1
|
Gutierrez Cruz A, Borhani Peikani M, Beaulac TD, Mutafova-Yambolieva VN. Prostaglandins Differentially Regulate the Constitutive and Mechanosensitive Release of Soluble Nucleotidases in the Urinary Bladder Mucosa. Int J Mol Sci 2024; 26:131. [PMID: 39795990 PMCID: PMC11720413 DOI: 10.3390/ijms26010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The urothelium and lamina propria (LP) contribute to sensations of bladder fullness by releasing multiple mediators, including prostaglandins (PGs) and adenosine 5'-triphosphate (ATP), that activate or modulate functions of cells throughout the bladder wall. Mediators that are simultaneously released in response to bladder distention likely influence each other's mechanisms of release and action. This study investigated whether PGs could alter the extracellular hydrolysis of ATP by soluble nucleotidases (s-NTDs) released in the LP of nondistended or distended bladders. Using an ex vivo murine detrusor-free bladder model to access the LP during bladder filling and a sensitive HPLC-FLD detection methodology, we evaluated the decrease in ATP and the increase in adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), and adenosine by s-NTDs released in the LP. Endogenous PGE2 increased the spontaneous but not the distention-induced release of s-NTD via EP2 and EP3 prostanoid receptors, whereas exogenous PGE2 increased the spontaneous s-NTD release via EP3, EP4, and FP receptors and the distention-induced s-NTD release via EP1-4 and FP receptors. Endogenous PGF2α, PGD2, and PGI2 did not change the s-NTD release. Exogenous PGD2 increased the spontaneous s-NTD release via DP2 receptors and the distention-induced s-NTD release via DP1 and DP2 receptors. Exogenous PGF2α increased the spontaneous but not the distention-induced release of s-NTD via FP receptors. It is possible that higher concentrations of PGE2, PGF2α, and PGD2 (as expected in inflammation, bladder pain syndrome, or overactive bladder) potentiate the release of s-NTDs and the consecutive degradation of ATP as a safeguard mechanism to prevent the development of excessive bladder excitability and overactivity by high amounts of extracellular ATP.
Collapse
|
2
|
Oliveira MGD, Britto-Junior J, Martins Dias DR, Pereira LGS, Chiavegatto S, Hermawan I, Shimokawa H, Tsutsui M, Antunes E, Nucci GD. Neurogenic-derived 6-nitrodopamine is the most potent endogenous modulator of the mouse urinary bladder relaxation. Nitric Oxide 2024; 153:98-105. [PMID: 39427808 DOI: 10.1016/j.niox.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
6-Nitrodopamine (6-ND) modulates vas deferens, seminal vesicles, and corpus cavernosum contractility; however, its role on the lower urinary tract organs has not been evaluated. Investigations of isolated urinary bladders from wild-type (WT) mice revealed 6-ND release was comparable to that of dopamine and adrenaline, whereas noradrenaline was hardly detected, as assessed by liquid chromatography coupled to tandem mass spectrometry. In vitro, 6-ND induced concentration-dependent relaxations in carbachol pre-contracted bladders with high potency (pEC50: 8.04 ± 0.86), independently of eNOS/sGC activity. Co-incubation of 6-ND (1-10 μM) antagonizes the contractile effects of acetylcholine (p < 0.05). Experiments using nitric oxide synthase (NOS) knockout mice demonstrated that 6-ND release from isolated urinary bladder was significantly reduced by neuronal NOS (nNOS-/-) deletion and abolished by triple NOSs deletion (n/i/eNOS-/-), while no significant changes were observed in endothelial (eNOS-/-) or inducible (iNOS-/-) knockout mice. Incubation with tetrodotoxin resulted in a significant decrease in 6-ND release in bladders obtained from WT, but not in nNOS-/- mice. The bladders from nNOS-/- and n/i/eNOS-/- mice exhibited significantly higher contractile responses to electric field stimulation (EFS), compared to eNOS-/-, iNOS-/-, or WT bladders. The hyperreactivity observed in triple NOS knockouts was reversed by the incubation with bladder mucosal layer obtained from a donor WT mice, but not with the muscular layer. These findings clearly demonstrate 6-ND is the most potent endogenous relaxing agent of urinary bladder, and inhibition of its release is associated with bladder hyperreactivity.
Collapse
Affiliation(s)
| | - José Britto-Junior
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Silvana Chiavegatto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Psychiatry, Institute of Psychiatry, Faculty of Medicine at the University of São Paulo, São Paulo, Brazil
| | - Idam Hermawan
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroaki Shimokawa
- Graduate School, International University of Health and Welfare, Narita, Japan
| | - Masato Tsutsui
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil; Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Samanta S, Bagchi D, Bagchi M. Physiological and metabolic functions of the β 3-adrenergic receptor and an approach to therapeutic achievements. J Physiol Biochem 2024; 80:757-774. [PMID: 39145850 DOI: 10.1007/s13105-024-01040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
A specific type of beta-adrenergic receptor was discovered in the decade of 1980s and subsequently recognized as a new type of beta-adrenergic receptor, called beta3-adrenoceptor (β3-AR). β3-AR expresses in different tissues, including adipose tissue, gall bladder, stomach, small intestine, cardiac myocytes, urinary bladder, and brain. Structurally, β3-AR is very similar to β1- and β2-AR and belongs to a G-protein coupled receptor that uses cAMP as an intracellular second messenger. Alternatively, it also activates the NO-cGMP cascade. Stimulation of the β3-AR increases lipolysis, fatty acid oxidation, energy expenditure, and insulin action, leading to anti-obesity and anti-diabetic activity. Moreover, β3-AR differentially regulates the myocardial contraction and relaxes the urinary bladder to balance the cardiac activity and delay the micturition reflex, respectively. In recent years, this receptor has served as an attractive target for the treatment of obesity, type 2 diabetes, congestive heart failure, and overactive bladder syndrome. Several β3-AR agonists are in the emerging stage that can exert novel pharmacological benefits in different therapeutic areas. The present review focuses on the structure, signaling, physiological, and metabolic activities of β3-AR. Additionally, therapeutic approaches of β3-AR have also been considered.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Paschim Medinipur, Midnapore, West Bengal, 721101, India.
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Southern University, Houston, TX, 77004, USA
| | - Manashi Bagchi
- Creighton University Health Sciences Center, Omaha, NE, 68178, USA
| |
Collapse
|
4
|
Wang Y, Li J, Song Y, Wei H, Yan Z, Chen S, Zhang Z. Investigation on clinical risk factors of bladder lesion by machine learning based interpretable model. Sci Rep 2024; 14:24299. [PMID: 39414893 PMCID: PMC11484899 DOI: 10.1038/s41598-024-75104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Bladder lesion commonly occurs in patients with benign prostatic hyperplasia (BPH), and the routine screening of bladder lesion is vital for its timely detection and treatment, in which the risk of bladder lesion progression can be effectively alleviated. However, current clinical methods are inconvenient for routine screening. In this study, we proposed a convenient routine screening method to diagnose bladder lesions based on several clinical risk factors, which can be obtained through non-invasive, easy-to-operate, and low-cost examinations. The contribution of each clinical risk factor was further quantitatively analyzed to understand their impact on diagnostic decision-making. Based on a cohort study of 253 BPH patients with or without bladder lesions, the proposed diagnostic model achieved high accuracy using these clinical risk factors. Bladder compliance, maximum flow rate (Qmax), prostate specific antigen (PSA), and postvoid residual (PVR) were identified as the four most important clinical risk factors. To the best of our knowledge, this is the innovative research to predict bladder lesions based on the risk factors and quantitatively reveal their contributions to diagnostic decision-making. The proposed model has the potential to serve as an effective routine screening tool for bladder lesions in BPH patients, enabling early intervention to prevent lesion progression and improve the quality of life.
Collapse
Affiliation(s)
- Yunxin Wang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Jiachuang Li
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yunfeng Song
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Hongguo Wei
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Zejun Yan
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Shuo Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, 110169, China.
| | - Zhe Zhang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
5
|
Mohammad A, Laboulaye MA, Shenhar C, Dobberfuhl AD. Mechanisms of oxidative stress in interstitial cystitis/bladder pain syndrome. Nat Rev Urol 2024; 21:433-449. [PMID: 38326514 DOI: 10.1038/s41585-023-00850-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/09/2024]
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is characterized by bladder and/or pelvic pain, increased urinary urgency and frequency and nocturia. The pathophysiology of IC/BPS is poorly understood, and theories include chronic inflammation, autoimmune dysregulation, bacterial cystitis, urothelial dysfunction, deficiency of the glycosaminoglycan (GAG) barrier and urine cytotoxicity. Multiple treatment options exist, including behavioural interventions, oral medications, intravesical instillations and procedures such as hydrodistension; however, many clinical trials fail, and patients experience an unsatisfactory treatment response, likely owing to IC/BPS phenotype heterogeneity and the use of non-targeted interventions. Oxidative stress is implicated in the pathogenesis of IC/BPS as reactive oxygen species impair bladder function via their involvement in multiple molecular mechanisms. Kinase signalling pathways, nociceptive receptors, mast-cell activation, urothelial dysregulation and circadian rhythm disturbance have all been linked to reactive oxygen species and IC/BPS. However, further research is necessary to fully uncover the role of oxidative stress in the pathways driving IC/BPS pathogenesis. The development of new models in which these pathways can be manipulated will aid this research and enable further investigation of promising therapeutic targets.
Collapse
Affiliation(s)
- Ashu Mohammad
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mallory A Laboulaye
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Chen Shenhar
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Amy D Dobberfuhl
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
6
|
Liu J, Wang C, Wang W, Ding N, Liu J, Liu H, Wen J, Sun W, Zu S, Zhang X, Yan J. Activation of Piezo1 or TRPV2 channels inhibits human ureteral contractions via NO release from the mucosa. Front Pharmacol 2024; 15:1410565. [PMID: 38989142 PMCID: PMC11233528 DOI: 10.3389/fphar.2024.1410565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 07/12/2024] Open
Abstract
We aimed to investigate the expression and motor modulatory roles of several mechano-sensitive channels (MSCs) in human ureter. Human proximal ureters were obtained from eighty patients subjected to nephrectomy. Expression of MSCs at mRNA, protein and functional levels were examined. Contractions of longitudinal ureter strips were recorded in organ bath. A fluorescent probe Diaminofluoresceins was used to measure nitric oxide (NO). RT-PCR analyses revealed predominant expression of Piezo1 and TRPV2 mRNA in intact ureter and mucosa. Immunofluorescence assays indicate proteins of MSCs (Piezo1/Piezo2, TRPV2 and TRPV4) were mainly distributed in the urothelium. Ca2+ imaging confirmed functional expression of TRPV2, TRPV4 and Piezo1 in cultured urothelial cells. Specific agonists of Piezo1 (Yoda1, 3-300 μM) and TRPV2 (cannabidiol, 3-300 μM) attenuated the frequency of ureteral contractions in a dose-dependent manner while the TRPV4 agonist GSK1016790A (100 nM-1 μM) exerted no effect. The inhibitory effects of Piezo1 and TRPV2 agonists were significantly blocked by the selective antagonists (Dooku 1 for Piezo1, Tranilast for TRPV2), removal of the mucosa, and pretreatment with NO synthase inhibitor L-NAME (10 μM). Yoda1 (30 μM) and cannabidiol (50 μM) increased production of NO in cultured urothelial cells. Our results suggest that activation of Piezo1 or TRPV2 evokes NO production and release from mucosa that may mediate mechanical stimulus-induced reduction of ureter contractions. Our findings support the idea that targeting Piezo1 and TRPV2 channels may be a promising pharmacological strategy for ureter stone passage or colic pain relief.
Collapse
Affiliation(s)
- Jianing Liu
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Cong Wang
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Wenyu Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ning Ding
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jiaxin Liu
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Hanwen Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jiliang Wen
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Wendong Sun
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shulu Zu
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jieke Yan
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Gibson S, Ellsworth P. Emerging therapies for overactive bladder: preclinical, phase I and phase II studies. Expert Opin Investig Drugs 2024; 33:601-612. [PMID: 38695250 DOI: 10.1080/13543784.2024.2349285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/25/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Overactive bladder syndrome is a common chronic condition with a significant impact on quality of life and economic burden. Persistence with pharmacologic therapy has been limited by efficacy and side effects. A greater understanding of the pathophysiology of overactive bladder has led to the initial evaluation of several drugs affecting ion channels, the autonomic nervous system, and enzymes which may provide useful alternatives for the management of overactive bladder. AREAS COVERED A comprehensive review was performed using PubMed and Cochrane databases as well as reviewing clinical trials in the United States. The current standard of care for overactive bladder will be discussed, but this paper focuses on investigational drugs currently in preclinical studies and phase I and II clinical trials. EXPERT OPINION Current therapies for overactive bladder have limitations in efficacy and side effects. A greater understanding of the pathophysiology of overactive bladder has identified the role(s) of other pathways in the overactive bladder syndrome. Targeting alternative pathways including ion channels and enzymes may provide alternative therapies of overactive bladder and a more tailored approach to the management of overactive bladder.
Collapse
Affiliation(s)
- Samantha Gibson
- Division of urology, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Pamela Ellsworth
- Division of urology, University of Central Florida College of Medicine, Orlando, FL, USA
| |
Collapse
|
8
|
Gou R, Liu Y, Gou L, Mi S, Li X, Yang Y, Cheng X, Zhang Y. Transient Receptor Potential Channels in Sensory Mechanisms of the Lower Urinary Tract. Urol Int 2024; 108:464-476. [PMID: 38657590 DOI: 10.1159/000538855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Urine storage and excretion require a network of interactions in the urinary tract and the central nervous system, which is mediated by a reservoir of water in the bladder and the outlet to the bladder neck, urethra, and external urethral sphincter. Through communicating and coordinating each other, micturition system eventually showed a switch-like activity pattern. SUMMARY At cervicothoracic and lumbosacral spine, the spinal reflex pathway of the lower urinary tract (LUT) received mechanosensory input from the urothelium to regulate the bladder contraction activity, thereby controlled urination voluntarily. Impairment of above-mentioned any level could result in lower urinary tract dysfunction, placed a huge burden on patients and society. Specific expression of purinergic receptors and transient receptor potential (TRP) channels are thought to play an important role in urinary excretion in the LUT. KEY MESSAGES This article reviewed the knowledge about the voiding reflex and described the role and function of TRP channels during voiding.
Collapse
Affiliation(s)
- Ruiqiang Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China,
| | - Yuanyuan Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Li Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shengyan Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaonan Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yichen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaorong Cheng
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yibao Zhang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Abstract
Adrenoceptors importantly contribute to the physiological regulation of lower urinary tract (LUT) function and have become a target of several clinically successful treatments for major LUT diseases. In the bladder dome, β-adrenoceptor subtypes are found in multiple cell types and mediate relaxation of detrusor smooth muscle, perhaps partly indirectly by acting on afferent nerves and cells of the mucosa. β3-adrenoceptor agonists such as mirabegron and vibegron are used to treat overactive bladder syndrome. In the bladder trigone and urethra, α1-adrenoceptors cause contraction and thereby physiologically contribute to bladder outlet resistance. α1-adrenoceptors in the prostate also cause contraction and pathophysiologically elevate bladder outlet resistance leading to voiding dysfunction in benign prostatic hyperplasia. α1-adrenoceptor antagonist such as tamsulosin is widely used as a first-line option to treat LUT symptoms in men, but it remains unclear to which extent and how smooth muscle relaxation contributes to symptom relief.
Collapse
Affiliation(s)
- Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
10
|
Li X, Hu J, Yin P, Liu L, Chen Y. Mechanotransduction in the urothelium: ATP signalling and mechanoreceptors. Heliyon 2023; 9:e19427. [PMID: 37674847 PMCID: PMC10477517 DOI: 10.1016/j.heliyon.2023.e19427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The urothelium, which covers the inner surface of the bladder, is continuously exposed to a complex physical environment where it is stimulated by, and responds to, a wide range of mechanical cues. Mechanically activated ion channels endow the urothelium with functioning in the conversion of mechanical stimuli into biochemical events that influence the surface of the urothelium itself as well as suburothelial tissues, including afferent nerve fibres, interstitial cells of Cajal and detrusor smooth muscle cells, to ensure normal urinary function during the cycle of filling and voiding. However, under prolonged and abnormal loading conditions, the urothelial sensory system can become maladaptive, leading to the development of bladder dysfunction. In this review, we summarize developments in the understanding of urothelial mechanotransduction from two perspectives: first, with regard to the functions of urothelial mechanotransduction, particularly stretch-mediated ATP signalling and the regulation of urothelial surface area; and secondly, with regard to the mechanoreceptors present in the urothelium, primarily transient receptor potential channels and mechanosensitive Piezo channels, and the potential pathophysiological role of these channels in the bladder. A more thorough understanding of urothelial mechanotransduction function may inspire the development of new therapeutic strategies for lower urinary tract diseases.
Collapse
Affiliation(s)
| | | | - Ping Yin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lumin Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
11
|
Michel MC, Cardozo L, Chermansky CJ, Cruz F, Igawa Y, Lee KS, Sahai A, Wein AJ, Andersson KE. Current and Emerging Pharmacological Targets and Treatments of Urinary Incontinence and Related Disorders. Pharmacol Rev 2023; 75:554-674. [PMID: 36918261 DOI: 10.1124/pharmrev.121.000523] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/16/2023] Open
Abstract
Overactive bladder syndrome with and without urinary incontinence and related conditions, signs, and disorders such as detrusor overactivity, neurogenic lower urinary tract dysfunction, underactive bladder, stress urinary incontinence, and nocturia are common in the general population and have a major impact on the quality of life of the affected patients and their partners. Based on the deliberations of the subcommittee on pharmacological treatments of the 7th International Consultation on Incontinence, we present a comprehensive review of established drug targets in the treatment of overactive bladder syndrome and the aforementioned related conditions and the approved drugs used in its treatment. Investigational drug targets and compounds are also reviewed. We conclude that, despite a range of available medical treatment options, a considerable medical need continues to exist. This is largely because the existing treatments are symptomatic and have limited efficacy and/or tolerability, which leads to poor long-term adherence. SIGNIFICANCE STATEMENT: Urinary incontinence and related disorders are prevalent in the general population. While many treatments have been approved, few patients stay on long-term treatment despite none of them being curative. This paper provides a comprehensive discussion of existing and emerging treatment options for various types of incontinence and related disorders.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Linda Cardozo
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Christopher J Chermansky
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Francisco Cruz
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Yasuhiko Igawa
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Kyu-Sung Lee
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Arun Sahai
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Alan J Wein
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Karl-Erik Andersson
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| |
Collapse
|
12
|
Phelps C, Chess-Williams R, Moro C. The role of intracellular calcium and Rho kinase pathways in G protein-coupled receptor-mediated contractions of urinary bladder urothelium and lamina propria. Am J Physiol Cell Physiol 2023; 324:C787-C797. [PMID: 36689673 PMCID: PMC10027080 DOI: 10.1152/ajpcell.00441.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The influence of extracellular and intracellular calcium on smooth muscle contractile activity varies between organs. In response to G protein-coupled receptor (GPCR) stimulation, the urinary bladder detrusor muscle has shown a 70% dependence on extracellular calcium, whereas the urothelium and lamina propria (U&LP) has a 20%-50% dependence. However, as this only accounts for partial contractile activity, the contribution of intracellular calcium and calcium sensitization pathways remains unclear. This study assessed the role of intracellular signaling pathways on GPCR-mediated urinary bladder U&LP contraction. Porcine U&LP responses to activation of the Gq/11-coupled muscarinic, histamine, 5-hydroxytryptamine (serotonin), neurokinin, prostaglandin, and angiotensin II receptors were assessed with three selective inhibitors of store-released intracellular calcium, 2-aminoethyl diphenylborinate (2-APB), cyclopiazonic acid (CPA), and ruthenium red, and three Rho kinase inhibitors, fasudil, Y-27632, and GSK269962. There was no discernible impact on receptor agonist-induced contractions of the U&LP after blocking intracellular calcium pathways, suggesting that this tissue is more sensitive to alterations in the availability of extracellular calcium. However, an alternative mechanism of action for GPCR-mediated contraction was identified to be the activation of Rho kinase, such as when Y-27632 significantly reduced the GPCR-mediated contractile activity of the U&LP by approximately 50% (P < 0.05, n = 8). This suggests that contractile responses of the bladder U&LP do not involve a significant release of calcium from intracellular stores, but that Gq/11-coupled receptor activation causes calcium sensitization via Rho kinase. This study highlights a key role for Rho kinase in the urinary bladder, which may provide a novel target in the future pharmaceutical management of bladder contractile disorders.
Collapse
Affiliation(s)
- Charlotte Phelps
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Christian Moro
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
13
|
Chess-Williams R, Sellers DJ. Pathophysiological Mechanisms Involved in Overactive Bladder/Detrusor Overactivity. CURRENT BLADDER DYSFUNCTION REPORTS 2023. [DOI: 10.1007/s11884-023-00690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
Purpose of Review
To examine the latest published findings on the pathophysiological mechanisms involved in the development of overactive bladder (OAB) and detrusor overactivity (DO), and to identify common pathways linked to the risk factors associated with these conditions.
Recent Findings
Evidence is accumulating, both clinical and experimental, that many of the factors linked to the development of OAB/DO, including ageing, bladder outlet obstruction, psychological stress, and obesity are associated with reduced bladder blood flow. This induces local tissue inflammation with cytokine release and enhanced oxidative stress, ultimately resulting in altered detrusor sensitivity, detrusor hypertrophy and fibrosis, together with afferent hypersensitivity. These mechanisms would explain the symptoms of urgency and frequency observed in OAB patients. Although not a characteristic of OAB, undetected low level bacterial infections of the bladder have been proposed to explain the OAB symptoms in patients resistant to standard treatments. In this condition, inflammatory responses without reductions in perfusion activate the inflammatory pathways.
Summary
Evidence is mounting that poor bladder perfusion and local inflammatory responses are central mechanisms involved in the development of OAB/DO. As our understanding of these pathophysiological mechanisms advances, new avenues for drug development will be identified and ultimately treatment may become more individualized depending on the particular pathway involved and the drugs available.
Collapse
|
14
|
Abdelrahman RS, Nashar EME, Alghamdi MA, Al-Khater KM, Taha RI. Phosphodiesterase1 inhibitor "Vinpocetine" ameliorates the inflammation, apoptosis and oxidative stress induced by cyclophosphamide in urinary bladder: an experimental study. Int Urol Nephrol 2023; 55:129-139. [PMID: 35817991 DOI: 10.1007/s11255-022-03246-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/08/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Hemorrhagic cystitis often develops in patients treated with cyclophosphamide (CP). Vincamine (vinca alkaloid) is the source of the synthetic derivative vinpocetine (Vinpo). Worldwide, Vinpo is used as a cerebroprotective drug. As it has anti-oxidant, anti-thrombotic and anti-inflammatory effects but the power of Vinpo to prevent CP induced cystitis has not been studied. AIM OF STUDY This research was planned to explore the effect of Vinpo (10-30 mg/kg, orally) administered 1 or 4 h before inducing cystitis by CP injection (300 mg/kg, i.p.) on the urinary bladder of mice. RESULTS Administration of Vinpo 30 mg/kg, 4 h before CP injection ameliorated inflammatory markers. It reduced inducible nitric oxide synthase (iNOS), tumor necrosis factor- α (TNF-α), and BCL2 Associated X (Bax) expression in the bladder and increased the total antioxidant capacity level. Histological examination of the bladder has further supported these results. The present study suggests a protective effect of Vinpo (30 mg/kg, 4 h before CP injection) against CP-induced bladder inflammation. CONCLUSION This proposes that Vinpo 30 mg/kg may become a promising pharmacological drug to prevent urinary adverse effects in patients treated with chemotherapy using CP.
Collapse
Affiliation(s)
- Rehab Sabri Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, Riyadh, 30001, Saudi Arabia
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, King Khalid University Post Office Box: 960, Abha, Postal Code: 61421, Saudi Arabia.
- Department of Histology and Cell Biology College of Medicine, Benha University, Benha, Egypt.
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
| | - Khulood Mohammed Al-Khater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Reham Ismail Taha
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
15
|
Inhibitory effects of vibegron, a β 3-adrenoceptor agonist, on the myogenic contractile and mechanosensitive afferent activities in an obstructed rat bladder. Eur J Pharmacol 2022; 933:175272. [PMID: 36108733 DOI: 10.1016/j.ejphar.2022.175272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
To determine the role of β3-adrenoceptor agonists on bladder sensory facilitation related to bladder myogenic contractile activities in bladder hyperactivity, we investigated the effects of vibegron, a β3-adrenoceptor agonist, on the bladder and sensory function by evaluating cystometry and mechanosensitive single-unit afferent activities (SAAs), respectively, in a male rat model of bladder outlet obstruction (BOO). BOO was created by partial ligation of the urethra. Ten days after the surgical procedure, cystometric and SAA measurements were taken under two distinct conditions: a conscious-restrained condition, in which the bladder was constantly filled with saline, and a urethane-anesthetized condition involving an isovolumetric process with saline. For each measurement, vibegron (3 mg/kg) or its vehicle was administered intravenously after the data were reproducibly stable. In addition, the expression of β3-adrenoceptor and substance P (SP), a sensory neuropeptide, in the bladder was further evaluated following immunohistochemical procedures. Number of non-voiding contractions (NVCs) in cystometry was decreased after vibegron-administration, which was a significant change from vehicle group. Number of microcontractions and SAAs of Aδ- and C-fibers were significantly decreased by vibegron-administration. Furthermore, β3-adrenocepor and SP were co-expressed in the suburothelium layer of the bladder. These findings indicated that vibegron showed inhibitory effects on NVCs and microcontractions of the bladder, and SAAs of the Aδ- and C-fibers in BOO rats. The study suggested that vibegron can partly inhibit the mechanosensitive afferent transduction via Aδ- and C-fibers by suppressing bladder myogenic contractile activities in the rat bladder hyperactivity associated with BOO.
Collapse
|
16
|
Philyppov IB, Sotkis GV, Danshyna AO, Yelyashov SI, Sharopov BR, Shuba YM. Impairment of urinary bladder mechanical properties in rat model of type 2 diabetes. Neurourol Urodyn 2022; 41:1670-1678. [PMID: 35979707 DOI: 10.1002/nau.25024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/09/2022]
Abstract
AIMS The urinary bladder is a mechanosensitive organ that accumulates, stores, and expels considerable amounts of fluid. While the neuronal bladder control via the CNS is well defined, the data on the mechanisms of local mechanical sensitivity of the bladder wall are either insufficient or contradictory. Here we compared the mechanical properties of bladder wall of normal rats and rats with modeled type 2 diabetes (T2D). METHODS T2D was modeled in 3-month-old Wistar male rats by combined administration of nicotinamide (230 mg/kg) and streptozotocin (65 mg/kg). Cystometry of isolated, denervated whole bladders and stress-strain tensiometry on detrusor smooth muscle (DSM) strips were used to assess the mechanical properties of bladder wall tissues from control and diabetic animals on 10th week after induction. RESULTS The pressure-volume cystometrograms of both control and T2D bladders featured a quasi plateau between ascending sections. T2D cystometrograms revealed markedly elevated intravesicular pressure (~100% at 1 ml) and a shortened plateau, consistent with decreased bladder wall elasticity and reduced structural bladder capacity versus control. Experiments on urothelium-intact and urothelium-devoid DSM strips have shown that the decrease of bladder walls elasticity in T2D can be explained by the switch of stretched urothelium from inducing DSM relaxation to inducing DSM contraction due to a change in the prevalent release of contractile versus relaxing urothelial factor(s). CONCLUSIONS The decreased elasticity of the bladder walls in T2D results from alterations in urothelium-dependent mechanosensory mechanisms. Elevated intravesical pressure in T2D may contribute to urge incontinence and/or symptoms of upper urinary tract damage.
Collapse
Affiliation(s)
- Igor B Philyppov
- Department of Neuromuscular Physiology, Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ganna V Sotkis
- Department of Neuromuscular Physiology, Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Anastasiia O Danshyna
- Department of Neuromuscular Physiology, Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Semen I Yelyashov
- Department of Neuromuscular Physiology, Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Bizhan R Sharopov
- Department of Neuromuscular Physiology, Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yaroslav M Shuba
- Department of Neuromuscular Physiology, Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
17
|
Wang L, Fu YB, Liu Y, Yang NN, Ma SM, Wang XR, Huang J, Shi GX, Yang JW, Liu CZ. Moxibustion attenuates neurogenic detrusor overactivity in spinal cord injury rats by inhibiting M2/ATP/P2X3 pathway. Brain Res 2022; 1788:147926. [PMID: 35469847 DOI: 10.1016/j.brainres.2022.147926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE Activation of muscarinic receptors located in bladder sensory pathways is generally considered to be the primary contributor for driving the pathogenesis of neurogenic detrusor overactivity following spinal cord injury. The present study is undertaken to examine whether moxibustion improves neurogenic detrusor overactivity via modulating the abnormal muscarinic receptor pathway. MATERIALS AND METHODS Female Sprague-Dawley rats were subjected to spinal cord injury with T9-10 spinal cord transection. Fourteen days later, animals were received moxibustion treatment for one week. Urodynamic parameters and pelvic afferents discharge were measured. Adenosine triphosphate (ATP) content in the voided cystometry fluid was determined. Expressions of M2, M3, and P2X3 receptors in the bladder mucosa were evaluated. RESULTS Moxibustion treatment prevented the development of detrusor overactivity in spinal cord injury rats, with an increase in the intercontraction interval and micturition pressure threshold and a decrease in afferent activity during filling. The expression of M2 was markedly suppressed by moxibustion, accompanied by a reduction in the levels of ATP and P2X3. M2 receptor antagonist methoctramine hemihydrate had similar effects to moxibustion on bladder function and afferent activity, while the M2-preferential agonist oxotremorine methiodide abolished the beneficial effects of moxibustion. CONCLUSION Moxibustion is a potential candidate for treating neurogenic bladder overactivity in a rat model of spinal cord injury, possibly through inhibiting the M2/ATP/P2X3 pathway.
Collapse
MESH Headings
- Adenosine Triphosphate/antagonists & inhibitors
- Adenosine Triphosphate/metabolism
- Animals
- Diamines/pharmacology
- Female
- Moxibustion
- Purinergic P2X Receptor Antagonists/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Muscarinic M2/antagonists & inhibitors
- Receptor, Muscarinic M2/metabolism
- Receptors, Muscarinic
- Receptors, Purinergic P2X3/metabolism
- Spinal Cord Injuries/metabolism
- Urinary Bladder, Neurogenic/drug therapy
- Urinary Bladder, Neurogenic/metabolism
- Urinary Bladder, Neurogenic/therapy
- Urinary Bladder, Overactive/drug therapy
- Urinary Bladder, Overactive/metabolism
- Urinary Bladder, Overactive/therapy
Collapse
Affiliation(s)
- Lu Wang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan-Bo Fu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yi Liu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Na-Na Yang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Si-Ming Ma
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xue-Rui Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jin Huang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Guang-Xia Shi
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Wen Yang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.
| | - Cun-Zhi Liu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
β3 Relaxant Effect in Human Bladder Involves Cystathionine γ-Lyase-Derived Urothelial Hydrogen Sulfide. Antioxidants (Basel) 2022; 11:antiox11081480. [PMID: 36009199 PMCID: PMC9405273 DOI: 10.3390/antiox11081480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
It is now well established that the urothelium does not act as a passive barrier but contributes to bladder homeostasis by releasing several signaling molecules in response to physiological and chemical stimuli. Here, we investigated the potential contribution of the hydrogen sulfide (H2S) pathway in regulating human urothelium function in β3 adrenoceptor-mediated relaxation. The relaxant effect of BRL 37344 (0.1–300 µM), a selective β3 adrenoceptor agonist, was evaluated in isolated human bladder strips in the presence or absence of the urothelium. The relaxant effect of BRL 37344 was significantly reduced by urothelium removal. The inhibition of cystathionine-γ-lyase (CSE), but not cystathionine-β-synthase (CBS), significantly reduced the BRL 37344 relaxing effect to the same extent as that given by urothelium removal, suggesting a role for CSE-derived H2S. β3 adrenoceptor stimulation in the human urothelium or in T24 urothelial cells markedly increased H2S and cAMP levels that were reverted by a blockade of CSE and β3 adrenoceptor antagonism. These findings demonstrate a key role for urothelium CSE-derived H2S in the β3 effect on the human bladder through the modulation of cAMP levels. Therefore, the study establishes the relevance of urothelial β3 adrenoceptors in the regulation of bladder tone, supporting the use of β3 agonists in patients affected by an overactive bladder.
Collapse
|
19
|
Liu Q, Lu QD, Sun BS, Zhao J, He F, Zhu JZ. Inhibition of U-II/UT signaling ameliorates cystitis-associated bladder hyperactivity by targeting the RhoA/Rho-kinase pathway. Kaohsiung J Med Sci 2022; 38:879-888. [PMID: 35766129 DOI: 10.1002/kjm2.12569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/01/2022] [Accepted: 05/26/2022] [Indexed: 11/06/2022] Open
Abstract
Urotensin II (U-II) and its receptor (UT) are involved in the pathogenesis of various diseases; however, their association with the development of cystitis has not been elucidated. The present study was designed to investigate the functional role of U-II/UT signaling in cyclophosphamide (CYP)-induced cystitis. A total of 60 female rats were randomly divided into the control and CYP-treated groups. Intraperitoneal injection of CYP successfully induced cystitis in rats of the CYP-treated group. The protein and mRNA expression levels of U-II and UT were significantly enhanced in rat bladder tissues of the CYP-treated group. Furthermore, the results of the immunofluorescence staining analysis demonstrated that CYP treatment apparently increased the expression levels of UT in the urothelium layer, detrusor smooth muscle, and bladder interstitial Cajal-like cells. The selective antagonist of UT, SB657510 (10 μm), significantly suppressed the CYP-induced increase in the spontaneous contractions of muscle strips and ameliorated the bladder hyperactivity of CYP-treated rats. Moreover, CYP treatment significantly increased the protein expression levels of Ras homolog family member (Rho) A and Rho-associated protein kinase 2 in rat bladder tissues. Following pretreatment with the Rho-kinase inhibitor Y-27632 (10 μm), the inhibitory effects of SB657510 (10 μm) on the spontaneous contractions of muscle strips were eliminated. In conclusion, the results of the present study suggested that activation of U-II/UT signaling promoted the development of cystitis-associated-bladder hyperactivity by targeting the RhoA/Rho-kinase pathway, indicating that the U-II/UT signaling could serve as a novel target for the treatment of interstitial cystitis/bladder pain syndrome.
Collapse
Affiliation(s)
- Qian Liu
- Clinical Medicine Postdoctoral Research Station, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Qu-Dong Lu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Bi-Shao Sun
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Fan He
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jing-Zhen Zhu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
20
|
Oliveira AL, Medeiros ML, de Oliveira MG, Teixeira CJ, Mónica FZ, Antunes E. Enhanced RAGE Expression and Excess Reactive-Oxygen Species Production Mediates Rho Kinase-Dependent Detrusor Overactivity After Methylglyoxal Exposure. Front Physiol 2022; 13:860342. [PMID: 35418871 PMCID: PMC8996136 DOI: 10.3389/fphys.2022.860342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
Methylglyoxal (MGO) is a highly reactive dicarbonyl compound implicated in diabetes-associated diseases. In vascular tissues, MGO induces the formation of advanced glycation end products (AGEs) that bounds its receptor RAGE, initiating the downstream tissue injury. Outside the cardiovascular system, MGO intake produces mouse voiding dysfunction and bladder overactivity. We have sought that MGO-induced bladder overactivity is due to activation of AGE-RAGE-reactive-oxygen species (ROS) signaling cascade, leading to Rho kinase activation. Therefore, female mice received 0.5% MGO orally for 12 weeks, after which in vitro bladder contractions were evaluated in the presence or not of superoxide dismutase (PEG-SOD) or the Rho kinase inhibitor Y27632. Treatment with MGO significantly elevated the serum levels of MGO and fluorescent AGEs, as well as the RAGE immunostaining in the urothelium, detrusor, and vascular endothelium. RAGE mRNA expression in the bladder was also higher in the MGO group. Methylglyoxal significantly increased the ROS production in both urothelium and detrusor smooth muscle, with the increases in detrusor markedly higher than urothelium. The bladder activity of superoxide dismutase (SOD) was significantly reduced in the MGO group. Gene expressions of L-type Ca2+ channels, RhoA, ROCK-1, and ROCK-2 in bladder tissues were significantly elevated in the MGO group. Increased bladder contractions to electrical-field stimulation, carbachol α,β-methylene ATP, and extracellular Ca2+ were observed after MGO exposure, which was significantly reduced by prior incubation with either PEG-SOD or Y27632. Overall, our data indicate serum MGO accumulation elevates the AGEs levels and activates the RAGE-ROS signaling leading to Rho kinase-induced muscle sensitization, ultimately leading to detrusor overactivity.
Collapse
Affiliation(s)
- Akila L Oliveira
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Matheus L Medeiros
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Caio Jordão Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Edson Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
21
|
Dalghi MG, Ruiz WG, Clayton DR, Montalbetti N, Daugherty SL, Beckel JM, Carattino MD, Apodaca G. Functional roles for PIEZO1 and PIEZO2 in urothelial mechanotransduction and lower urinary tract interoception. JCI Insight 2021; 6:e152984. [PMID: 34464353 PMCID: PMC8525643 DOI: 10.1172/jci.insight.152984] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The mechanisms that link visceral mechanosensation to the perception of internal organ status (i.e., interoception) remain elusive. In response to bladder filling, the urothelium releases ATP, which is hypothesized to stimulate voiding function by communicating the degree of bladder fullness to subjacent tissues, including afferent nerve fibers. To determine if PIEZO channels function as mechanosensors in these events, we generated conditional urothelial Piezo1-, Piezo2-, and dual Piezo1/2-knockout (KO) mice. While functional PIEZO1 channels were expressed in all urothelial cell layers, Piezo1-KO mice had a limited phenotype. Piezo2 expression was limited to a small subset of superficial umbrella cells, yet male Piezo2-KO mice exhibited incontinence (i.e., leakage) when their voiding behavior was monitored during their active dark phase. Dual Piezo1/2-KO mice had the most affected phenotype, characterized by decreased urothelial responses to mechanical stimulation, diminished ATP release, bladder hypoactivity in anesthetized Piezo1/2-KO females but not males, and urinary incontinence in both male and female Piezo1/2-KO mice during their dark phase but not inactive light one. Our studies reveal that the urothelium functions in a sex- and circadian rhythm–dependent manner to link urothelial PIEZO1/2 channel–driven mechanotransduction to normal voiding function and behavior, and in the absence of these signals, bladder dysfunction ensues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marcelo D Carattino
- Department of Medicine.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gerard Apodaca
- Department of Medicine.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Chess-Williams R, McDermott C, Sellers DJ, West EG, Mills KA. Chronic psychological stress and lower urinary tract symptoms. Low Urin Tract Symptoms 2021; 13:414-424. [PMID: 34132480 DOI: 10.1111/luts.12395] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022]
Abstract
It is well established that lower urinary tract symptoms (LUTS), particularly urinary urgency and incontinence, cause stress and anxiety for patients. However, there is mounting evidence that the relationship between these two factors is bidirectional and that chronic psychological stress itself can result in the development of symptoms such as urinary frequency, urgency, incontinence, and pelvic pain. This review considers the evidence that such a relationship exists and reviews the literature from clinical and animal studies to identify some of the mechanisms that might be involved. Inflammatory responses induced by chronic stress appear to offer the strongest link to bladder dysfunction. There is overwhelming evidence, both in patients and animal models, for a release of pro-inflammatory cytokines and chemokines during periods of chronic stress. Furthermore, cytokines have been shown to cause bladder dysfunction and pain via actions in the central nervous system and locally in the bladder. In the brain and spinal cord, pro-inflammatory cytokines influence the regulation of micturition pathways by corticotropin-releasing factor (CRF) and its receptors, while peripherally cytokines affect bladder function, directly causing detrusor hypertrophy and afferent nerve hypersensitivity. There is little information on which treatments may have most benefit for stressed/anxious patients with LUTS, but animal studies suggest traditional drugs for overactive bladder (solifenacin, mirabegron) are more effective on LUTS than anxiolytic drugs (fluoxetine, imipramine). The preliminary preclinical data for CRF receptor antagonists is not consistent. A clearer understanding of the mechanisms involved in stress-induced LUTS should provide a basis for improved treatment of this condition.
Collapse
Affiliation(s)
- Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Catherine McDermott
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Donna J Sellers
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Eliza G West
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Kylie A Mills
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
23
|
Correlation Between Nitric Oxide and Urodynamics in Men With Bladder Outlet Obstruction. Int Neurourol J 2021; 26:S15-21. [PMID: 33957714 PMCID: PMC8896777 DOI: 10.5213/inj.2040464.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose To investigate the correlation between nitric oxide (NO) and urodynamics in men with bladder outlet obstruction (BOO) by analyzing nitric oxide synthase (NOS) in the urothelium. Methods We prospectively enrolled 25 men who planned to undergo surgical treatment for benign prostatic obstruction and identified as BOO in the preoperative urodynamics. Bladder tissue was taken during surgical prostate resection. Expressions of endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS) in the urothelium were analyzed, and their correlation with urodynamic parameters was also assessed in all patients. We also compared the expressions of eNOS, iNOS, and nNOS between BOO with detrusor underactivity (DU) group and BOO without DU group. Results In all patients, the level of eNOS positively correlated with maximal flow rate and with maximum cystometric capacity (MCC). The level of iNOS positively correlated with MCC. nNOS levels were positively correlated with detrusor pressure at maximal flow and with bladder contractility index in all patients. The level of eNOS, iNOS, and nNOS did not significantly differ between BOO without DU group and BOO with DU group. Conclusions This study suggests that NO was correlated with bladder dysfunction in men with BOO. Particularly, nNOS may reflect the change in detrusor function.
Collapse
|
24
|
Michel MC, Arioglu-Inan E. Function and morphology of the urinary bladder after denervation. Am J Physiol Regul Integr Comp Physiol 2021; 320:R833-R834. [PMID: 33789439 DOI: 10.1152/ajpregu.00093.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
25
|
Hardy CC, Al-Naggar IM, Kuo CL, Kuchel GA, Smith PP. Aging Changes in Bladder Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels Are Associated With Increasing Heterogeneity of Adrenergic/Mucosal Influence on Detrusor Control in the Mouse. J Gerontol A Biol Sci Med Sci 2021; 76:1153-1160. [PMID: 33693872 DOI: 10.1093/gerona/glab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 11/14/2022] Open
Abstract
A geroscience-informed approach to the increasing prevalence of bladder control problems in older adults requires understanding the impact of aging on dynamic mechanisms that ensure resilience in response to stressors challenging asymptomatic voluntary control over urine storage and voiding. Bladder control is predicated on sensory neural information about bladder volume. Modulation of volume-induced bladder wall tensions by autonomic and mucosal factors controls neural sensitivity to bladder volume. We hypothesized that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels integrate these factors and thereby mediate adrenergic detrusor tension control. Furthermore, loss of HCN expression compromises that integration and could result in loss of precision of detrusor control. Using a life-span mouse model, reverse transcription quantitative real-time PCR and pharmacologic studies in pretensioned intact and mucosa-denuded bladder strips were made. The dominant hcn1 expression declines with maturation and aging; however, aging is also associated with increased variance around mean values. In strips from Mature animals, isoproterenol had less effect in denuded muscle strips than in intact strips, and HCN blockade diminished isoproterenol responsiveness. With aging, variances about mean response values significantly increased, paralleling hcn1 expression. Our findings support a role for HCN in providing neuroendocrine/paracrine integration and suggest an association of increased heterogeneity of HCN expression in aging with reductions in response precision to neuroendocrine control. The functional implication is an increased risk of dysfunction of brainstem/bladder regulation of neuronal sensitivity to bladder volume. This supports the clinical model of the aging bladder phenotype as an expression of loss of resilience, and not as emerging bladder pathology with aging.
Collapse
Affiliation(s)
- Cara C Hardy
- Center on Aging, University of Connecticut School of Medicine, Farmington, USA.,Department of Neuroscience, University of Connecticut School of Medicine, Farmington, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, USA
| | - Iman M Al-Naggar
- Center on Aging, University of Connecticut School of Medicine, Farmington, USA
| | - Chia-Ling Kuo
- Center on Aging, University of Connecticut School of Medicine, Farmington, USA.,Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, USA
| | - George A Kuchel
- Center on Aging, University of Connecticut School of Medicine, Farmington, USA.,Department of Neuroscience, University of Connecticut School of Medicine, Farmington, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, USA
| | - Phillip P Smith
- Center on Aging, University of Connecticut School of Medicine, Farmington, USA.,Department of Neuroscience, University of Connecticut School of Medicine, Farmington, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, USA.,Department of Surgery, University of Connecticut School of Medicine, Farmington, USA
| |
Collapse
|
26
|
The Effect of Transcutaneous Electrical Acupoint Stimulation on Postoperative Catheter-Related Bladder Discomfort in Patients Undergoing Transurethral Resection of the Prostate. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6691459. [PMID: 33628313 PMCID: PMC7881935 DOI: 10.1155/2021/6691459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 01/29/2023]
Abstract
Background Catheter-related bladder discomfort (CRBD), an extremely distressing complication secondary to an indwelling urinary catheterization, is frequently reported in patients with transurethral resection of the prostate (TURP), postoperatively. A prospective, randomized, controlled, double-blind study was designed to assess the efficacy of transcutaneous electrical acupoint stimulation (TEAS) as a treatment for CRBD in patients undergoing TURP. Methods Seventy benign prostatic hyperplasia male patients undergoing TURP under general anesthesia requiring intraoperative urinary catheterization were enrolled for the trial. An experienced acupuncturist performed TEAS for 30 minutes before general anesthesia with acupoints RN7, RN6, RN5, RN4, and RN3 and bilateral BL32, BL33, and BL34. Mean arterial pressure (MAP), heart rate (HR), oxygen saturation (SPO2), body temperature (T), and blood samples were collected during the surgery. A series of assessments included the incidence and severity of CRBD, postoperative pain, nausea and vomiting, and physical and mental state measurements. Results The incidence of CRBD was significantly lower in TEAS group than in control group at the time T5 [9(26%) vs. 28(80%), P < 0.001], T9 [20(57%) vs. 28(80%), P=0.039], T11 [7(20%) vs. 31(89%), P < 0.001], and T12 [4(11%) vs. 7(20%), P=0.003]. The severity of CRBD was significantly lower in TEAS group than in control group at the time T5 [0 vs. 10 (29%), P < 0.001], T9 [2(6%) vs. 10(29%), P=0.011], and T11 [0 vs .9(26%), P=0.002]. The QoR-40 total score was higher in TEAS group at time T11 [191.7(4.4) vs. 189.1(4.3), P=0.007] and T12 [195.3(1.9) vs. 193.3(3.0), P < 0.001]. The postoperative analgesia requirement was higher in control group [5.0(2.9) vs. 3.8(1.9), P=0.045]. Conclusions TEAS could significantly prevent the incidence and severity of CRBD, reduce the postoperative analgesic requirement in the early postoperative period, and promote the quality of early recovery in patients undergoing TURP.
Collapse
|
27
|
West EG, Sellers DJ, Chess-Williams R, McDermott C. Bladder overactivity induced by psychological stress in female mice is associated with enhanced bladder contractility. Life Sci 2020; 265:118735. [PMID: 33166589 DOI: 10.1016/j.lfs.2020.118735] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 12/28/2022]
Abstract
AIMS To investigates the effects of water avoidance stress on voiding behaviour and functional bladder responses in mice. MAIN METHODS Mice in the Stress group were exposed to water avoidance stress (WAS) for 1 h/day for 10 days, Controls were age-matched and housed normally. Voiding behaviour was measured periodically throughout the stress protocol and bladders were isolated 24-h after final stress exposure to measure bladder compliance, spontaneous phasic activity, contractile responses, and release of urothelial mediators. KEY FINDINGS Repeated stress exposure induced a significant increase in plasma corticosterone levels in the WAS group compared to control. An overactive bladder phenotype was observed in WAS mice, causing a significant increase in the number of voiding events observed from as early as day-3, and a 7-fold increase following 10-days' stress. This increase in voiding frequency was associated with a significant decrease in void size, an increase in the number of small voids, but no change in total voided volume. Bladders from stressed mice showed a significant increase in the maximum responses to the muscarinic agonist carbachol (p < 0.01), in addition to enhanced pressure responses to the purinergic agonists ATP (p < 0.05) and αβ-mATP (p < 0.05), and non-receptor mediated contractions to KCl (p < 0.05) compared to controls. Nerve-mediated bladder contractions to electric field stimulation were not significantly affected by stress, nor were spontaneous phasic contractions or release of urothelial ATP and acetylcholine. SIGNIFICANCE Repeated exposure to water avoidance stress produced an overactive bladder phenotype, confirmed by increased voiding frequency, and associated with enhanced bladder contractile responses.
Collapse
Affiliation(s)
- Eliza G West
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4229, Australia
| | - Donna J Sellers
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4229, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4229, Australia
| | - Catherine McDermott
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4229, Australia.
| |
Collapse
|
28
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Chen D, Meng W, Shu L, Liu S, Gu Y, Wang X, Feng M. ANO1 in urethral SMCs contributes to sex differences in urethral spontaneous tone. Am J Physiol Renal Physiol 2020; 319:F394-F402. [PMID: 32686521 DOI: 10.1152/ajprenal.00174.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stress urinary incontinence (SUI) is more common in women than in men, and sex differences in anatomic structure and physiology have been suggested as causes; however, the underlying cellular and molecular mechanisms remain unclear. The spontaneous tone (STT) of the urethra has been shown to have a fundamental effect on preventing the occurrence of SUI. Here, we investigated whether the urethral STT exhibited sex differences. First, we isolated urethral smooth muscle (USM) and detected STT in female mice and women. No STT was found in male mice or men. Furthermore, caffeine induced increased contractility and intracellular Ca2+ concentration in urethrae from female mice compared with male mice. EACT [an N-aroylaminothiazole, anoctamin-1 (ANO1) activator] elicited increased intracellular Ca2+ concentration and stronger currents in female mice than in male mice. Moreover, ANO1 expression in single USM cells from women and female mice was almost twofold higher than that found in cells from men and male mice. In summary, ANO1 in USM contributes to sex differences in urethral spontaneous tone. This finding may provide new guidance for the treatment of SUI in women and men.
Collapse
Affiliation(s)
- Defang Chen
- Department of Outpatient, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wen Meng
- Pharmacy Intravenous Admixture Services, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ling Shu
- Operating Room, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuang Liu
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yongzhong Gu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyan Wang
- General Practice Department, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mei Feng
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
30
|
Furuta A, Suzuki Y, Igarashi T, Koike Y, Kimura T, Egawa S, Yoshimura N. Additive effects of intravenous and intravesical application of vibegron, a β 3-adrenoceptor agonist, on bladder function in rats with bladder overactivity. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2073-2080. [PMID: 32556396 DOI: 10.1007/s00210-020-01921-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/07/2020] [Indexed: 11/26/2022]
Abstract
To examine the effects of intravenous and intravesical application of vibegron, a new β3-adrenoceptor (β3-AR) agonist, on bladder function in rats with oxotremorine methiodide (oxo-M: a nonselective muscarinic receptor agonist)-induced bladder overactivity. Cystometry was performed in conscious female rats with intravesical instillation of oxo-M (200 μM). In oxo-M-treated rats, vehicle or vibegron (1 and 10 mg/kg) was cumulatively applied intravenously at 30-min intervals. In other groups of rats, oxo-M + vehicle or oxo-M + vibegron (10, 100 μM, and 1 mM) was cumulatively instilled intravesically at 60-min intervals followed by intravenous application of vibegron (10 mg/kg). Expression of β3-ARs in the bladder was also evaluated using immunohistochemical staining. Intravenous application of vibegron (10 mg/kg) significantly increased bladder capacity (1.3 times) and decreased baseline, threshold, and maximal voiding pressure compared with vehicle. Next, intravesical application of vibegron (1 mM) significantly increased threshold pressure and bladder capacity (1.2 times) compared with vehicle. Combined treatments of intravesical (1 mM) and intravenous (10 mg/kg) application of vibegron induced a significantly larger degree of increases in bladder capacity (1.4 times) compared with vehicle. In addition, β3-ARs were expressed throughout the rat bladder, mainly in the urothelium. These results suggest that vibegron excreted in urine as an unchanged compound can induce the additive inhibitory effects on bladder overactivity possibly through urothelial β3-AR activation, which inhibits the afferent limb of micturition reflex rather than the efferent function as evidenced by the increases in threshold pressure and bladder capacity without affecting bladder contractile function after intravesical vibegron application.
Collapse
MESH Headings
- Administration, Intravesical
- Adrenergic beta-3 Receptor Agonists/administration & dosage
- Animals
- Disease Models, Animal
- Female
- Injections, Intravenous
- Pyrimidinones/administration & dosage
- Pyrrolidines/administration & dosage
- Rats, Inbred F344
- Receptors, Adrenergic, beta-3/drug effects
- Receptors, Adrenergic, beta-3/metabolism
- Signal Transduction
- Urinary Bladder/drug effects
- Urinary Bladder/metabolism
- Urinary Bladder/physiopathology
- Urinary Bladder, Overactive/drug therapy
- Urinary Bladder, Overactive/metabolism
- Urinary Bladder, Overactive/physiopathology
- Urination/drug effects
- Urodynamics/drug effects
- Urothelium/drug effects
- Urothelium/metabolism
- Urothelium/physiopathology
Collapse
Affiliation(s)
- Akira Furuta
- Department of Urology, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Yasuyuki Suzuki
- Department of Urology, Tokyo Metropolitan Rehabilitation Hospital, Tokyo, Japan
| | - Taro Igarashi
- Department of Urology, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yusuke Koike
- Department of Urology, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takahiro Kimura
- Department of Urology, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shin Egawa
- Department of Urology, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Lim I, Chess-Williams R, Sellers D. A porcine model of ureteral contractile activity: Influences of age, tissue orientation, region, urothelium, COX and NO. J Pharmacol Toxicol Methods 2020; 102:106661. [DOI: 10.1016/j.vascn.2019.106661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
|
32
|
Mills KA, Chess-Williams R, McDermott C. Novel insights into the mechanism of cyclophosphamide-induced bladder toxicity: chloroacetaldehyde's contribution to urothelial dysfunction in vitro. Arch Toxicol 2019; 93:3291-3303. [PMID: 31598736 DOI: 10.1007/s00204-019-02589-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022]
Abstract
The clinical use of cyclophosphamide and ifosfamide is limited by a resultant bladder toxicity which has been attributed to the metabolite acrolein. Another metabolite chloroacetaldehyde (CAA) associated with nephrotoxicity, has not been investigated for toxicity in the bladder and this study investigates the effects of acrolein and CAA on human urothelial cells in vitro. Human urothelial cells (RT4 and T24) were treated with acrolein or CAA and changes in cell viability, reactive oxygen species, caspase-3 activity and release of urothelial mediators ATP, acetylcholine, PGE2 were measured. The protective effects of N-acetyl cysteine (NAC) were also assessed. Both metabolites were toxic to human urothelial cells, however, CAA significantly decreased cell viability at a ten-fold lower concentration (10 µM) than acrolein (100 µM). This was associated with increased ROS production and caspase-3 activity. NAC protected cells from these changes. In RT4 cells 100 µM acrolein caused a significant increase in basal and stretch-induced ATP, Ach and PGE2 release. In T24 cells chloroacetaldehyde (10 µM) increased basal and stimulated ATP and PGE2 levels. Again, NAC protected against changes in urothelial mediator release following acrolein or CAA. This study is the first to report that CAA in addition to acrolein contributes to the urotoxicity of cyclophosphamide and ifosfamide. Both metabolites altered urothelial mediator levels which could contribute to the sensory and functional bladder changes experienced by patients after treatment with cyclophosphamide or ifosfamide. Alterations in urothelial cell viability and mediator release may be causally linked to oxidative stress, with NAC providing protection against these changes.
Collapse
Affiliation(s)
- Kylie A Mills
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, 4229, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, 4229, Australia
| | - Catherine McDermott
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, 4229, Australia.
| |
Collapse
|
33
|
Igawa Y, Aizawa N, Michel MC. β 3 -Adrenoceptors in the normal and diseased urinary bladder-What are the open questions? Br J Pharmacol 2019; 176:2525-2538. [PMID: 30868554 DOI: 10.1111/bph.14658] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/31/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
β3 -Adrenoceptor agonists are used in the treatment of overactive bladder syndrome. Although the relaxant response to adrenergic stimulation in human detrusor smooth muscle cells is mediated mainly via β3 -adrenoceptors, the plasma concentrations of the therapeutic dose of mirabegron, the only clinically approved β3 -adrenoceptor agonist, are considerably lower than the EC50 for causing direct relaxation of human detrusor, suggesting a mechanism of action other than direct relaxation of detrusor smooth muscle. However, the site and mechanism of action of β3 -adrenoceptor agonists in the bladder have not been firmly established. Postulated mechanisms include prejunctional suppression of ACh release from the parasympathetic nerves during the storage phase and inhibition of micro-contractions through β3 -adrenoceptors on detrusor smooth muscle cells or suburothelial interstitial cells. Implications of possible desensitization of β3 -adrenoceptors in the bladder upon prolonged agonist exposure and possible causes of rarely observed cardiovascular effects of mirabegron are also discussed. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Yasuhiko Igawa
- Department of Continence Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Naoki Aizawa
- Department of Continence Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
34
|
Borsdorf M, Tomalka A, Stutzig N, Morales-Orcajo E, Böl M, Siebert T. Locational and Directional Dependencies of Smooth Muscle Properties in Pig Urinary Bladder. Front Physiol 2019; 10:63. [PMID: 30787883 PMCID: PMC6372509 DOI: 10.3389/fphys.2019.00063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
The urinary bladder is a distensible hollow muscular organ, which allows huge changes in size during absorption, storage and micturition. Pathological alterations of biomechanical properties can lead to bladder dysfunction and loss in quality of life. To understand and treat bladder diseases, the mechanisms of the healthy urinary bladder need to be determined. Thus, a series of studies focused on the detrusor muscle, a layer of urinary bladder made of smooth muscle fibers arranged in longitudinal and circumferential orientation. However, little is known about whether its active muscle properties differ depending on location and direction. This study aimed to investigate the porcine bladder for heterogeneous (six different locations) and anisotropic (longitudinal vs. circumferential) contractile properties including the force-length-(FLR) and force-velocity-relationship (FVR). Therefore, smooth muscle tissue strips with longitudinal and circumferential direction have been prepared from different bladder locations (apex dorsal, apex ventral, body dorsal, body ventral, trigone dorsal, trigone ventral). FLR and FVR have been determined by a series of isometric and isotonic contractions. Additionally, histological analyses were conducted to determine smooth muscle content and fiber orientation. Mechanical and histological examinations were carried out on 94 and 36 samples, respectively. The results showed that maximum active stress (pact ) of the bladder strips was higher in the longitudinal compared to the circumferential direction. This is in line with our histological investigation showing a higher smooth muscle content in the bladder strips in the longitudinal direction. However, normalization of maximum strip force by the cross-sectional area (CSA) of smooth muscle fibers yielded similar smooth muscle maximum stresses (165.4 ± 29.6 kPa), independent of strip direction. Active muscle properties (FLR, FVR) showed no locational differences. The trigone exhibited higher passive stress (ppass ) than the body. Moreover, the bladder exhibited greater ppass in the longitudinal than circumferential direction which might be attributed to its microstructure (more longitudinal arrangement of muscle fibers). This study provides a valuable dataset for the development of constitutive computational models of the healthy urinary bladder. These models are relevant from a medical standpoint, as they contribute to the basic understanding of the function of the bladder in health and disease.
Collapse
Affiliation(s)
- Mischa Borsdorf
- Institute for Sport and Exercise Science, Department of Movement and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - André Tomalka
- Institute for Sport and Exercise Science, Department of Movement and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Norman Stutzig
- Institute for Sport and Exercise Science, Department of Movement and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Enrique Morales-Orcajo
- Institute of Solid Mechanics, Department of Mechanical Engineering, Technical University of Braunschweig, Braunschweig, Germany
| | - Markus Böl
- Institute of Solid Mechanics, Department of Mechanical Engineering, Technical University of Braunschweig, Braunschweig, Germany
| | - Tobias Siebert
- Institute for Sport and Exercise Science, Department of Movement and Exercise Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
35
|
Lee S, Rose'meyer R, McDermott C, Chess-Williams R, Sellers DJ. Diabetes-induced alterations in urothelium function: Enhanced ATP release and nerve-evoked contractions in the streptozotocin rat bladder. Clin Exp Pharmacol Physiol 2018; 45:1161-1169. [PMID: 29935089 DOI: 10.1111/1440-1681.13003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/29/2022]
Abstract
Up to 80% of patients with diabetes mellitus develop lower urinary tract complications, most commonly diabetic bladder dysfunction (DBD). The aim of this study was to investigate the impact of diabetes on the function of the inner bladder lining (urothelium). Bladder compliance and intraluminal release of urothelial mediators, adenosine triphosphate (ATP) and acetylcholine (ACh) in response to distension were investigated in whole bladders isolated from 2- and 12-week streptozotocin (STZ)-diabetic rats. Intact and urothelium-denuded bladder strips were used to assess the influence of the urothelium on bladder contractility. Intraluminal ATP release was significantly enhanced at 2 weeks of diabetes, although not at 12 weeks. In contrast, intraluminal ACh release was unaltered by diabetes. Bladder compliance was also significantly enhanced at both 2 and 12 weeks of diabetes, with greatly reduced intravesical pressures in response to distension. Nerve-evoked contractions of bladder strips were significantly greater at 2 weeks of diabetes. When the urothelium was absent, nerve-evoked contractions were reduced, but contractions remained significantly elevated at lower frequencies of stimulation (<5 Hz) in diabetics. Interestingly, although relaxations of bladder strips to isoprenaline were unaltered by diabetes, removal of the urothelium unmasked significantly enhanced relaxations in strips from 2- and 12-week diabetic animals. In conclusion, diabetes alters urothelial function. Enhanced urothelial ATP release may be involved in the hypercontractility observed at early time points of diabetes. These alterations are time-dependent and may contribute to the mechanisms at play during the development of diabetic bladder dysfunction.
Collapse
Affiliation(s)
- Sophie Lee
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Roselyn Rose'meyer
- School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Catherine McDermott
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Donna J Sellers
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| |
Collapse
|