1
|
Wagle SR, Kovacevic B, Sen LY, Diress M, Foster T, Ionescu CM, Lim P, Brunet A, James R, Carvalho L, Mooranian A, Al-Salami H. Revolutionizing drug delivery strategies with probucol to combat oxidative stress in retinal degeneration: A comprehensive review. Eur J Pharm Biopharm 2025; 210:114695. [PMID: 40089074 DOI: 10.1016/j.ejpb.2025.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Localized oxidative stress plays a key role in the development of retinal degenerative diseases, with diabetic retinopathy (DR) being one of them, contributing significantly to this vision-threatening complication of diabetes. Increased oxidative burden leads to dysfunction across various retinal cell types, including vascular endothelial cells, neurons, glial cells and pericytes. Importantly, even after achieving normalized glycemia, the detrimental effects of oxidative stress persist. Nonetheless, growing data highlights the therapeutic potential of antioxidants in safeguarding vision. However, extensive clinical trials using traditional antioxidants have produced mixed results. Therefore, probucol, known for its ability to limit vascular oxidative stress, decrease superoxide generation, and improve endogenous antioxidant activity, is a promising candidate explored in this review. In addition to describing probucol, this review will explore novel therapeutic formulation strategies by incorporating bile acid into probucol-loaded nanoparticles to enhance drug delivery to the posterior segment of the eye for more effective management of DR. The integration of bio-nanotechnology with probucol and bile acids represents a promising avenue for developing effective therapies for DR, addressing the limitations of traditional antioxidant treatments.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Le Yang Sen
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Mengistie Diress
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia; Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Alicia Brunet
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), the University of Western Australia, Perth, Western Australia, Australia
| | - Rebekah James
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), the University of Western Australia, Perth, Western Australia, Australia
| | - Livia Carvalho
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), the University of Western Australia, Perth, Western Australia, Australia; Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia; School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand.
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia; Medical School, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
2
|
Diress M, Wagle SR, Lim P, Foster T, Kovacevic B, Ionescu CM, Mooranian A, Al-Salami H. Advanced drug delivery strategies for diabetic retinopathy: current therapeutic advancement, and delivery methods overcoming barriers, and experimental modalities. Expert Opin Drug Deliv 2024; 21:1859-1877. [PMID: 39557623 DOI: 10.1080/17425247.2024.2431577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION Diabetic retinopathy, a significant trigger for blindness among working age individuals with diabetes, poses a substantial global health challenge. Understanding its underlying mechanisms is pivotal for developing effective treatments. Current treatment options, such as anti-VEGF agents, corticosteroids, laser photocoagulation, and vitreous surgery, have their limitations, prompting the exploration of innovative approaches like nanocapsules based drug-delivery systems. Nanoparticles provide promising solutions to improve drug delivery in ocular medicine, overcoming the complexities of ocular anatomy and existing treatment constraints. AREAS COVERED This review explored advanced therapeutic strategies for diabetic retinopathy, focusing on current medications with their limitations, drug delivery methods, device innovations, and overcoming associated barriers. Through comprehensive review, it aimed to contribute to the discovery of more efficient management strategies for diabetic retinopathy in the future. EXPERT OPINION In the next five to ten years, we expect a revolutionary shift in how diabetic retinopathy is treated. As we deepen our understanding of oxidative stress and metabolic dysfunction, antioxidants with specialised delivery matrices are poised to take center stage in prevention and treatment strategies. Our vision is to create a more integrated approach to diabetic retinopathy management that not only improves patient outcomes but also reduces the risks associated to traditional therapies.
Collapse
Affiliation(s)
- Mengistie Diress
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences University of Gondar, Gondar, Ethiopia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Medical School, The University of Western Australia, Crawley, AU, Australia
| |
Collapse
|
3
|
Beck L, Pinilla E, Arcanjo DDR, Hernanz R, Prat-Duran J, Petersen AG, Köhler R, Sheykhzade M, Comerma-Steffensen S, Simonsen U. Pirfenidone Is a Vasodilator: Involvement of K V7 Channels in the Effect on Endothelium-Dependent Vasodilatation in Type-2 Diabetic Mice. Front Pharmacol 2021; 11:619152. [PMID: 33643042 PMCID: PMC7906977 DOI: 10.3389/fphar.2020.619152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022] Open
Abstract
Endothelial cell dysfunction and fibrosis are associated with worsening of the prognosis in patients with cardiovascular disease. Pirfenidone has a direct antifibrotic effect, but vasodilatation may also contribute to the effects of pirfenidone. Therefore, in a first study we investigated the mechanisms involved in the relaxant effect of pirfenidone in rat intrapulmonary arteries and coronary arteries from normal mice. Then in a second study, we investigated whether pirfenidone restores endothelial function in the aorta and mesenteric arteries from diabetic animals. From 16–18-week old normal male C57BL/6 mice and normoglycemic (db/db+), and type 2 diabetic (db/db) male and female mice, arteries were mounted in microvascular isometric myographs for functional studies, and immunoblotting was performed. In rat pulmonary arteries and mouse coronary arteries, pirfenidone induced relaxations, which were inhibited in preparations without endothelium. In mouse coronary arteries, pirfenidone relaxation was inhibited in the presence of a nitric oxide (NO) synthase inhibitor, NG-nitro-l-arginine (L-NOARG), a blocker of large-conductance calcium-activated potassium channels (BKCa), iberiotoxin, and a blocker of KV7 channels, XE991. Patch clamp studies in vascular smooth muscle revealed pirfenidone increased iberiotoxin-sensitive current. In the aorta and mesenteric small arteries from diabetic db/db mice relaxations induced by the endothelium-dependent vasodilator, acetylcholine, were markedly reduced compared to db/db + mice. Pirfenidone enhanced the relaxations induced by acetylcholine in the aorta from diabetic male and female db/db mice. An opener of KV7 channels, flupirtine, had the same effect as pirfenidone. XE991 reduced the effect of pirfenidone and flupirtine and further reduced acetylcholine relaxations in the aorta. In the presence of iberiotoxin, pirfenidone still increased acetylcholine relaxation in aorta from db/db mice. Immunoblotting for KV7.4, KV7.5, and BKCa channel subunits were unaltered in aorta from db/db mice. Pirfenidone failed to improve acetylcholine relaxation in mesenteric arteries, and neither changed acetylcholine-induced transient decreases in blood pressure in db/db+ and db/db mice. In conclusion, pirfenidone vasodilates pulmonary and coronary arteries. In coronary arteries from normal mice, pirfenidone induces NO-dependent vasodilatation involving BKCa and KV7 channels. Pirfenidone improves endothelium-dependent vasodilatation in aorta from diabetic animals by a mechanism involving voltage-gated KV7 channels, a mechanism that may contribute to the antifibrotic effect of pirfenidone.
Collapse
Affiliation(s)
- Lilliana Beck
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Estéfano Pinilla
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.,Department of Physiology, Faculty of Pharmacy, Universidad Complutense, Madrid, Spain
| | - Daniel Dias Rufino Arcanjo
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.,Department of Biophysics and Physiology, Laboratory of Functional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Brazil
| | - Raquel Hernanz
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.,Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Judit Prat-Duran
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Asbjørn Graver Petersen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Ralf Köhler
- Aragón Agency for Research and Development (ARAID), Zaragoza, Spain
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Comerma-Steffensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.,Department of Biomedical Sciences/Animal Physiology, Faculty of Veterinary, Central University of Venezuela, Maracay, Venezuela
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Probucol Prevents Diabetes-Induced Retinal Neuronal Degeneration through Upregulating Nrf2. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3862509. [PMID: 32149102 PMCID: PMC7042517 DOI: 10.1155/2020/3862509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 11/17/2022]
Abstract
Diabetic retinopathy (DR) is a sight-threatening complication of diabetes. This study investigated the therapeutic effect of probucol in a mouse model of diabetic retinopathy. C57BL/6 mice were rendered diabetic through Streptozotocin (STZ) intraperitoneal injection. Mice were treated with probucol (150 mg/kg, gavage administration) or vehicle (DMSO) for 12 weeks. Optical coherence tomography (OCT), fundus photography (FP), and fundus fluorescein angiography (FFA) were conducted to evaluate retinal structure and damage. Eyes were collected for histology, reactive oxygen species (ROS) assay, apoptotic cells count, and western blot. After STZ injection, all mice developed hyperglycemia. Compared with the retina of the control group, the retina of diabetic mice showed enhanced arterial reflex and beaded vein dilatation. Besides, reduced inner and middle retinal thickness and significantly fewer nuclei were found in diabetic retina. Moreover, the diabetic retina also presented increased ROS generation and more TUNEL-positive cells. Probucol treatment prevented diabetes-induced lesions. In addition, the treatment also upregulated Nrf2 expression in diabetic retina. It was suggested that probucol attenuated diabetes-induced retinal neuronal degeneration via upregulating the Nrf2 signaling pathway possibly. Probucol may be repurposed for DR management.
Collapse
|
5
|
Matsumoto T, Takayanagi K, Kobayashi S, Kojima M, Taguchi K, Kobayashi T. Effect of Equol on Vasocontractions in Rat Carotid Arteries Treated with High Insulin. Biol Pharm Bull 2019; 42:1048-1053. [PMID: 31155582 DOI: 10.1248/bpb.b19-00051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous research has indicated that high insulin affects vascular function. Equol is an active metabolite of daidzein, an isoflavone produced from soy by intestinal microbial flora, with beneficial effects on the vascular system. This study investigated whether equol was beneficial for vascular function under high insulin conditions. Using organ culture techniques, rat carotid arteries were treated for 23 ± 1 h with a vehicle, high insulin (100 nM), or equol (100 µM) plus high insulin (100 nM). Vascular isometric forces were measured by the organ bath technique. In each endothelium-intact ring, the contractions induced by high-K+, noradrenaline, or by serotonin (5-HT) were similar for the vehicle, insulin, and equol + insulin treatments. Contractions induced by a selective 5-HT2A receptor agonist (TCB2) increased with insulin treatment (vs. vehicle), but less so with equol + insulin. Under basal conditions, a selective 5-HT2B receptor agonist (BW723C86) did not induce contraction; following precontraction by a thromboxane analog, it induced contraction but not relaxation. These responses were similar across the three treatments. Acetylcholine-induced relaxations were also similar for the three treatments. In the endothelium-denuded preparations, 5-HT-induced contraction was augmented with insulin treatment (vs. vehicle) but less so by equol + insulin treatment. These differences in 5-HT-induced contractions were eliminated by iberiotoxin, a large-conductance calcium-activated K+ channel (BKCa) inhibitor. These results suggest that equol exerts a preventive effect on the enhancement of 5-HT-induced contraction by high insulin (possibly mediated by the 5-HT2A receptor), and that these effects may be attributed to the activation of BKCa channels in vascular smooth muscle.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Keisuke Takayanagi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Shota Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Mihoka Kojima
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
6
|
Huang JL, Yu C, Su M, Yang SM, Zhang F, Chen YY, Liu JY, Jiang YF, Zhong ZG, Wu DP. Probucol, a "non-statin" cholesterol-lowering drug, ameliorates D-galactose induced cognitive deficits by alleviating oxidative stress via Keap1/Nrf2 signaling pathway in mice. Aging (Albany NY) 2019; 11:8542-8555. [PMID: 31590160 PMCID: PMC6814622 DOI: 10.18632/aging.102337] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Oxidative stress plays a vital role in the initiation and progression of age-related neurodegenerative diseases. Ameliorating oxidative damage is therefore considered as a beneficial strategy for the treatment of age-related neurodegenerative disorders. Probucol (Prob), a lipid-lowering prototype agent, was reported to treat cardiovascular diseases, chronic kidney disease and diabetes mellitus. However, whether Prob has an effect on age-related neurodegenerative diseases remains unknown. In the study, it was found that Prob ameliorated D-galactose (D-gal) induced cognitive deficits and neuronal loss in the hippocampal CA1 region. Moreover, Prob alleviated ROS and MDA levels by elevating SOD, GSH-PX and HO-1 mRNA and protein expressions, and improving plasmic and cerebral SOD and GSH-PX activities in D-gal treated mice. Furthermore, Prob promoted the dissociation of Keap1/Nrf2 complex leading to the accumulation of Nrf2 in nucleus, implying that the improved anti-oxidant property of Prob is mediated by Keap1/Nrf2 pathway. The study firstly demonstrates the favorable effects of Prob against cognitive impairments in a senescent mouse model, rendering this compound a promising agent for the treatment or prevention of age-related neurodegenerative disease.
Collapse
Affiliation(s)
- Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chao Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Min Su
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Si-Man Yang
- Scientific research center of traditional Chinese medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Fan Zhang
- Scientific research center of traditional Chinese medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Yuan-Yuan Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jin-Yuan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi-Fan Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zhen-Guo Zhong
- Scientific research center of traditional Chinese medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|