1
|
Hakimi Naeini S, Rajabi-Maham H, Azizi V, Hosseini A. Anticonvulsant effect of glycitin in pentylenetetrazol induced male Wistar rat model by targeting oxidative stress and Nrf2/HO-1 signaling. Front Pharmacol 2024; 15:1392325. [PMID: 39246658 PMCID: PMC11377222 DOI: 10.3389/fphar.2024.1392325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Epilepsy, characterized by recurrent seizures, poses a significant health challenge globally. Despite the availability of anti-seizure medications, their adverse effects and inadequate efficacy in controlling seizures propel the exploration of alternative therapeutic measures. In hypothesis, glycitin is a phytoestrogenic compound found in soybeans and due to its estrogenic properties may have anti-epileptic and neuroprotective effects. This study investigates the potential anti-epileptic properties of glycitin in the context of pentylenetetrazol (PTZ) induced seizures in male Wistar rats. The rats were pretreated with varying doses of glycitin (5, 10, and 20 mg/kg) before PTZ (35 mg/kg) administration, and assessments included behavioral observations and histological evaluation via hematoxylin and eosin (H&E) staining. Additionally, oxidative stress markers, such as malondialdehyde (MDA), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels, were quantified to examine glycitin's impact on oxidative stress. Molecular analysis was conducted to assess the activation of the Nuclear factor erythroid 2-related factor (Nrf2)/Heme oxygenase 1 (HO-1) signaling pathway. Results indicated that glycitin pretreatment effectively mitigated PTZ-induced convulsive behaviors, supported by histological findings from H&E staining. Furthermore, glycitin administration led to significant alterations in MDA, GPx, and SOD levels, suggestive of its ability to modulate oxidative stress. Notably, glycitin treatment induced activation of the Nrf2/HO-1 signaling pathway. These findings underscore the potential of glycitin as an anticonvulsant agent, elucidating its mechanism of action through histological protection, modulation of oxidative stress markers, and activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Saghi Hakimi Naeini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Ibrahim BMM, Elbaset MA, Abou Baker DH, Zikri EN, El Gengaihi S, Abdel Salam M. A pharmacological and toxicological biochemical study of cardiovascular regulatory effects of hibiscus, corn silk, marjoram, and chamomile. Heliyon 2024; 10:e22659. [PMID: 38226236 PMCID: PMC10788201 DOI: 10.1016/j.heliyon.2023.e22659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/17/2024] Open
Abstract
Hypertension is one of the most typical causes of morbidity and mortality. The present study investigated the possible antihypertensive cardiovascular effects of an herbal mixture extract of Hibiscus, Corn silk, Marjoram, and Chamomile. HPLC analysis of the water extract prepared from the aerial parts of four plants and their mixture was done to detect the most predominant compounds. A safety study was done prior to the efficacy study to determine the dose and ensure the extract's safety in female rats. Hypertension was induced in ovariectomized and non-ovariectomized rats by oral administration of 50 mg/kg of LName for 30 days; the hypertensive rats were classified into non-ovariectomized and ovariectomized untreated groups, treated groups with high and low doses of the mixture(150,300 mg/kg) given to ovariectomized and non-ovariectomized hypertensive groups and a standard group treated with angiotensin-converting enzyme inhibitor. The untreated group showed significant elevation of blood pressure, heart rate, cholesterol, triglycerides, malondialdehyde, cyclic adenosine monophosphate, angiotensin-converting enzyme, C-reactive protein, and significantly lowered reduced glutathione, high-density lipoprotein, and endothelial nitric oxide synthase. Treatment significantly counteracted the effects of L Name. The mixture provides a promising natural cardiovascular regulating supplement owing to its high contents of flavonoids.
Collapse
Affiliation(s)
- Bassant MM. Ibrahim
- Pharmacology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki Giza, PO:12622, Egypt
| | - Marawan A. Elbaset
- Pharmacology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki Giza, PO:12622, Egypt
| | - Doha H. Abou Baker
- Medicinal and Aromatic Plants Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, Egypt, PO: 12622
| | - Emad N. Zikri
- Alternative and Complementary Medicine Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki Giza, PO:12622, Egypt
| | - Souad El Gengaihi
- Medicinal and Aromatic Plants Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, Egypt, PO: 12622
| | - Mouchira Abdel Salam
- Alternative and Complementary Medicine Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki Giza, PO:12622, Egypt
| |
Collapse
|
3
|
Wang S, Xie Z, Jun T, Ma X, Zhang M, Rao F, Xu H, Lu J, Ding X, Li Z. Identification of potential crucial genes and therapeutic targets for epilepsy. Eur J Med Res 2024; 29:43. [PMID: 38212777 PMCID: PMC10782668 DOI: 10.1186/s40001-024-01643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Epilepsy, a central neurological disorder, has a complex genetic architecture. There is some evidence suggesting that genetic factors play a role in both the occurrence of epilepsy and its treatment. However, the genetic determinants of epilepsy are largely unknown. This study aimed to identify potential therapeutic targets for epilepsy. METHODS Differentially expressed genes (DEGs) were extracted from the expression profiles of GSE44031 and GSE1834. Gene co-expression analysis was used to confirm the regulatory relationship between newly discovered epilepsy candidate genes and known epilepsy genes. Expression quantitative trait loci analysis was conducted to determine if epilepsy risk single-nucleotide polymorphisms regulate DEGs' expression in human brain tissue. Finally, protein-protein interaction analysis and drug-gene interaction analysis were performed to assess the role of DEGs in epilepsy treatment. RESULTS The study found that the protein tyrosine phosphatase receptor-type O gene (PTPRO) and the growth arrest and DNA damage inducible alpha gene (GADD45A) were significantly upregulated in epileptic rats compared to controls in both datasets. Gene co-expression analysis revealed that PTPRO was co-expressed with RBP4, NDN, PAK3, FOXG1, IDS, and IDS, and GADD45A was co-expressed with LRRK2 in human brain tissue. Expression quantitative trait loci analysis suggested that epilepsy risk single-nucleotide polymorphisms could be responsible for the altered PTPRO and GADD45A expression in human brain tissue. Moreover, the protein encoded by GADD45A had a direct interaction with approved antiepileptic drug targets, and GADD45A interacts with genistein and cisplatin. CONCLUSIONS The results of this study highlight PTPRO and GADD45A as potential genes for the diagnosis and treatment of epilepsy.
Collapse
Affiliation(s)
- Shitao Wang
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China.
| | - Zhenrong Xie
- The Medical Biobank, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Tian Jun
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Xuelu Ma
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Mengen Zhang
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Feng Rao
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Hui Xu
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Jinghong Lu
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Xiangqian Ding
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Zongyou Li
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| |
Collapse
|
4
|
Jin Z, Liu Y. The m6A reader YTHDC1-mediated lncRNA CTBP1-AS2 m6A modification accelerates cholangiocarcinoma progression. Heliyon 2023; 9:e19816. [PMID: 37809459 PMCID: PMC10559219 DOI: 10.1016/j.heliyon.2023.e19816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a serious malignancy originating from the bile ducts and the second most common primary liver cancer. Long non-coding RNA (lncRNA) is a functional lncRNA that plays an important role in human cancers. However, the role and underlying mechanisms of CTBP1-AS2 in CCA remain unknown. PURPOSE In this study, we investigated the functional role and mechanism of long-stranded non-coding RNA (lncRNA) C-terminal binding protein 1 antisense RNA 2 (CTBP1-AS2) in CCA progression. RESULT In the present study, the bioinformatics analysis revealed that YTHDC1 and CTBP1-AS2 were significantly upregulated, and it was confirmed in cholangiocarcinoma tissues from CCA patients. Meanwhile, we demonstrated that knockdown of YTHDC1 or lncRNA CTBP1-AS2 inhibited CCA cell proliferation, migration and invasion, blocked the cell cycle in G2/M phase and promoted apoptosis of CCA cells. In addition, lncRNA CTBP1-AS2-mediated N6-methyladenosine (m6A) methylation levels were significantly elevated in cholangiocarcinoma tissues, whereas knockdown of YTHDC1 resulted in a significant down-regulation of m6A methylation levels by lncRNA CTBP1-AS2. CONCLUSION Our results suggest that YTHDC1 affects cholangiocarcinoma progression by modifying the lncRNA CTBP1-AS2 m6A, and CTBP1-AS2 may be a promising therapeutic target for CCA.
Collapse
Affiliation(s)
- Zhe Jin
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
5
|
Gutiérrez-Abejón E, Criado-Espegel P, Pedrosa-Naudín MA, Fernández-Lázaro D, Herrera-Gómez F, Álvarez FJ. Trends in the Use of Driving-Impairing Medicines According to the DRUID Category: A Population-Based Registry Study with Reference to Driving in a Region of Spain between 2015 and 2019. Pharmaceuticals (Basel) 2023; 16:ph16040508. [PMID: 37111265 PMCID: PMC10145018 DOI: 10.3390/ph16040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
The European DRUID (Drive Under the Influence of drugs, alcohol, and medicines) program classifies medications into three categories according to their effect on one’s fitness to drive. The trend in the use of driving-impairing medicines (DIMs) in a region of Spain between 2015 and 2019 was analyzed through a population-based registry study. Pharmacy dispensing records for DIMs are provided. The use of DIMs on drivers was weighted according to the national driver’s license census. The analysis was performed considering the population distribution by age and sex, treatment length, and the three DRUID categories. DIMs were used by 36.46% of the population and 27.91% of drivers, mainly chronically, with considerable daily use (8.04% and 5.34%, respectively). Use was more common in females than in males (42.28% vs. 30.44%) and increased with age. Among drivers, consumption decreases after 60 years of age for females and after 75 years of age for males. There was a 34% increase in the use of DIMs between 2015 and 2019, with a focus on daily use (>60%). The general population took 2.27 ± 1.76 DIMs, fundamentally category II (moderate influence on fitness to drive) (20.3%) and category III (severe influence on fitness to drive) (19.08%). The use of DIMs by the general population and drivers is significant and has increased in recent years. The integration of the DRUID classification into electronic prescription tools would assist physicians and pharmacists in providing adequate information to the patient about the effects of prescribed medications on their fitness to drive.
Collapse
|
6
|
Hou C, Liang H, Hao Z, Zhao D. Berberine ameliorates the neurological dysfunction of the gastric fundus by promoting calcium channels dependent release of ACh in STZ-induced diabetic rats. Saudi Pharm J 2023; 31:433-443. [PMID: 37026044 PMCID: PMC10071329 DOI: 10.1016/j.jsps.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Background It has been reported diabetic gastroparesis is related to diabetic autonomic neuropathy of the gastrointestinal tract, and berberine (BBR) could ameliorate diabetic central and peripheral neuropathy. However, the influence of BBR on the function and motility of the gastric fundus nerve is unclear. Methods A diabetic rat model was constructed, and HE staining was used to observe the morphological changes in the gastric fundus. The changes in cholinergic and nitrogen-related neurochemical indexes and the effects of BBR on them were measured using Elisa. The effects of BBR on the neural function and motility of gastric fundus were investigated by electric field stimulation (EFS) induced neurogenic response in vitro. Results In the early stage of STZ-induced diabetic rats, the contractile response of gastric fundus induced by EFS was disorder, disturbance of contraction amplitude, and the cell bodies of neurons in the myenteric plexus of gastric fundus presented vacuolar lesions. Administration with BBR could improve the above symptoms. BBR further enhanced the contraction response in the presence of a NOS inhibitor or the case of inhibitory neurotransmitters removal. Interestingly, the activity of ACh could affect NO release directly and the enhancement of BBR on contractile response was canceled by calcium channel blockers completely. Conclusions In the early stage of STZ-induced diabetic rats, the neurogenic contractile response disorder of the gastric fundus is mainly related to cholinergic and nitrergic nerve dysfunction. BBR promotes the release of ACh mainly by affecting the calcium channel to improve the neurological dysfunction of the gastric fundus.
Collapse
Affiliation(s)
- Congcong Hou
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China
| | - Hongyu Liang
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China
- Beijing Shouyi Group Co., Ltd. Mine Hospital, Tangshan 064400, PR China
| | - Zhangsen Hao
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China
| | - Ding Zhao
- College of Pharmacy, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China
- Corresponding author at: Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang 050017, PR China.
| |
Collapse
|
7
|
Zhu G, Zhou S, Xu Y, Gao R, Zhang M, Zeng Q, Su W, Wang R. Chickenpox and multiple sclerosis: A Mendelian randomization study. J Med Virol 2023; 95:e28315. [PMID: 36380510 DOI: 10.1002/jmv.28315] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Observational studies have suggested a suspected association between varicella-zoster virus (VZV) infection and multiple sclerosis (MS), but the connection has remained unclear. The aim of the present study is to evaluate the causal relationship between chickenpox which is caused by VZV infection and MS. We performed a two-sample Mendelian randomization analysis to investigate the association of chickenpox with MS using summary statistics from genome-wide association studies (GWAS). The GWAS summary statistics data for chickenpox was from the 23andMe cohort including 107 769 cases and 15 982 controls. A large summary of statistical data from the International Multiple Sclerosis Genetics Consortium (IMSGC) was used as the outcome GWAS data set, including 14 802 MS cases and 26 703 controls. We found evidence of a significant association between genetically predicted chickenpox and risk of MS (odds ratio [OR] = 35.27, 95% confidence interval [CI] = 22.97-54.17, p = 1.46E-59). Our findings provided evidence indicating a causal effect of chickenpox on MS. Further elucidations of this association and underlying mechanisms are needed for identifying feasible interventions to promote MS prevention.
Collapse
Affiliation(s)
- Gaizhi Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Shan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yaqi Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Ran Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Min Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Qi Zeng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Body Mass Index and Caries: Machine Learning and Statistical Analytics of the Dental, Oral, Medical Epidemiological (DOME) Nationwide Big Data Study. Metabolites 2022; 13:metabo13010037. [PMID: 36676963 PMCID: PMC9863046 DOI: 10.3390/metabo13010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The objectives of the research were to analyze the association between Body Mass Index (BMI) and dental caries using novel approaches of both statistical and machine learning (ML) models while adjusting for cardiovascular risk factors and metabolic syndrome (MetS) components, consequences, and related conditions. This research is a data-driven analysis of the Dental, Oral, Medical Epidemiological (DOME) big data repository, that integrates comprehensive socio-demographic, medical, and dental databases of a nationwide sample of dental attendees to military dental clinics for 1 year aged 18−50 years. Obesity categories were defined according to the World Health Organization (WHO): under-weight: BMI < 18.5 kg/m2, normal weight: BMI 18.5 to 24.9 kg/m2, overweight: BMI 25 to 29.9 kg/m2, and obesity: BMI ≥ 30 kg/m2. General linear models were used with the mean number of decayed teeth as the dependent variable across BMI categories, adjusted for (1) socio-demographics, (2) health-related habits, and (3) each of the diseases comprising the MetS definition MetS and long-term sequelae as well as associated illnesses, such as hypertension, diabetes, hyperlipidemia, cardiovascular disease, obstructive sleep apnea (OSA) and non-alcoholic fatty liver disease (NAFLD). After the statistical analysis, we run the XGBoost machine learning algorithm on the same set of clinical features to explore the features’ importance according to the dichotomous target variable of decayed teeth as well as the obesity category. The study included 66,790 subjects with a mean age of 22.8 ± 7.1. The mean BMI score was 24.2 ± 4.3 kg/m2. The distribution of BMI categories: underweight (3113 subjects, 4.7%), normal weight (38,924 subjects, 59.2%), overweight (16,966, 25.8%), and obesity (6736, 10.2%). Compared to normal weight (2.02 ± 2.79), the number of decayed teeth was statistically significantly higher in subjects with obesity [2.40 ± 3.00; OR = 1.46 (1.35−1.57)], underweight [2.36 ± 3.04; OR = 1.40 (1.26−1.56)] and overweight [2.08 ± 2.76, OR = 1.05 (1.01−1.11)]. Following adjustment, the associations persisted for obesity [OR = 1.56 (1.39−1.76)] and underweight [OR = 1.29 (1.16−1.45)], but not for overweight [OR = 1.11 (1.05−1.17)]. Features important according to the XGBoost model were socioeconomic status, teeth brushing, birth country, and sweetened beverage consumption, which are well-known risk factors of caries. Among those variables was also our main theory independent variable: BMI categories. We also performed clinical features importance based on XGBoost with obesity set as the target variable and received an AUC of 0.702, and accuracy of 0.896, which are considered excellent discrimination, and the major features that are increasing the risk of obesity there were: hypertension, NAFLD, SES, smoking, teeth brushing, age as well as our main theory dependent variable: caries as a dichotomized variable (Yes/no). The study demonstrates a positive association between underweight and obesity BMI categories and caries, independent of the socio-demographic, health-related practices, and other systemic conditions related to MetS that were studied. Better allocation of resources is recommended, focusing on populations underweight and obese in need of dental care.
Collapse
|
9
|
Shi R, Gao D, Stoika R, Liu K, Sik A, Jin M. Potential implications of polyphenolic compounds in neurodegenerative diseases. Crit Rev Food Sci Nutr 2022; 64:5491-5514. [PMID: 36524397 DOI: 10.1080/10408398.2022.2155106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases are common chronic diseases related to progressive damage to the nervous system. Current neurodegenerative diseases present difficulties and despite extensive research efforts to develop new disease-modifying therapies, there is still no effective treatment for halting the neurodegenerative process. Polyphenols are biologically active organic compounds abundantly found in various plants. It has been reported that plant-derived dietary polyphenols may improve some disease states and promote health. Emerging pieces of evidence indicate that polyphenols are associated with neurodegenerative diseases. This review aims to overview the potential neuroprotective roles of polyphenols in most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and ischemic stroke.
Collapse
Affiliation(s)
- Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| |
Collapse
|
10
|
Zada W, VanRyzin JW, Perez-Pouchoulen M, Baglot SL, Hill MN, Abbas G, Clark SM, Rashid U, McCarthy MM, Mannan A. Fatty acid amide hydrolase inhibition and N-arachidonoylethanolamine modulation by isoflavonoids: A novel target for upcoming antidepressants. Pharmacol Res Perspect 2022; 10:e00999. [PMID: 36029006 PMCID: PMC9418665 DOI: 10.1002/prp2.999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/01/2022] Open
Abstract
Modulation of the endocannabinoid system (ECS) is a novel putative target for therapeutic intervention in depressive disorders. Altering concentrations of one of the principal endocannabinoids, N‐arachidonoylethanolamine, also known as anandamide (AEA) can affect depressive‐like behaviors through several mechanisms including anti‐inflammatory, hormonal, and neural circuit alterations. Recently, isoflavonoids, a class of plant‐derived compounds, have been of therapeutic interest given their ability to modulate the metabolism of the endogenous ligands of the ECS. To determine the therapeutic potential of isoflavonoids, we screened several candidate compounds (Genistein, Biochanin‐A, and 7‐hydroxyflavone) in silico to determine their binding properties with fatty acid amide hydrolase (FAAH), the primary degrative enzyme for AEA. We further validated the ability of these compounds to inhibit FAAH and determined their effects on depressive‐like and locomotor behaviors in the forced swim test (FST) and open field test in male and female mice. We found that while genistein was the most potent FAAH inhibitor, 7‐hydroxyflavone was most effective at reducing immobility time in the forced swim test. Finally, we measured blood corticosterone and prefrontal cortex AEA concentrations following the forced swim test and found that all tested compounds decreased corticosterone and increased AEA, demonstrating that isoflavonoids are promising therapeutic targets as FAAH inhibitors.
Collapse
Affiliation(s)
- Wahid Zada
- Department of Pharmacy, COMSATS University Islamabad, Khyber Pakhtunkhwa, Pakistan.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jonathan W VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Miguel Perez-Pouchoulen
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Samantha L Baglot
- Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Ghulam Abbas
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Sarah M Clark
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Khyber Pakhtunkhwa, Pakistan
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Abdul Mannan
- Department of Pharmacy, COMSATS University Islamabad, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
11
|
Singh S, Singh TG. Emerging perspectives on mitochondrial dysfunctioning and inflammation in epileptogenesis. Inflamm Res 2021; 70:1027-1042. [PMID: 34652489 DOI: 10.1007/s00011-021-01511-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Mitochondrial dysfunction is a common denominator of neuroinflammation recognized by neuronal oxidative stress-mediated apoptosis that is well recognized by common intracellular molecular pathway-interlinked neuroinflammation and mitochondrial oxidative stress, a feature of epileptogenesis. In addition, the neuronal damage in the epileptic brain corroborated the concept of brain injury-mediated neuroinflammation, further providing an interlink between inflammation, mitochondrial dysfunction, and oxidative stress in epilepsy. MATERIALS AND METHODS A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to provide evidence of preclinical and clinically used drugs targeting such nuclear, cytosolic, and mitochondrial proteins suggesting that the correlation of mechanisms linked to neuroinflammation has been elucidated in the current review. Despite that, the evidence of elevated levels of inflammatory mediators and pro-apoptotic protein levels can provide the correlation of inflammatory responses often concerned with hyperexcitability attributing to the fact that mitochondrial redox mechanisms and higher susceptibilities to neuroinflammation result from repetitive recurring epileptic seizures. Therefore, providing an understanding of seizure-induced pathological changes read by activating neuroinflammatory cascades like NF-kB, RIPK, MAPK, ERK, JNK, and JAK-STAT signaling further related to mitochondrial damage promoting hyperexcitability. CONCLUSION The current review highlights the further opportunity for establishing therapeutic interventions underlying the apparent correlation of neuroinflammation mediated mitochondrial oxidative stress might contribute to common intracellular mechanisms underlying a future prospective of drug treatment targeting mitochondrial dysfunction linked to the neuroinflammation in epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | |
Collapse
|
12
|
The Potential Effects of Phytoestrogens: The Role in Neuroprotection. Molecules 2021; 26:molecules26102954. [PMID: 34065647 PMCID: PMC8156305 DOI: 10.3390/molecules26102954] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Phytoestrogens are naturally occurring non-steroidal phenolic plant compounds. Their structure is similar to 17-β-estradiol, the main female sex hormone. This review offers a concise summary of the current literature on several potential health benefits of phytoestrogens, mainly their neuroprotective effect. Phytoestrogens lower the risk of menopausal symptoms and osteoporosis, as well as cardiovascular disease. They also reduce the risk of brain disease. The effects of phytoestrogens and their derivatives on cancer are mainly due to the inhibition of estrogen synthesis and metabolism, leading to antiangiogenic, antimetastatic, and epigenetic effects. The brain controls the secretion of estrogen (hypothalamus-pituitary-gonads axis). However, it has not been unequivocally established whether estrogen therapy has a neuroprotective effect on brain function. The neuroprotective effects of phytoestrogens seem to be related to both their antioxidant properties and interaction with the estrogen receptor. The possible effects of phytoestrogens on the thyroid cause some concern; nevertheless, generally, no serious side effects have been reported, and these compounds can be recommended as health-promoting food components or supplements.
Collapse
|
13
|
Koyuncuoğlu T, Arabacı Tamer S, Erzik C, Karagöz A, Akakın D, Yüksel M, Yeğen BÇ. Oestrogen receptor ERα and ERβ agonists ameliorate oxidative brain injury and improve memory dysfunction in rats with an epileptic seizure. Exp Physiol 2019; 104:1911-1928. [PMID: 31608530 DOI: 10.1113/ep087986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? Could different hormonally active substances, including oestrogen receptor (ER) agonists, protect against oxidative brain damage and memory impairment induced by a single epileptic seizure in rats? If so, which signalling mechanisms are involved in their anti-inflammatory effects? What is the main finding and its importance? Chronic administration of oestrogen, progesterone, ER modulators/agonists or blockade of testosterone exhibited anti-inflammatory and antioxidant actions on single seizure-induced neuronal injury, while ER agonists additionally improved memory function and up-regulated CREB signalling and hippocampal GABA(A)α1 receptor density, suggesting that ERα or ERβ receptor activation may be beneficial in protecting against seizure-related oxidative brain injury and cognitive dysfunction. ABSTRACT The susceptibility to epileptic seizures is dependent on sex as well as fluctuations in oestrogen levels, while exogenous oestrogen was shown to have no effect or to facilitate or to inhibit seizure activity. Oestrogen receptors (ERs) mediate antioxidant and anti-inflammatory actions in several inflammatory models, but the involvement of ERs in seizure-induced neuronal injury has not been evaluated previously. In order to assess the effects of resveratrol, progesterone, oestradiol (E2), an anti-testosterone (cyproterone acetate; CPA), a selective ER modulator (tamoxifen; TMX) and ERα/ERβ agonists (propyl pyrazole triol (PPT), diarylpropionitrile (DPN)) on oxidative brain damage and memory impairment due to epileptic seizure, male Wistar rats (n = 120) received one of the treatment choices either in drinking water or intraperitoneally for 31 days, and epileptic seizure was induced on the 28th day by injection of a single-dose of pentylenetetrazole (45 mg kg-1 ). The results demonstrate that chronic pretreatment with resveratrol, progesterone, E2, CPA or TMX suppressed most of the inflammatory parameters indicative of oxidative neuronal injury, while treatment with the ER agonists DPN or PPT were found to be even more effective in limiting the oxidative damage. Treatment with DPN resulted in the up-regulation of cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) expression, while PPT up-regulated expression of CREB without affecting BDNF levels. Moreover, both ER agonists provided protection against seizure-induced memory loss with a concomitant increase in hippocampal GABA(A)α1-positive cells. In conclusion, ER agonists, and more specifically ERβ agonist, appear to provide maximum protection against seizure-induced oxidative brain injury and associated memory dysfunction by up-regulating the expression of CREB, BDNF and GABA(A)α1 receptors.
Collapse
Affiliation(s)
- Türkan Koyuncuoğlu
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Sevil Arabacı Tamer
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ayça Karagöz
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Dilek Akakın
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Meral Yüksel
- Department of Medical Laboratory, Vocational School of Health-Related Professions, Marmara University, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
14
|
Kwon JY, Jeon MT, Jung UJ, Kim DW, Moon GJ, Kim SR. Perspective: Therapeutic Potential of Flavonoids as Alternative Medicines in Epilepsy. Adv Nutr 2019; 10:778-790. [PMID: 31111873 PMCID: PMC6743823 DOI: 10.1093/advances/nmz047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/05/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
Epilepsy is a chronic neurological disorder that affects many people worldwide. Temporal lobe epilepsy is the most common and most studied type of epilepsy, but the pathological mechanisms underlying this condition are poorly understood. More than 20 antiepileptic drugs (AEDs) have been developed and used for the treatment of epilepsy; however, 30% of patients still experience uncontrolled epilepsy and associated comorbidities, which impair their quality of life. In addition, various side effects have been reported for AEDs, such as drowsiness, unsteadiness, dizziness, blurred or double vision, tremor (shakiness), greater risk of infections, bruising, and bleeding. Thus, critical medical needs remain unmet for patients with uncontrolled epilepsy. Flavonoids belong to a subclass of polyphenols that are widely present in fruits, vegetables, and certain beverages. Recently, many studies have reported that some flavonoids elicit various beneficial effects in patients with epilepsy without causing the side effects associated with conventional medical therapies. Moreover, flavonoids may have a property of regulating microRNA expression associated with inflammation and cell survival. These findings suggest that flavonoids, which are more effective but impose fewer adverse effects than conventional AEDs, could be used in the treatment of epilepsy.
Collapse
Affiliation(s)
- Jae Young Kwon
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Min-Tae Jeon
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Dong Woon Kim
- Department of Medical Science,Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Gyeong Joon Moon
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea,Address correspondence to GJM (e-mail: )
| | - Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea,Address correspondence to SRK (e-mail: )
| |
Collapse
|
15
|
Alò R, Zizza M, Fazzari G, Facciolo RM, Canonaco M. Genistein Modifies Hamster Behavior and Expression of Inflammatory Factors following Subchronic Unpredictable Mild Stress. Neuroendocrinology 2019; 108:98-108. [PMID: 30408789 DOI: 10.1159/000495209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/08/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Previous studies have pointed to the protective role of genistein against stress adaptations although neuromolecular mechanisms are not yet fully known. With this work, we evaluated the influence of such a phytoestrogen on hamster behavioral and molecular activities following exposure to subchronic unpredictable mild stress. METHODS The motor behaviors of hamsters (n = 28) were analyzed using elevated plus maze (EPM) test, hole board (HB) test, and forced swim test (FST). In addition, neurodegeneration events were assessed with amino cupric silver stain, while expression variations of tropomyosin receptor kinase B (TrkB), nuclear factor kappa-B1 (NF-κB1), and heat shock protein 70 (Hsp70) mRNAs were highlighted in limbic neuronal fields via in situ hybridization. RESULTS Genistein accounted for increased motor performances in EPM and HB tests but reduced immobility during FST, which were correlated with diminished argyrophilic signals in some limbic neuronal fields. Contextually, upregulated Hsp70 and TrkB mRNAs occurred in hippocampal (HIP) and hypothalamic neuronal fields. Conversely, diminished NF-κB1 levels were mainly obtained in HIP. CONCLUSION Hormonal neuroprotective properties of genistein corroborating anxiolytic and antidepressant role(s) through elevated expression levels of stress proteins and trophic factors may constitute novel therapeutic measures against emotional and stress-related motor performances.
Collapse
Affiliation(s)
- Raffaella Alò
- Comparative Neuroanatomy Laboratory, Biology, Ecology and Earth Science Department, University of Calabria, Arcavacata di Rende, Italy,
| | - Merylin Zizza
- Comparative Neuroanatomy Laboratory, Biology, Ecology and Earth Science Department, University of Calabria, Arcavacata di Rende, Italy
| | - Gilda Fazzari
- Comparative Neuroanatomy Laboratory, Biology, Ecology and Earth Science Department, University of Calabria, Arcavacata di Rende, Italy
| | - Rosa Maria Facciolo
- Comparative Neuroanatomy Laboratory, Biology, Ecology and Earth Science Department, University of Calabria, Arcavacata di Rende, Italy
| | - Marcello Canonaco
- Comparative Neuroanatomy Laboratory, Biology, Ecology and Earth Science Department, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
16
|
Salahshoor MR, Roshankhah S, Hosseni P, Jalili C. Genistein Improves Liver Damage in Male Mice Exposed to Morphine. Chin Med J (Engl) 2018; 131:1598-1604. [PMID: 29941714 PMCID: PMC6032674 DOI: 10.4103/0366-6999.235117] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background: Morphine is commonly used to treat severe pain. This substance is significantly metabolized in the liver and causes disturbing effects. Genistein is an isoflavone and has antioxidant properties. The aim of this study was to evaluate the effects of genistein against morphine damages on mouse liver. Methods: Between May 2017 and March 2018, 48 male mice were divided into six groups (n = 8 in each group). Various doses of genistein (25 and 50 mg/kg) and morphine plus genistein (25 and 50 mg/kg) were administered intraperitoneally to 48 male mice for 20 consequent days. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), serum nitric oxide (NO) levels, liver weight, and the diameter of hepatocytes and central hepatic vein were studied and compared using one-way analysis of variance. Results: Morphine administration significantly increased the mean diameter of the central hepatic vein (22.76 ± 1.9 μm vs. 15.04 ± 0.60 μm, χ2 = 21.814, P = 0.001) and hepatocytes (3.03 ± 0.10 μm vs. 1.10 ± 0.05 μm, χ2 = 9.873, P = 0.001) respectively, blood serum NO level (38.00% ± 2.09% vs. 18.72% ± 4.40%, χ2 = 20.404, P < 0.001), liver enzyme level (AST: 111.80 ± 5.10 ng/ml vs. 81.93 ± 2.20 ng/ml, χ2 = 32.201, P < 0.0001; ALT: 45.14 ± 4.10 ng/ml vs. 35.49 ± 2.50 ng/ml, χ2 = 18.203, P < 0.0001; and ALP: 3.28 ± 0.20 ng/ml vs. 2.14 ± 0.10, χ2 = 5.04, P < 0.0001, respectively), and decreased liver weight (18.50 ± 0.90 g vs. 27.15 ± 0.50 g, χ2 = 22.415, P = 0.001) compared to saline group (0.535–0.750, P < 0.0001). However, administration of genistein plus morphine significantly enhanced liver weight (25 mg/kg: 21.15 ± 2.13 g vs. 18.50 ± 0.90 g, χ2 = 19.251, P < 0.0001; 50 mg/kg: 21.20 ± 1.00 g vs. 18.5 ± 0.9 g, χ2 = 19.502, P < 0.0001, respectively) and reduced the mean diameter of hepatocyte (25 mg/kg: 2.17 ± 0.30 μm vs. 3.03 ± 0.10 μm, χ2 = 22.780, P = 0.001; 50 mg/kg: 2.01 ± 0.20 μm vs. 3.03 ± 0.10 μm χ2 = 7.120, P = 0.001, respectively), central hepatic vein (25 mg/kg: 19.53 ± 1.00 μm vs. 22.76 ± 1.90 μm, χ2 = 20.681, P = 0.001; 50 mg/kg: 19.44 ± 1.20 μm vs. 22.76 ± 1.90 μm, χ2 = 18.451, P = 0.001, respectively), AST (25 mg/kg: 95.40 ± 5.20 ng/ml vs. 111.80 ± 5.010 ng/ml, P < 0.0001; 50 mg/kg: 90.78 ± 6.00 ng/ml vs. 111.80 ± 5.10 ng/ml, χ2 = 17.112, P < 0.0001, respectively), ALT (25 mg/kg: 35.78 ± 5.01 ng/ml vs. 45.14 ± 4.10 ng/ml, χ2 = 15.320, P < 0.0001; 50 mg/kg: 33.78 ± 2.60 ng/ml vs. 45.14 ± 4.10 ng/ml, χ2 = 14.023, P < 0.0001, respectively), ALP (25 mg/kg: 2.35 ± 0.30 ng/ml vs. 3.28 ± 0.20 ng/ml, χ2 = 4.101, P < 0.0001; 50 mg/kg: 2.34 ± 0.10 ng/ml vs. 3.28 ± 0.20 ng/ml, χ2 = 2.033, P < 0.0001, respectively), and NO levels (25 mg/kg: 25.92% ± 2.30% vs. 38% ± 2.09%, χ2 = 17.103, P < 0.0001; 50 mg/kg: 24.74% ± 4.10% vs. 38% ± 2.09%, χ2 = 25.050, P = 0.001, respectively) compared to morphine group. Conclusion: It seems that genistein administration might improve liver damages induced by morphine in mice.
Collapse
Affiliation(s)
- Mohammad Reza Salahshoor
- Department of Anatomical Sciences, University of Kermanshah School of Medicine, Kermanshah, Taghbostan 6714686698, Iran
| | - Shiva Roshankhah
- Department of Anatomical Sciences, University of Kermanshah School of Medicine, Kermanshah, Taghbostan 6714686698, Iran
| | - Payman Hosseni
- Department of Anatomical Sciences, University of Kermanshah School of Medicine, Kermanshah, Taghbostan 6714686698, Iran
| | - Cyrus Jalili
- Department of Anatomical Sciences, University of Kermanshah School of Medicine, Kermanshah, Taghbostan 6714686698, Iran
| |
Collapse
|
17
|
Gauvin DV, Zimmermann ZJ, Yoder J, Harter M, Holdsworth D, Kilgus Q, May J, Dalton J, Baird TJ. A predictive index of biomarkers for ictogenesis from tier I safety pharmacology testing that may warrant tier II EEG studies. J Pharmacol Toxicol Methods 2018; 94:50-63. [PMID: 29751085 DOI: 10.1016/j.vascn.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
Abstract
Three significant contributions to the field of safety pharmacology were recently published detailing the use of electroencephalography (EEG) by telemetry in a critical role in the successful evaluation of a compound during drug development (1] Authier, Delatte, Kallman, Stevens & Markgraf; JPTM 2016; 81:274-285; 2] Accardi, Pugsley, Forster, Troncy, Huang & Authier; JPTM; 81: 47-59; 3] Bassett, Troncy, Pouliot, Paquette, Ascaha, & Authier; JPTM 2016; 70: 230-240). These authors present a convincing case for monitoring neocortical biopotential waveforms (EEG, ECoG, etc) during preclinical toxicology studies as an opportunity for early identification of a central nervous system (CNS) risk during Investigational New Drug (IND) Enabling Studies. This review is about "ictogenesis" not "epileptogenesis". It is intended to characterize overt behavioral and physiological changes suggestive of drug-induced neurotoxicity/ictogenesis in experimental animals during Tier 1 safety pharmacology testing, prior to first dose administration in man. It is the presence of these predictive or comorbid biomarkers expressed during the requisite conduct of daily clinical or cage side observations, and in early ICH S7A Tier I CNS, pulmonary and cardiovascular safety study designs that should initiate an early conversation regarding Tier II inclusion of EEG monitoring. We conclude that there is no single definitive clinical marker for seizure liability but plasma exposures might add to set proper safety margins when clinical convulsions are observed. Even the observation of a study-related full tonic-clonic convulsion does not establish solid ground to require the financial and temporal investment of a full EEG study under the current regulatory standards. PREFATORY NOTE For purposes of this review, we have adopted the FDA term "sponsor" as it refers to any person who takes the responsibility for and initiates a nonclinical investigations of new molecular entities; FDA uses the term "sponsor" primarily in relation to investigational new drug application submissions.
Collapse
Affiliation(s)
- David V Gauvin
- Neurobehavioral Science and MPI Research (A Charles Rivers Company), Mattawan, MI, United States.
| | - Zachary J Zimmermann
- Neurobehavioral Science and MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Joshua Yoder
- Neurobehavioral Science and MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Marci Harter
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - David Holdsworth
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Quinn Kilgus
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Jonelle May
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Jill Dalton
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Theodore J Baird
- Drug Safety Assessment, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| |
Collapse
|
18
|
Khodamoradi M, Ghazvini H, Esmaeili-Mahani S, Shahveisi K, Farnia V, Zhaleh H, Abdoli N, Akbarnejad Z, Saadati H, Sheibani V. Genistein attenuates seizure-induced hippocampal brain-derived neurotrophic factor overexpression in ovariectomized rats. J Chem Neuroanat 2018. [DOI: 10.1016/j.jchemneu.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|