathways.
Collapse
Affiliation(s)
- Feng Guan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Youming Ding
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yikang He
- Tongji Medical College Huazhong University of Science and Technology, School of Nursing, Wuhan 430030, China
| | - Lu Li
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Xinyu Yang
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Changhua Wang
- Department of Pathology and Pathophysiology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China,Correspondence Changhua Wang, E-mail:
| | - Mingbai Hu
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China,Mingbai Hu, E-mail:
| |
Collapse
|
4
|
Malla R, Marni R, Chakraborty A, Kamal MA. Diallyl disulfide and diallyl trisulfide in garlic as novel therapeutic agents to overcome drug resistance in breast cancer. J Pharm Anal 2021; 12:221-231. [PMID: 35582397 PMCID: PMC9091922 DOI: 10.1016/j.jpha.2021.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is one of the leading causes of cancer-related deaths in women worldwide. It is a cancer that originates from the mammary ducts and involves mutations in multiple genes. Recently, the treatment of breast cancer has become increasingly challenging owing to the increase in tumor heterogeneity and aggressiveness, which gives rise to therapeutic resistance. Epidemiological, population-based, and hospital-based case-control studies have demonstrated an association between high intake of certain Allium vegetables and a reduced risk in the development of breast cancer. Diallyl disulfide (DADS) and diallyl trisulfide (DATS) are the main allyl sulfur compounds present in garlic, and are known to exhibit anticancer activity as they interfere with breast cancer cell proliferation, tumor metastasis, and angiogenesis. The present review highlights multidrug resistance mechanisms and their signaling pathways in breast cancer. This review discusses the potential anticancer activities of DADS and DATS, with emphasis on drug resistance in triple-negative breast cancer (TNBC). Understanding the anticancer activities of DADS and DATS provides insights into their potential in targeting drug resistance mechanisms of TNBC, especially in clinical studies. The review describes the causes of drug resistance in TNBC. The effects of DADS and DATS on drug resistance mechanisms in TNBC are presented. The impacts of DADS and DATS on metastasis of TNBC are discussed. Antitumor immune activities of DADS and DATS against TNBC are illustrated.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, 530045, India
- Corresponding author.
| | - Rakshmitha Marni
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, 530045, India
| | | | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Enzymoics, Hebersham, Novel Global Community Educational Foundation, New South Wales, 2770, Australia
| |
Collapse
|
5
|
Ding Y, Yu Z, Zhang C. Diallyl trisulfide protects against concanavalin A-induced acute liver injury in mice by inhibiting inflammation, oxidative stress and apoptosis. Life Sci 2021; 278:119631. [PMID: 34022202 DOI: 10.1016/j.lfs.2021.119631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
AIMS To investigate the protective effects and underlying mechanisms of diallyl trisulfide (DATS) against acute liver injury induced by concanavalin A (Con A). MATERIALS AND METHODS DATS (20, 40, 80 mg/kg) were gavaged to ICR mice 1 h before Con A (20 mg/kg) tail vein injection. The survival rate of mice, alterations of serum biochemical markers and liver histopathology were measured to evaluate the protective effects of DATS at 24 h after Con A exposure. The indexes of inflammation, oxidative stress and apoptosis were determined to explore the possible mechanisms. KEY FINDINGS DATS pretreatment increased survival rate of mice in a dose-dependent manner, inhibited the increase of liver-to-spleen ratio and serum liver injury markers, and attenuated liver pathological damage induced by Con A. Further study showed that DATS pretreatment inhibited the activation of Kupffer cells/macrophages, release of tumor necrosis factor-α (TNF-α) and Caspase-1-dependent inflammation induced by Con A. Moreover, DATS pretreatment alleviated the oxidative stress induced by Con A, which was evidenced by increased superoxide dismutase (SOD) and catalase (CAT) activities and decreased malondialdehyde (MDA) content in DATS and Con A co-treated mice compared with Con A alone group. Finally, DATS pretreatment reduced eosinophilic body formation, TUNEL positive staining and increased Bcl-2/Bax ratio in liver of Con A-injected mice, indicating attenuated apoptosis. SIGNIFICANCE Collectively, the results suggest that DATS displays potent protective effects against Con A-induced acute liver injury in mice possibly through inhibition of inflammation, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Yun Ding
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ziqiang Yu
- Institute of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, China
| | - Cuili Zhang
- Institute of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, China.
| |
Collapse
|
6
|
Ma X, Jiang Y, Wen J, Zhao Y, Zeng J, Guo Y. A comprehensive review of natural products to fight liver fibrosis: Alkaloids, terpenoids, glycosides, coumarins and other compounds. Eur J Pharmacol 2020; 888:173578. [PMID: 32976828 DOI: 10.1016/j.ejphar.2020.173578] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
The discovery of drugs to treat liver fibrosis has long been a challenge over the past decades due to its complicated pathogenesis. As a primary approach for drug development, natural products account for 30% of clinical drugs used for disease treatment. Therefore, natural products are increasingly important for their medicinal value in liver fibrosis therapy. In this part of the review, special focus is placed on the effect and mechanism of natural compounds, including alkaloids, terpenoids, glycosides, coumarins and others. A total of 36 kinds of natural compounds demonstrate significant antifibrotic effects in various liver fibrosis models in vivo and in hepatic stellate cells (HSCs) in vitro. Revealing the mechanism will provide further basis for clinical conversion, as well as accelerate drug discovery. The mechanism was further summarized with the finding of network regulation by several natural products, such as oxymatrine, paeoniflorin, ginsenoside Rg1 and taurine. Moreover, there are still improvements needed in investigating clinical efficacy, determining mechanisms, and combining applications, as well as semisynthesis and modification. Therefore, natural products area promising resource for agents that protect against liver fibrosis.
Collapse
Affiliation(s)
- Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yinxiao Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
7
|
Sun HJ, Wu ZY, Nie XW, Wang XY, Bian JS. Implications of hydrogen sulfide in liver pathophysiology: Mechanistic insights and therapeutic potential. J Adv Res 2020; 27:127-135. [PMID: 33318872 PMCID: PMC7728580 DOI: 10.1016/j.jare.2020.05.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background Over the last several decades, hydrogen sulfide (H2S) has been found to exert multiple physiological functions in mammal systems. The endogenous production of H2S is primarily mediated by cystathione β-synthase (CBS), cystathione γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST). These enzymes are widely expressed in the liver tissues and regulate hepatic functions by acting on various molecular targets. Aim of Review In the present review, we will highlight the recent advancements in the cellular events triggered by H2S under liver diseases. The therapeutic effects of H2S donors on hepatic diseases will also be discussed. Key Scientific Concepts of Review As a critical regulator of liver functions, H2S is critically involved in the etiology of various liver disorders, such as nonalcoholic steatohepatitis (NASH), hepatic fibrosis, hepatic ischemia/reperfusion (IR) injury, and liver cancer. Targeting H2S-producing enzymes may be a promising strategy for managing hepatic disorders.
Collapse
Key Words
- 3-MP, 3-mercaptopyruvate
- 3-MST, 3-mercaptopyruvate sulfurtransferase
- AGTR1, angiotensin II type 1 receptor
- AMPK, AMP-activated protein kinase
- Akt, protein kinase B
- CAT, cysteine aminotransferase
- CBS, cystathione β-synthase
- CO, carbon monoxide
- COX-2, cyclooxygenase-2
- CSE, cystathione γ-lyase
- CX3CR1, chemokine CX3C motif receptor 1
- Cancer
- DAO, D-amino acid oxidase
- DATS, Diallyl trisulfide
- EGFR, epidermal growth factor receptor
- ERK, extracellular regulated protein kinases
- FAS, fatty acid synthase
- Fibrosis
- H2S, hydrogen sulfide
- HFD, high fat diet
- HO-1, heme oxygenase 1
- Hydrogen sulfide
- IR, ischemia/reperfusion
- Liver disease
- MMP-2, matrix metalloproteinase 2
- NADH, nicotinamide adenine dinucleotide
- NADPH, nicotinamide adenine dinucleotide phosphate
- NAFLD, non-alcoholic fatty liver diseases
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor-kappa B
- NaHS, sodium hydrosulfide
- Nrf2, nuclear factor erythroid2-related factor 2
- PI3K, phosphatidylinositol 3-kinase
- PLP, pyridoxal 5′-phosphate
- PPG, propargylglycine
- PTEN, phosphatase and tensin homolog deleted on chromosome ten
- SAC, S-allyl-cysteine
- SPRC, S-propargyl-cysteine
- STAT3, signal transducer and activator of transcription 3
- Steatosis
- VLDL, very low density lipoprotein
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Xin-Yu Wang
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen 518037, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,National University of Singapore Research Institute, Suzhou 215000, China
| |
Collapse
|
8
|
Hydrogen Sulfide as a Novel Regulatory Factor in Liver Health and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3831713. [PMID: 30805080 PMCID: PMC6360590 DOI: 10.1155/2019/3831713] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S), a colorless gas smelling of rotten egg, has long been recognized as a toxic gas and environment pollutant. However, increasing evidence suggests that H2S acts as a novel gasotransmitter and plays important roles in a variety of physiological and pathological processes in mammals. H2S is involved in many hepatic functions, including the regulation of oxidative stress, glucose and lipid metabolism, vasculature, mitochondrial function, differentiation, and circadian rhythm. In addition, H2S contributes to the pathogenesis and treatment of a number of liver diseases, such as hepatic fibrosis, liver cirrhosis, liver cancer, hepatic ischemia/reperfusion injury, nonalcoholic fatty liver disease/nonalcoholic steatohepatitis, hepatotoxicity, and acute liver failure. In this review, the biosynthesis and metabolism of H2S in the liver are summarized and the role and mechanism of H2S in liver health and disease are further discussed.
Collapse
|
9
|
Allicin ameliorates cognitive impairment in APP/PS1 mice via Suppressing oxidative stress by Blocking JNK Signaling Pathways. Tissue Cell 2018; 50:89-95. [DOI: 10.1016/j.tice.2017.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/16/2017] [Accepted: 11/26/2017] [Indexed: 01/02/2023]
|
10
|
Mortezaee K, Majidpoor J, Daneshi E, Abouzaripour M, Abdi M. Post-treatment of melatonin with CCl 4 better reduces fibrogenic and oxidative changes in liver than melatonin co-treatment. J Cell Biochem 2018; 119:1716-1725. [PMID: 28782839 DOI: 10.1002/jcb.26331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/04/2017] [Indexed: 08/28/2024]
Abstract
Therapeutic effects of melatonin (MEL) in targeting CCl4 -induced liver fibrosis has been widely known, but there is no study comparing oxidative and fibrogenic changes in co- and post-treatment of MEL with CCl4 , which was further aimed in this experiment. Male SD rats were injected with CCl4 (1 mL/kg/i.p./daily) dissolved 1:1 in olive oil for 1 month. Some animals received MEL (20 mg/kg/i.p./daily) diluted in 1 mL PBS in combination with CCl4 (co-treatment), and some rats were treated with MEL, beginning with injection of the last dose of CCl4 for one month (post-treatment). The groups were control, CCl4 , CCl4 -co vehicle, CCl4 -post vehicle, post-CCl4 , MEL co-treatment, and MEL post-treatment. MEL post-treatment group showed significantly lower lipid deposition, serum malondialdehyde (MDA), serum alanine aminotransferase (ALT), and liver hydroxyproline. This group also had low expressions of Bax and transforming growth factor-β1 (TGF-β1). MEL post-treatment group revealed higher sera levels of albumin, superoxide dismutase (SOD) and glutathione peroxidase (GPx). Expression levels of metalloproteinase-13 (MMP-13) and Bcl2 was also higher in this group (P ≤ 0.05 vs co-treatment). Results of the present study indicated that MEL post-treatment is more powerful in reduction of CCl4 -induced liver fibrosis through reduction of oxidative stress and maintenance of matrix balance.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Erfan Daneshi
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Morteza Abouzaripour
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mahdad Abdi
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
11
|
Morales-López J, Centeno-Álvarez M, Nieto-Camacho A, López MG, Pérez-Hernández E, Pérez-Hernández N, Fernández-Martínez E. Evaluation of antioxidant and hepatoprotective effects of white cabbage essential oil. PHARMACEUTICAL BIOLOGY 2017; 55:233-241. [PMID: 27927070 PMCID: PMC6130702 DOI: 10.1080/13880209.2016.1258424] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
CONTEXT There have been no reports of the extraction of essential oil (EO) from white cabbage [Brassica oleracea L. var. capitata (L.) Alef. f. alba DC. (Brassicaceae)] (Bocfal) or its chemical composition, antioxidant activity, or hepatoprotective effects. OBJECTIVE To extract Bocfal EO, to identify and quantify its chemical components, to assess their antioxidant capacity, and to evaluate the hepatoprotective properties of Bocfal EO. MATERIALS AND METHODS Bocfal EO was obtained using hydrodistillation (200 mm Hg/58 °C). The chemical composition was analyzed using GC-MS and was quantified using GC-FID. The antioxidant activity of Bocfal EO and its main constituents was evaluated using TBARS in rat brain homogenates. A Bocfal EO hepatoprotective effect (192 mg/kg) on acute carbon tetrachloride (CT)-induced liver damage was determined in rats using biochemical markers and histological analysis. Diallyl disulphide (DADS) (1 mmol/kg) was used as a control for comparison. RESULTS Bocfal EO contained organic polysulphides (OPSs), such as dimethyl trisulphide (DMTS) 65.43 ± 4.92% and dimethyl disulphide (DMDS) 19.29 ± 2.16% as major constituents. Bocfal EO and DMTS were found to be potent TBARS inhibitors with IC50 values of 0.51 and 3 mg/L, respectively. Bocfal EO demonstrated better hepatoprotective properties than did DADS (p < 0.05), although both slightly affected the hepatic parenchyma per se, as observed using histopathology. DISCUSSION AND CONCLUSION The antioxidant properties of Bocfal EO and DMTS may be the mechanism of hepatoprotective action; the parenchymal disturbances by Bocfal EO or DADS alone may be related to the high doses used.
Collapse
Affiliation(s)
- Javier Morales-López
- Escuela Nacional de Medicina y Homeopatía, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, México
| | - Mónica Centeno-Álvarez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, México
| | | | - Mercedes G. López
- Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, México
| | | | - Nury Pérez-Hernández
- Escuela Nacional de Medicina y Homeopatía, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, México
| | - Eduardo Fernández-Martínez
- Laboratory of Medicinal Chemistry and Pharmacology. Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina, Universidad Autónoma del Estado de Hidalgo, Pachuca Hidalgo, México
- CONTACT Eduardo Fernández-Martínez;
| |
Collapse
|
12
|
Han W, Wang S, Jiang L, Wang H, Li M, Wang X, Xie K. Diallyl trisulfide (DATS) suppresses benzene-induced cytopenia by modulating haematopoietic cell apoptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:301-310. [PMID: 28810199 DOI: 10.1016/j.envpol.2017.07.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Benzene is a well-known occupational and environmental toxicant associated with cytopenia, which is characterized by a disorder in the peripheral blood cell counts. However, no effective preventive strategy has been developed yet to tackle the exposure to benzene in daily life. The aim of this study was to evaluate the protective effects of diallyl trisulfide (DATS) on benzene-induced haematopoietic damage and to reveal its potential mechanisms of action. In our study, male Sprague-Dawley rats were divided into six groups. Rats were administered with benzene (1.3 g/kg BW by gavage) to establish the benzene poisoning model, while the DATS treatment groups were treated with benzene plus DATS (15 mg/kg, 30 mg/kg, 45 mg/kg, respectively, by gavage) for 28 days. Our results demonstrated that the counts of peripheral blood WBC and RBC decreased to 31.0% and 79.2%, respectively, in the benzene poisoning model group compared to the control. However, blood cell counts were restored by DATS treatment (30 mg/kg, 45 mg/kg). The apoptosis rates of peripheral blood mononuclear cells (PBMCs) and bone marrow cells (BMCs) were increased to 274% and 284%, respectively, following benzene exposure. Furthermore, expression levels of Bcl-2, PI3K and p-Akt were downregulated and those of Bax were upregulated in both cell types. Moreover, the oxidative parameters (oxygen species, malonaldehyde) were significantly increased, while the non-enzymatic GSH/GSSG ratios and the activities of enzymatic antioxidants (superoxide dismutase, glutathione peroxidase and catalase) were decreased. Interestingly, DATS treatment can restore the WBC number by 267.1% and 304.8% while RBC number by 108.6% and 117.7% in 30,45 mg/k DATS treated groups. In summary, we demonstrated that benzene-induced cytopenia was related to the apoptosis of PBMCs and BMCs, and DATS treatment could prevent benzene-induced cytopenia by suppressing oxidative stress-mediated cell apoptosis via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Wenting Han
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Shuo Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Lulu Jiang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Hui Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Ming Li
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Xujing Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Keqin Xie
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
13
|
Annamalai S, Mohanam L, Raja V, Dev A, Prabhu V. Antiobesity, antioxidant and hepatoprotective effects of Diallyl trisulphide (DATS) alone or in combination with Orlistat on HFD induced obese rats. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.06.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
14
|
Ci L, Yang X, Gu X, Li Q, Guo Y, Zhou Z, Zhang M, Shi J, Yang H, Wang Z, Fei J. Cystathionine γ-Lyase Deficiency Exacerbates CCl 4-Induced Acute Hepatitis and Fibrosis in the Mouse Liver. Antioxid Redox Signal 2017; 27:133-149. [PMID: 27848249 DOI: 10.1089/ars.2016.6773] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIMS The present study examined the role of cystathionine γ-lyase (CSE) in carbon tetrachloride (CCl4)-induced liver damage. RESULTS A CSE gene knock-out and luciferase gene knock-in (KI) mouse model was constructed to study the function of CSE and to trace its expression in living status. CCl4 or lipopolysaccharide markedly downregulated CSE expression in the liver of mice. CSE-deficient mice showed increased serum alanine aminotransferase and aspartate aminotransferase levels, and liver damage after CCl4 challenge, whereas albumin and endogenous hydrogen sulfide (H2S) levels decreased significantly. CSE knockout mice showed increased serum homocysteine levels, upregulation of inflammatory cytokines, and increased autophagy and IκB-α degradation in the liver in response to CCl4 treatment. The increase in pro-inflammatory cytokines, including tumor necrosis factor-alpha in CSE-deficient mice after CCl4 challenge, was accompanied by a significant increase in liver tissue hydroxyproline and α-smooth muscle actin and histopathologic changes in the liver. However, H2S donor pretreatment effectively attenuated most of these imbalances. INNOVATION Here, a CSE knock-out and luciferase KI mouse model was established for the first time to study the transcriptional regulation of CSE expression in real time in a non-invasive manner, providing information on the effects and potential mechanisms of CSE on CCl4-induced liver injury. CONCLUSION CSE deficiency increases pro-inflammatory cytokines in the liver and exacerbates acute hepatitis and liver fibrosis by reducing H2S production from L-cysteine in the liver. The present data suggest the potential of an H2S donor for the treatment of liver diseases such as toxic hepatitis and fibrosis. Antioxid. Redox Signal. 27, 133-149.
Collapse
Affiliation(s)
- Lei Ci
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China
| | - Xingyu Yang
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China
| | - Xiaowen Gu
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China
| | - Qing Li
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China .,2 Shanghai Research Center for Model Organisms , Shanghai, China
| | - Yang Guo
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China
| | - Ziping Zhou
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China
| | - Mengjie Zhang
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China
| | - Jiahao Shi
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China
| | - Hua Yang
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China
| | - Zhugang Wang
- 2 Shanghai Research Center for Model Organisms , Shanghai, China
| | - Jian Fei
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China .,2 Shanghai Research Center for Model Organisms , Shanghai, China
| |
Collapse
|
15
|
Diallyl Trisulfide Suppresses Oxidative Stress-Induced Activation of Hepatic Stellate Cells through Production of Hydrogen Sulfide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1406726. [PMID: 28303169 PMCID: PMC5337887 DOI: 10.1155/2017/1406726] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/22/2016] [Accepted: 01/30/2017] [Indexed: 01/09/2023]
Abstract
Accumulating data reveal that garlic has beneficial effects against chronic liver disease. We previously reported that diallyl trisulfide (DATS), the primary organosulfur compound in garlic, reduced fibrosis and attenuated oxidative stress in rat fibrotic liver. The present study was aimed at elucidating the underlying mechanisms. The primary rat hepatic stellate cells (HSCs) were cultured and stimulated with hydrogen peroxide (H2O2) for inducing HSC activation under oxidative stress. We examined the effects of DATS on the profibrogenic properties and oxidative stress in H2O2-treated HSCs. The results showed that DATS suppressed and reduced fibrotic marker expression in HSCs. DATS arrested cell cycle at G2/M checkpoint associated with downregulating cyclin B1 and cyclin-dependent kinase 1, induced caspase-dependent apoptosis, and reduced migration in HSCs. Moreover, intracellular levels of reactive oxygen species and lipid peroxide were decreased by DATS, but intracellular levels of glutathione were increased in HSCs. Furthermore, DATS significantly elevated hydrogen sulfide (H2S) levels within HSCs, but iodoacetamide (IAM) reduced H2S levels and significantly abrogated DATS production of H2S within HSCs. IAM also abolished all the inhibitory effects of DATS on the profibrogenic properties and oxidative stress in HSCs. Altogether, we demonstrated an H2S-associated mechanism underlying DATS inhibition of profibrogenic properties and alleviation of oxidative stress in HSCs. Modulation of H2S production may represent a therapeutic remedy for liver fibrosis.
Collapse
|
16
|
Zhang Y, Zhou X, Xu L, Wang L, Liu J, Ye J, Qiu P, Liu Q. Apoptosis of rat hepatic stellate cells induced by diallyl trisulfide and proteomics profiling in vitro. Can J Physiol Pharmacol 2017; 95:463-473. [PMID: 28177695 DOI: 10.1139/cjpp-2015-0527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diallyl trisulfide (DATS), a major garlic derivative, inhibits cell proliferation and triggers apoptosis in a variety of cancer cell lines. However, the effects of DATS on hepatic stellate cells (HSCs) remain unknown. The aim of this study was to analyze the effects of DATS on cell proliferation and apoptosis, as well as the protein expression profile in rat HSCs. Rat HSCs were treated with or without 12 and 24 μg/mL DATS for various time intervals. Cell proliferation and apoptosis were determined using tetrazolium dye (MTT) colorimetric assay, bromodeoxyuridine (5-bromo-2'-deoxyuridine; BrdU) assay, Hoechst 33342 staining, electroscopy, and flow cytometry. Protein expression patterns in HSCs were systematically studied using 2-dimensional electrophoresis and mass spectrometry. DATS inhibited cell proliferation and induced apoptosis of HSCs in a time-dependent manner. We observed clear morphological changes in apoptotic HSCs and dramatically increased annexin V-positive - propidium iodide negative apoptosis compared with the untreated control group. Twenty-one significant differentially expressed proteins, including 9 downregulated proteins and 12 upregulated proteins, were identified after DATS administration, and most of them were involved in apoptosis. Our results suggest that DATS is an inducer of apoptosis in HSCs, and several key proteins may be involved in the molecular mechanism of apoptosis induced by DATS.
Collapse
Affiliation(s)
- Yajie Zhang
- a Department of Pathology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoming Zhou
- a Department of Pathology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lipeng Xu
- b Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou, Guangdong Province, China
| | - Lulu Wang
- c Center of Community Health Services, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang Province, China
| | - Jinling Liu
- d Department of Digestive System Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang Province, China
| | - Jing Ye
- d Department of Digestive System Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang Province, China
| | - Pengxin Qiu
- e Department of Pharmacology, Zhong-Shan Medical College, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Qinghua Liu
- f Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang Province, China
| |
Collapse
|
17
|
Tetramethylpyrazine attenuates carbon tetrachloride-caused liver injury and fibrogenesis and reduces hepatic angiogenesis in rats. Biomed Pharmacother 2017; 86:521-530. [DOI: 10.1016/j.biopha.2016.11.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/15/2016] [Accepted: 11/27/2016] [Indexed: 01/22/2023] Open
|
18
|
Chen LY, Chen Q, Zhu XJ, Kong DS, Wu L, Shao JJ, Zheng SZ. Diallyl trisulfide protects against ethanol-induced oxidative stress and apoptosis via a hydrogen sulfide-mediated mechanism. Int Immunopharmacol 2016; 36:23-30. [DOI: 10.1016/j.intimp.2016.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/01/2016] [Accepted: 04/12/2016] [Indexed: 01/25/2023]
|
19
|
DeLeon ER, Gao Y, Huang E, Olson KR. Garlic oil polysulfides: H2S- and O2-independent prooxidants in buffer and antioxidants in cells. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1212-25. [PMID: 27101293 PMCID: PMC4935497 DOI: 10.1152/ajpregu.00061.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022]
Abstract
The health benefits of garlic and other organosulfur-containing foods are well recognized and have been attributed to both prooxidant and antioxidant activities. The effects of garlic are surprisingly similar to those of hydrogen sulfide (H2S), which is also known to be released from garlic under certain conditions. However, recent evidence suggests that polysulfides, not H2S, may be the actual mediator of physiological signaling. In this study, we monitored formation of H2S and polysulfides from garlic oil in buffer and in human embryonic kidney (HEK) 293 cells with fluorescent dyes, 7-azido-4-methylcoumarin and SSP4, respectively and redox activity with two redox indicators redox-sensitive green fluorescent protein (roGFP) and DCF. Our results show that H2S release from garlic oil in buffer requires other low-molecular-weight thiols, such as cysteine (Cys) or glutathione (GSH), whereas polysulfides are readily detected in garlic oil alone. Administration of garlic oil to cells rapidly increases intracellular polysulfide but has minimal effects on H2S unless Cys or GSH are also present in the extracellular medium. We also observed that garlic oil and diallyltrisulfide (DATS) potently oxidized roGFP in buffer but did not affect DCF. This appears to be a direct polysulfide-mediated oxidation that does not require a reactive oxygen species intermediate. Conversely, when applied to cells, garlic oil became a significant intracellular reductant independent of extracellular Cys or GSH. This suggests that intracellular metabolism and further processing of the sulfur moieties are necessary to confer antioxidant properties to garlic oil in vivo.
Collapse
Affiliation(s)
- Eric R DeLeon
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Yan Gao
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and
| | - Evelyn Huang
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Kenneth R Olson
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and
| |
Collapse
|
20
|
Chen LY, Chen Q, Cheng YF, Jin HH, Kong DS, Zhang F, Wu L, Shao JJ, Zheng SZ. Diallyl trisulfide attenuates ethanol-induced hepatic steatosis by inhibiting oxidative stress and apoptosis. Biomed Pharmacother 2016; 79:35-43. [DOI: 10.1016/j.biopha.2016.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/10/2016] [Accepted: 01/13/2016] [Indexed: 12/26/2022] Open
|