1
|
Vanhoutte PM, Leung SWS. Hypoxic augmentation: The tale of a strange contraction. Basic Clin Pharmacol Toxicol 2019; 127:59-66. [PMID: 31310708 DOI: 10.1111/bcpt.13295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
Almost fifty years ago, experiments on isolated veins showed that acute hypoxia augments venoconstrictor responses in vitro and that such facilitation relied on anaerobic glycolysis. Over the years, this phenomenon was extended to a number of arterial preparations of different species and revisited, from a mechanistic point of view, with the successive demonstration that it depends on calcium handling in the vascular smooth muscle cells, is endothelium-dependent and requires the production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS) and the activation of soluble guanylyl cyclase (sGC). However, rather than the vasodilator cyclic nucleotide 3',5'-cyclic guanosine monophosphate (cGMP), its canonical product, the latter enzyme produces 3',5'-cyclic inosine monophosphate (cIMP) instead during acute hypoxia; this non-canonical cyclic nucleotide facilitates the contractile process in the vascular smooth muscle cells. This 'biased' activity of soluble guanylyl cyclase appears to involve stimulation of NAD(P)H:quinone oxidoreductase 1 (NQO-1). The exact interactions between hypoxia, anaerobic metabolism and NQO-1 leading to biased activity of soluble guanylyl cyclase remain to be established.
Collapse
Affiliation(s)
- Paul Michel Vanhoutte
- Department of Pharmacology and Pharmacy, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Susan Wai Sum Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Bopp C, Auger C, Mebazaa A, Joshi GP, Schini-Kerth VB, Diemunsch P. Urapidil, but not dihydropyridine calcium channel inhibitors, preserves the hypoxic pulmonary vasoconstriction: an experimental study in pig arteries. Fundam Clin Pharmacol 2019; 33:527-534. [PMID: 30811659 DOI: 10.1111/fcp.12457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/05/2019] [Accepted: 02/25/2019] [Indexed: 11/28/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is a protective mechanism maintaining blood oxygenation by redirecting blood flow from poorly ventilated to well-ventilated areas in the lung. Such a beneficial effect is blunted by antihypertensive treatment with dihydropyridine calcium channel inhibitors. The aim of the present study was to evaluate the effect of urapidil, an antihypertensive agent acting as an α1 adrenergic antagonist and a partial 5-HT1A agonist, on HPV in porcine proximal and distal pulmonary artery rings, and to characterize underlying mechanisms. Rings from proximal and distal porcine pulmonary artery were suspended in organ chambers and aerated with a 95% O2 + 5% CO2 gas mixture. HPV was induced by changing the gas to a 95% N2 + 5% CO2 mixture following a low level of pre-contraction with U46619. Hypoxia induced a contractile response in both proximal and distal pulmonary artery rings. This effect is observed in the presence of a functional endothelium and is inhibited by a soluble guanylyl cyclase inhibitor (ODQ), a NO scavenger (carboxy-PTIO), and by catalase in proximal pulmonary artery rings. The endothelium-dependent HPV is prevented by nicardipine and clevidipine but remained unaffected by urapidil in both proximal and distal pulmonary artery rings. These findings indicate that urapidil, in contrast to nicardipine and clevidipine, preserves the hypoxia-triggered vasoconstriction in isolated pulmonary arteries. They further indicate the involvement of the NO-guanylyl cyclase pathway and H2 O2 in HPV. Further research is warranted to determine the potential clinical relevance of the preserved hypoxia-induced pulmonary vasoconstriction by urapidil.
Collapse
Affiliation(s)
- Claire Bopp
- Faculty of Pharmacy, UMR CNRS 7213, University of Strasbourg, Illkirch, France.,Department of Anesthesia and Critical Care, Hautepierre University Hospitals, Avenue Molière, Strasbourg, France
| | - Cyril Auger
- Faculty of Pharmacy, UMR CNRS 7213, University of Strasbourg, Illkirch, France
| | - Alexandre Mebazaa
- Department of Anesthesia, Burn and Critical Care, Saint Louis and Lariboisière University Hospitals, UMRS-942 INSERM, University Paris Diderot, Paris, France
| | - Girish P Joshi
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical School, Dallas, TX, USA
| | | | - Pierre Diemunsch
- Department of Anesthesia and Critical Care, Hautepierre University Hospitals, Avenue Molière, Strasbourg, France
| |
Collapse
|
3
|
Cheng Y, Vanhoutte PM, Leung SWS. Apolipoprotein E favours the blunting by high-fat diet of prostacyclin receptor activation in the mouse aorta. Br J Pharmacol 2018; 175:3453-3469. [PMID: 29859010 DOI: 10.1111/bph.14386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE NO-mediated, endothelium-dependent relaxations of isolated arteries are blunted by ageing and high-fat diets, as well as by apolipoprotein E deletion. The present study was designed to test the hypothesis that apolipoprotein E deletion impairs endothelium-dependent responses to prostacyclin (IP) receptor activation. EXPERIMENTAL APPROACH Five-week-old ApoE+/+ and ApoE-/- mice were fed normal chow or high-fat diet for 29 weeks. The aortae were isolated for the measurements of isometric tension in Halpern-Mulvany myographs. Levels of proteins were assessed by Western blotting and immunofluorescence, and cyclic nucleotide levels by elisa. KEY RESULTS The IP receptor agonist, iloprost, induced endothelium-, NO-synthase- and IP-dependent relaxations in aortae of young ApoE+/+ mice. High-fat diet favoured activation of thromboxane receptors by iloprost, causing contraction. Apolipoprotein E was present in aortae of ApoE+/+ mice, especially in endothelium. Its presence was augmented by high-fat diet. Its deletion potentiated iloprost-induced relaxations in aortae of young mice and prevented the blunting of this response by high-fat diet. Levels of cAMP were higher, but those of cGMP were lower in the aorta of ApoE-/- than in ApoE+/+ mice of the same age. The levels of IP receptor protein were not different between ApoE+/+ and ApoE-/- mice. CONCLUSIONS AND IMPLICATIONS Iloprost induced an endothelium-dependent relaxation in the aorta of young healthy mice which involved both the cGMP and cAMP pathways. This response was blunted by prolonged exposure to a high-fat diet. Apolipoprotein E deletion potentiated relaxations to IP receptor activation, independently of age and diet.
Collapse
Affiliation(s)
- Yanhua Cheng
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, SAR, China
| | - Paul M Vanhoutte
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, SAR, China
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
4
|
Abstract
This essay summarizes a lecture presented on October 19th, 2017, during the 58th Annual Meeting of the Japanese College of Angiology in Nagoya, Japan. The lecture summarizes several instances where the absence of relaxations of isolated blood vessels in response to endothelium-dependent vasodilator agonists, which cause activation of endothelial nitric oxide synthase (eNOS) and consequent production of endothelium-derived nitric oxide (NO) and stimulation of soluble guanylyl cyclase (sGC) in underlying vascular smooth muscle, or hypoxia are curtailed or reversed to endothelium-dependent contractions. Chosen examples include selective dysfunction of eNOS activation in regenerated endothelial cells, unresponsiveness of vascular smooth muscle cells to NO during subarachnoid hemorrhage, and biased activation of sGC in vascular smooth muscle cells during acute exposure to hypoxia. The main message of this essay is that absence, blunting, or reversal of endothelium-dependent relaxations in response to vasodilator agonists cannot necessarily be interpreted as a sign of endothelial dysfunction. (This is a review article based on the invited lecture of the 58th Annual Meeting of Japanese College of Angiology.)
Collapse
Affiliation(s)
- Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, HKSAR, China
| |
Collapse
|
5
|
Abstract
Traditionally, only the 3',5'-cyclic monophosphates of adenosine and guanosine (produced by adenylyl cyclase and guanylyl cyclase, respectively) are regarded as true "second messengers" in the vascular wall, despite the presence of other cyclic nucleotides in different tissues. Among these noncanonical cyclic nucleotides, inosine 3',5'-cyclic monophosphate (cIMP) is synthesized by soluble guanylyl cyclase in porcine coronary arteries in response to hypoxia, when the enzyme is activated by endothelium-derived nitric oxide. Its production is associated with augmentation of vascular contraction mediated by stimulation of Rho kinase. Based on these findings, cIMP appears to meet most, if not all, of the criteria required for it to be accepted as a "second messenger," at least in the vascular wall.
Collapse
|
6
|
Grundmann M, Kostenis E. Holistic Methods for the Analysis of cNMP Effects. Handb Exp Pharmacol 2017; 238:339-357. [PMID: 26721676 DOI: 10.1007/164_2015_42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cyclic nucleotide monophosphates (cNMPs) typify the archetype second messenger in living cells and serve as molecular switches with broad functionality. cAMP and cGMP are the best-described cNMPs; however, there is a growing body of evidence indicating that also cCMP and cUMP play a substantial role in signal transduction. Despite research efforts, to date, relatively little is known about the biology of these noncanonical cNMPs, which is due, at least in part, to methodological issues in the past entailing setbacks of the entire field. Only recently, with the use of state-of-the-art techniques, it was possible to revive noncanonical cNMP research. While high-sensitive detection methods disclosed relevant levels of cCMP and cUMP in mammalian cells, knowledge about the biological effectors and their physiological interplay is still incomplete. Holistic biophysical readouts capture cell responses label-free and in an unbiased fashion with the advantage to detect concealed aspects of cell signaling that are arduous to access via traditional biochemical assay approaches. In this chapter, we introduce the dynamic mass redistribution (DMR) technology to explore cell signaling beyond established receptor-controlled mechanisms. Both common and distinctive features in the signaling structure of cCMP and cUMP were identified. Moreover, the integrated response of whole live cells revealed a hitherto undisclosed additional effector of the noncanonical cNMPs. Future studies will show how holistic methods will become integrated into the methodological arsenal of contemporary cNMP research.
Collapse
Affiliation(s)
- Manuel Grundmann
- Molecular-, Cellular- and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany.
| | - Evi Kostenis
- Molecular-, Cellular- and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| |
Collapse
|
7
|
Detremmerie C, Vanhoutte PM, Leung S. Biased activity of soluble guanylyl cyclase: the Janus face of thymoquinone. Acta Pharm Sin B 2017; 7:401-408. [PMID: 28752025 PMCID: PMC5518662 DOI: 10.1016/j.apsb.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 11/28/2022] Open
Abstract
The natural compound thymoquinone, extracted from Nigella sativa (black cumin), is widely used in humans for its anti-oxidative properties. Thymoquinone is known for its acute endothelium-independent vasodilator effects in isolated rat aortae and pulmonary arteries, depending in part on activation of adenosine triphosphate-sensitive potassium channels and inhibition of voltage-dependent calcium channels. The compound also improves endothelial dysfunction in mesenteric arteries of ageing rodents and in aortae of rabbits treated with pyrogallol, by inhibiting oxidative stress. Serendipitously, thymoquinone was found to augment contractions in isolated arteries with endothelium of both rats and pigs. The endothelium-dependent augmentation it causes counterintuitively depends on biased activation of soluble guanylyl cyclase (sGC) producing inosine 3',5'-cyclic monophosphate (cyclic IMP) rather than guanosine 3',5'-cyclic monophosphate. This phenomenon shows a striking mechanistic similarity to the hypoxic augmentation previously observed in porcine coronary arteries. The cyclic IMP preferentially produced under thymoquinone exposure causes an increased contractility of arterial smooth muscle by interfering with calcium homeostasis. This brief review summarizes the vascular pharmacology of thymoquinone, focussing in particular on how the compound causes endothelium-dependent contractions by biasing the activity of sGC.
Collapse
|
8
|
Vanhoutte PM, Zhao Y, Xu A, Leung SWS. Thirty Years of Saying NO: Sources, Fate, Actions, and Misfortunes of the Endothelium-Derived Vasodilator Mediator. Circ Res 2017; 119:375-96. [PMID: 27390338 DOI: 10.1161/circresaha.116.306531] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022]
Abstract
Endothelial cells control vascular tone by releasing nitric oxide (NO) produced by endothelial NO synthase. The activity of endothelial NO synthase is modulated by the calcium concentration and by post-translational modifications (eg, phosphorylation). When NO reaches vascular smooth muscle, soluble guanylyl cyclase is its primary target producing cGMP. NO production is stimulated by circulating substances (eg, catecholamines), platelet products (eg, serotonin), autacoids formed in (eg, bradykinin) or near (eg, adiponectin) the vascular wall and physical factors (eg, shear stress). NO dysfunction can be caused, alone or in combination, by abnormal coupling of endothelial cell membrane receptors, insufficient supply of substrate (l-arginine) or cofactors (tetrahydrobiopterin), endogenous inhibitors (asymmetrical dimethyl arginine), reduced expression/presence/dimerization of endothelial NO synthase, inhibition of its enzymatic activity, accelerated disposition of NO by reactive oxygen species and abnormal responses (eg, biased soluble guanylyl cyclase activity producing cyclic inosine monophosphate) of the vascular smooth muscle. Major culprits causing endothelial dysfunction, irrespective of the underlying pathological process (aging, obesity, diabetes mellitus, and hypertension), include stimulation of mineralocorticoid receptors, activation of endothelial Rho-kinase, augmented presence of asymmetrical dimethyl arginine, and exaggerated oxidative stress. Genetic and pharmacological interventions improve dysfunctional NO-mediated vasodilatations if protecting the supply of substrate and cofactors for endothelial NO synthase, preserving the presence and activity of the enzyme and reducing reactive oxygen species generation. Common achievers of such improvement include maintained levels of estrogens and increased production of adiponectin and induction of silent mating-type information regulation 2 homologue 1. Obviously, endothelium-dependent relaxations are not the only beneficial action of NO in the vascular wall. Thus, reduced NO-mediated responses precede and initiate the atherosclerotic process.
Collapse
Affiliation(s)
- Paul M Vanhoutte
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yingzi Zhao
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Susan W S Leung
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Vanhoutte PM. An old wheel gets a new CART …. Eur Heart J 2017; 38:497-499. [PMID: 28039337 DOI: 10.1093/eurheartj/ehw508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 620] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
11
|
Detremmerie CM, Chen Z, Li Z, Alkharfy KM, Leung SWS, Xu A, Gao Y, Vanhoutte PM. Endothelium-Dependent Contractions of Isolated Arteries to Thymoquinone Require Biased Activity of Soluble Guanylyl Cyclase with Subsequent Cyclic IMP Production. J Pharmacol Exp Ther 2016; 358:558-68. [PMID: 27335436 DOI: 10.1124/jpet.116.234153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/15/2016] [Indexed: 11/22/2022] Open
Abstract
Preliminary experiments on isolated rat arteries demonstrated that thymoquinone, a compound widely used for its antioxidant properties and believed to facilitate endothelium-dependent relaxations, as a matter of fact caused endothelium-dependent contractions. The present experiments were designed to determine the mechanisms underlying this unexpected response. Isometric tension was measured in rings (with and without endothelium) of rat mesenteric arteries and aortae and of porcine coronary arteries. Precontracted preparations were exposed to increasing concentrations of thymoquinone, which caused concentration-dependent, sustained further increases in tension (augmentations) that were prevented by endothelium removal, Nω-nitro-L-arginine methyl ester [L-NAME; nitric oxide (NO) synthase inhibitor], and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; soluble guanylyl cyclase [sGC] inhibitor). In L-NAME-treated rings, the NO-donor diethylenetriamine NONOate restored the thymoquinone-induced augmentations; 5-[1-(phenylmethyl)-1H-indazol-3-yl]-2-furanmethanol (sGC activator) and cyclic IMP (cIMP) caused similar restorations. By contrast, in ODQ-treated preparations, the cell-permeable cGMP analog did not restore the augmentation by thymoquinone. The compound augmented the content (measured with ultra-high performance liquid chromatography-tandem mass spectrometry) of cIMP, but not that of cGMP; these increases in cIMP content were prevented by endothelium removal, L-NAME, and ODQ. The augmentation of contractions caused by thymoquinone was prevented in porcine arteries, but not in rat arteries, by 1-(5-isoquinolinylsulfonyl)homopiperazine dihydrochloride and trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Rho-kinase inhibitors); in the latter, but not in the former, it was reduced by 3,5-dichloro-N-[[(1α,5α,6-exo,6α)-3-(3,3-dimethylbutyl)-3-azabicyclo[3.1.0]hex-6-yl]methyl]-benzamide hydrochloride (T-type calcium channel inhibitor), demonstrating species/vascular bed differences in the impact of cIMP on calcium handling. Thymoquinone is the first pharmacological agent that causes endothelium-dependent augmentation of contractions of isolated arteries, which requires endothelium-derived NO and biased sGC activation, resulting in the augmented production of cIMP favoring the contractile process.
Collapse
Affiliation(s)
- Charlotte M Detremmerie
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Zhengju Chen
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Zhuoming Li
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Khalid M Alkharfy
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Aimin Xu
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Yuansheng Gao
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| | - Paul M Vanhoutte
- Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China (C.M.D., Z.L., S.W.S.L., A.X., P.M.V.); Department of Clinical Pharmacy, King Saud University, Saudi Arabia (K.M.A.) and Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China (Z.C., Y.G.)
| |
Collapse
|
12
|
Recent progress in the field of cIMP research. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1045-7. [PMID: 27534403 DOI: 10.1007/s00210-016-1287-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 01/09/2023]
|
13
|
Seifert R. Naunyn-Schmiedeberg's Archives of Pharmacology under new editorship: change and continuity. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:667-70. [PMID: 27222234 DOI: 10.1007/s00210-016-1261-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
14
|
Abstract
In a number of isolated blood vessel types, hypoxia causes an acute contraction that is dependent on the presence of nitric oxide and activation of soluble guanylyl cyclase. It is more pronounced when the preparations are constricted and is therefore termed hypoxic augmentation of vasoconstriction. This hypoxic response is accompanied by increases in the intracellular level of inosine 5′-triphosphate and in the synthesis of inosine 3′,5′-cyclic monophosphate (cIMP) by soluble guanylyl cyclase. The administration of exogenous cIMP or inosine 5′-triphosphate causes augmented vasoconstriction to hypoxia. Furthermore, the vasoconstriction evoked by hypoxia and cIMP is associated with increased activity of Rho kinase (ROCK), indicating that cIMP may mediate the hypoxic effect by sensitizing the myofilaments to Ca2+ through ROCK. Hypoxia is implicated in exaggerated vasoconstriction in the pathogenesis of coronary artery disease, myocardial infarction, hypertension, and stroke. The newly found role of cIMP may help to identify unique therapeutic targets for certain cardiovascular disorders.
Collapse
|
15
|
Baretella O, Vanhoutte P. Endothelium-Dependent Contractions. ADVANCES IN PHARMACOLOGY 2016; 77:177-208. [DOI: 10.1016/bs.apha.2016.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci 2015; 129:83-94. [PMID: 26499181 DOI: 10.1016/j.jphs.2015.09.002] [Citation(s) in RCA: 522] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
As the first discovered gaseous signaling molecule, nitric oxide (NO) affects a number of cellular processes, including those involving vascular cells. This brief review summarizes the contribution of NO to the regulation of vascular tone and its sources in the blood vessel wall. NO regulates the degree of contraction of vascular smooth muscle cells mainly by stimulating soluble guanylyl cyclase (sGC) to produce cyclic guanosine monophosphate (cGMP), although cGMP-independent signaling [S-nitrosylation of target proteins, activation of sarco/endoplasmic reticulum calcium ATPase (SERCA) or production of cyclic inosine monophosphate (cIMP)] also can be involved. In the blood vessel wall, NO is produced mainly from l-arginine by the enzyme endothelial nitric oxide synthase (eNOS) but it can also be released non-enzymatically from S-nitrosothiols or from nitrate/nitrite. Dysfunction in the production and/or the bioavailability of NO characterizes endothelial dysfunction, which is associated with cardiovascular diseases such as hypertension and atherosclerosis.
Collapse
|
17
|
Seifert R, Schneider EH, Bähre H. From canonical to non-canonical cyclic nucleotides as second messengers: pharmacological implications. Pharmacol Ther 2014; 148:154-84. [PMID: 25527911 DOI: 10.1016/j.pharmthera.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023]
Abstract
This review summarizes our knowledge on the non-canonical cyclic nucleotides cCMP, cUMP, cIMP, cXMP and cTMP. We place the field into a historic context and discuss unresolved questions and future directions of research. We discuss the implications of non-canonical cyclic nucleotides for experimental and clinical pharmacology, focusing on bacterial infections, cardiovascular and neuropsychiatric disorders and reproduction medicine. The canonical cyclic purine nucleotides cAMP and cGMP fulfill the criteria of second messengers. (i) cAMP and cGMP are synthesized by specific generators, i.e. adenylyl and guanylyl cyclases, respectively. (ii) cAMP and cGMP activate specific effector proteins, e.g. protein kinases. (iii) cAMP and cGMP exert specific biological effects. (iv) The biological effects of cAMP and cGMP are terminated by phosphodiesterases and export. The effects of cAMP and cGMP are mimicked by (v) membrane-permeable cyclic nucleotide analogs and (vi) bacterial toxins. For decades, the existence and relevance of cCMP and cUMP have been controversial. Modern mass-spectrometric methods have unequivocally demonstrated the existence of cCMP and cUMP in mammalian cells. For both, cCMP and cUMP, the criteria for second messenger molecules are now fulfilled as well. There are specific patterns by which nucleotidyl cyclases generate cNMPs and how they are degraded and exported, resulting in unique cNMP signatures in biological systems. cNMP signaling systems, specifically at the level of soluble guanylyl cyclase, soluble adenylyl cyclase and ExoY from Pseudomonas aeruginosa are more promiscuous than previously appreciated. cUMP and cCMP are evolutionary new molecules, probably reflecting an adaption to signaling requirements in higher organisms.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Erich H Schneider
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany
| | - Heike Bähre
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
18
|
Report on the Third Symposium "cCMP and cUMP as New Second Messengers". Naunyn Schmiedebergs Arch Pharmacol 2014; 388:1-3. [PMID: 25471064 DOI: 10.1007/s00210-014-1072-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/17/2014] [Indexed: 12/19/2022]
Abstract
The cyclic pyrimidine nucleotides cytidine 3',5'-cyclic monophosphate (cCMP) and uridine 3',5'-cyclic monophosphate (cUMP) have been unequivocally identified in mammalian cells using the most advanced mass spectrometry methods. On October 10, 2014, leading experts in the field met at the Hannover Medical School, Hannover, Germany, to discuss the latest findings in this emerging field of research. Generators, effectors, biological functions, inactivation mechanisms, and model systems for cCMP and cUMP were discussed. Pseudomonas aeruginosa nucleotidyl cyclase toxin ExoY, effectively producing cUMP, was a central topic of the meeting. cCMP and cUMP fulfill the criteria for second messengers. Future research directions in the field will include the identification of specific effector proteins of cCMP and cUMP, new cCMP- and cUMP-generating bacterial toxins, the analysis of new model organisms such as the zebra fish, and elucidation of the function of other noncanonical cyclic nucleotides such as inosine 3',5'-cyclic monophosphate (cIMP).
Collapse
|
19
|
|