1
|
Xue J, Zhuang J, Wang X, Meng T, Wu J, Zhang X, Zhang G. Mechanisms and Therapeutic Strategies for Myocardial Ischemia-Reperfusion Injury in Diabetic States. ACS Pharmacol Transl Sci 2024; 7:3691-3717. [PMID: 39698288 PMCID: PMC11651189 DOI: 10.1021/acsptsci.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 12/20/2024]
Abstract
In patients with myocardial infarction, one of the complications that may occur after revascularization is myocardial ischemia-reperfusion injury (IRI), characterized by a depleted myocardial oxygen supply and absence of blood flow recovery after reperfusion, leading to expansion of myocardial infarction, poor healing of myocardial infarction and reversal of left ventricular remodeling, and an increase in the risk for major adverse cardiovascular events such as heart failure, arrhythmia, and cardiac cell death. As a risk factor for cardiovascular disease, diabetes mellitus increases myocardial susceptibility to myocardial IRI through various mechanisms, increases acute myocardial infarction and myocardial IRI incidence, decreases myocardial responsiveness to protective strategies and efficacy of myocardial IRI protective methods, and increases diabetes mellitus mortality through myocardial infarction. This Review summarizes the mechanisms, existing therapeutic strategies, and potential therapeutic targets of myocardial IRI in diabetic states, which has very compelling clinical significance.
Collapse
Affiliation(s)
- Jing Xue
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jialu Zhuang
- Department
of Endocrinology, First Affiliated Hospital
of Anhui Medical University, Hefei 230031, China
| | - Xinyue Wang
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Tao Meng
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jin Wu
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xiaoqian Zhang
- Department
of Endocrinology, First Affiliated Hospital
of Anhui Medical University, Hefei 230031, China
| | - Guiyang Zhang
- Department
of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
2
|
Xie L, Liu H, Zhang K, Pan Y, Chen M, Xue X, Wan G. Exploring the molecular mechanism of ginseng against anthracycline-induced cardiotoxicity based on network pharmacology, molecular docking and molecular dynamics simulation. Hereditas 2024; 161:31. [PMID: 39243097 PMCID: PMC11378563 DOI: 10.1186/s41065-024-00334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Previous clinical and basic studies have revealed that ginseng might have cardioprotective properties against anthracycline-induced cardiotoxicity (AIC). However, the underlying mechanism of ginseng action against AIC remains insufficiently understood. The aim of this study was to explore the related targets and pathways of ginseng against AIC using network pharmacology, molecular docking, cellular thermal shift assay (CETSA) and molecular dynamics (MD) simulations. RESULTS Fourteen drug-disease common targets were identified. Enrichment analysis showed that the AGE-RAGE in diabetic complications, fluid shear stress and atherosclerosis, and TNF signaling pathway were potentially involved in the action of ginseng against AIC. Molecular docking demonstrated that the core components including Kaempferol, beta-Sitosterol, and Fumarine had notable binding activity with the three core targets CCNA2, STAT1, and ICAM1. Furthermore, the stable complex of STAT1 and Kaempferol with favorable affinity was further confirmed by CETSA and MD simulation. CONCLUSIONS This study suggested that ginseng might exert their protective effects against AIC through the derived effector compounds beta-Sitosterol, Kaempferol and Fumarine by targeting CCNA2, STAT1, and ICAM1, and modulating AGE-RAGE in diabetic complications, fluid shear stress and atherosclerosis, and TNF signaling pathways.
Collapse
Affiliation(s)
- Lin Xie
- Department of Oncology, Institute of Medicine and Nursing, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Hanze Liu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang Road, Shiyan, Hubei, 442000, China
| | - Ke Zhang
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang Road, Shiyan, Hubei, 442000, China
| | - Yijun Pan
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang Road, Shiyan, Hubei, 442000, China
| | - Mengyao Chen
- Department of Oncology, Institute of Medicine and Nursing, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xiangyue Xue
- Department of Oncology, Institute of Medicine and Nursing, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Guoxing Wan
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang Road, Shiyan, Hubei, 442000, China.
| |
Collapse
|
3
|
Berlanga-Acosta J, Cibrian D, Valiente-Mustelier J, Suárez-Alba J, García-Ojalvo A, Falcón-Cama V, Jiang B, Wang L, Guillén-Nieto G. Growth hormone releasing peptide-6 (GHRP-6) prevents doxorubicin-induced myocardial and extra-myocardial damages by activating prosurvival mechanisms. Front Pharmacol 2024; 15:1402138. [PMID: 38873418 PMCID: PMC11169835 DOI: 10.3389/fphar.2024.1402138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction: Dilated cardiomyopathy (DCM) is a fatal myocardial condition with ventricular structural changes and functional deficits, leading to systolic dysfunction and heart failure (HF). DCM is a frequent complication in oncologic patients receiving Doxorubicin (Dox). Dox is a highly cardiotoxic drug, whereas its damaging spectrum affects most of the organs by multiple pathogenic cascades. Experimentally reproduced DCM/HF through Dox administrations has shed light on the pathogenic drivers of cardiotoxicity. Growth hormone (GH) releasing peptide 6 (GHRP-6) is a GH secretagogue with expanding and promising cardioprotective pharmacological properties. Here we examined whether GHRP-6 administration concomitant to Dox prevented the onset of DCM/HF and multiple organs damages in otherwise healthy rats. Methods: Myocardial changes were sequentially evaluated by transthoracic echocardiography. Autopsy was conducted at the end of the administration period when ventricular dilation was established. Semiquantitative histopathologic study included heart and other internal organs samples. Myocardial tissue fragments were also addressed for electron microscopy study, and characterization of the transcriptional expression ratio between Bcl-2 and Bax. Serum samples were destined for REDOX system balance assessment. Results and discussion: GHRP-6 administration in parallel to Dox prevented myocardial fibers consumption and ventricular dilation, accounting for an effective preservation of the LV systolic function. GHRP-6 also attenuated extracardiac toxicity preserving epithelial organs integrity, inhibiting interstitial fibrosis, and ultimately reducing morbidity and mortality. Mechanistically, GHRP-6 proved to sustain cellular antioxidant defense, upregulate prosurvival gene Bcl-2, and preserve cardiomyocyte mitochondrial integrity. These evidences contribute to pave potential avenues for the clinical use of GHRP-6 in Dox-treated subjects.
Collapse
Affiliation(s)
| | - Danay Cibrian
- Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | | | | | | | | | - Baohong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Linlin Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
4
|
Chaulin AM. The Essential Strategies to Mitigate Cardiotoxicity Caused by Doxorubicin. Life (Basel) 2023; 13:2148. [PMID: 38004288 PMCID: PMC10672543 DOI: 10.3390/life13112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 11/26/2023] Open
Abstract
The study of mechanisms underlying cardiotoxicity of doxorubicin and the development of strategies to mitigate doxorubicin-induced cardiotoxicity are the most relevant issues of modern cardio-oncology. This is due to the high prevalence of cancer in the population and the need for frequent use of highly effective chemotherapeutic agents, in particular anthracyclines, for optimal management of cancer patients. However, while being a potent agent to counteract cancer, doxorubicin also affects the cardiovascular systems of patients undergoing chemotherapy in a significant and unfavorable fashion. Consecutively reviewed in this article are risk factors and mechanisms of doxorubicin cardiotoxicity, and the essential strategies to mitigate cardiotoxic effects of doxorubicin treatment in cancer patients are discussed.
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Histology and Embryology, Samara State Medical University, Samara 443099, Russia;
- Department of Clinical Chemistry, Samara State Medical University, Samara 443099, Russia
| |
Collapse
|
5
|
Li W, Qu X, Kang X, Zhang H, Zhang X, Hu H, Yao L, Zhang L, Zheng J, Zheng Y, Zhang J, Xu Y. Silibinin eliminates mitochondrial ROS and restores autophagy through IL6ST/JAK2/STAT3 signaling pathway to protect cardiomyocytes from doxorubicin-induced injury. Eur J Pharmacol 2022; 929:175153. [PMID: 35839932 DOI: 10.1016/j.ejphar.2022.175153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Growing evidence indicates that silibinin (SLB), a main component extracted from Chinese herb Silybum marianum, can effectively antagonize doxorubicin (DOX) induced myocardial injury (DIMI), but the specific molecular mechanism is still unelucidated. Herein, DOX induced human AC16 cardiomyocyte injury model and Network Pharmacology are used to predict and verify the potential mechanism. The analysis results of the core PPI network of SLB against DIMI show that JAK/STAT signaling pathway and autophagy are significantly enriched. Molecular docking results indicate that SLB has stronger binding ability to signaling key proteins IL6ST, JAK2 and STAT3 (affinity ≤ -7.0 kcal/mol). The detection results of pathway activation and autophagy level demonstrate that SLB significantly alleviates DOX induced IL6ST/JAK2/STAT3 signaling pathway inhibition and autophagy inhibition, reduces the death rate of cardiomyocytes. This protective effect of SLB is eliminated when key pathway proteins (IL6ST, JAK2, STAT3) are knocked down or autophagy is inhibited (3-MA or Beclin1 knockdown). These results suggest that the regulation of IL6ST/JAK2/STAT3 signaling pathway and autophagy may be important mechanism for SLB's protective effect on DOX injured cardiomyocytes. Further experimental results prove that knockdown of IL6ST, JAK2 and STAT3 eliminate the mitochondrial ROS scavenging effect and autophagy promoting effect of SLB. In sum, SLB can decrease the mitochondrial ROS and restore autophagy to antagonize DOX-induced cardiomyocyte injury by activating IL6ST/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Wenbiao Li
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinni Qu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiangping Kang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haiyin Zhang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xueli Zhang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haiyan Hu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lingai Yao
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lina Zhang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zheng
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuejuan Zheng
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jianghong Zhang
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China.
| | - Yanwu Xu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
6
|
Badi R. Acylated Ghrelin Attenuates l-Thyroxin-induced Cardiac Damage in Rats by Antioxidant and Anti-inflammatory Effects and Downregulating Components of the Cardiac Renin-angiotensin System. J Cardiovasc Pharmacol 2021; 78:422-436. [PMID: 34132689 DOI: 10.1097/fjc.0000000000001084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT This study investigated the protective effect of acylated ghrelin (AG) against l-thyroxin (l-Thy)-induced cardiac damage in rats and examined possible mechanisms. Male rats were divided into five intervention groups of 12 rats/group: control, control + AG, l-Thy, l-Thy + AG, and l-Thy + AG + [D-Lys3]-GHRP-6 (AG antagonist). l-Thy significantly reduced the levels of AG and des-acyl ghrelin and the AG to des-acyl ghrelin ratio. Administration of AG to l-Thy-treated rats reduced cardiac weights and levels of reactive oxygen species and preserved the function and structure of the left ventricle. In addition, AG also reduced the protein levels of cleaved caspase-3 and cytochrome c and prevented mitochondrial permeability transition pore opening. In the left ventricle of both control + AG-treated and l-Thy + AG-treated rats, AG significantly increased left ventricular levels of manganese superoxide dismutase (SOD2), total glutathione (GSH), and Bcl2. It also reduced the levels of malondialdehyde, tumor necrosis factor-α (TNF-α), interleukin-6, and Bax and the nuclear activity of nuclear factor-kappa B. Concomitantly, in both treated groups, AG reduced the mRNA and protein levels of NADPH oxidase 1, angiotensin (Ang) II type 1 receptor, and Ang-converting enzyme 2. All the beneficial effects of AG in l-Thy-treated rats were prevented by the coadministration of [D-Lys3]-GHRP-6, a selective growth hormone secretagogue receptor subtype 1a antagonist. In conclusion, AG protects against hyperthyroidism-induced cardiac hypertrophy and damage, which is mainly due to its antioxidant and anti-inflammatory potentials and requires the activation of GHS-R1a.
Collapse
MESH Headings
- Acylation
- Animals
- Anti-Inflammatory Agents/pharmacology
- Antioxidants/pharmacology
- Disease Models, Animal
- Ghrelin/analogs & derivatives
- Ghrelin/metabolism
- Ghrelin/pharmacology
- Hyperthyroidism/chemically induced
- Hyperthyroidism/metabolism
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/prevention & control
- Inflammation Mediators/metabolism
- Male
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Stress/drug effects
- Rats, Sprague-Dawley
- Reactive Nitrogen Species/metabolism
- Renin-Angiotensin System/drug effects
- Thyroxine
- Ventricular Function, Left/drug effects
- Rats
Collapse
Affiliation(s)
- Rehab Badi
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia ; and
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
7
|
Li D, Yang Y, Wang S, He X, Liu M, Bai B, Tian C, Sun R, Yu T, Chu X. Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biol 2021; 46:102089. [PMID: 34364220 PMCID: PMC8350499 DOI: 10.1016/j.redox.2021.102089] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
As a potent chemotherapeutic agent, doxorubicin (DOX) is widely used for the treatment of a variety of cancers However, its clinical utility is limited by dose-dependent cardiotoxicity, and pathogenesis has traditionally been attributed to the formation of reactive oxygen species (ROS). Accordingly, the prevention of DOX-induced cardiotoxicity is an indispensable goal to optimize therapeutic regimens and reduce morbidity. Acetylation is an emerging and important epigenetic modification regulated by histone deacetylases (HDACs) and histone acetyltransferases (HATs). Despite extensive studies of the molecular basis and biological functions of acetylation, the application of acetylation as a therapeutic target for cardiotoxicity is in the initial stage, and further studies are required to clarify the complex acetylation network and improve the clinical management of cardiotoxicity. In this review, we summarize the pivotal functions of HDACs and HATs in DOX-induced oxidative stress, the underlying mechanisms, the contributions of noncoding RNAs (ncRNAs) and exercise-mediated deacetylases to cardiotoxicity. Furthermore, we describe research progress related to several important SIRT activators and HDAC inhibitors with potential clinical value for chemotherapy and cardiotoxicity. Collectively, a comprehensive understanding of specific roles and recent developments of acetylation in doxorubicin-induced cardiotoxicity will provide a basis for improved treatment outcomes in cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, 266071, China
| | - Shizhong Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Basic Medicine School, Qingdao University, 38 Deng Zhou Road, Qingdao, 266021, China.
| | - Xianming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071, China.
| |
Collapse
|
8
|
The IL-6/STAT Signaling Pathway and PPARα Are Involved in Mediating the Dose-Dependent Cardioprotective Effects of Fenofibrate in 5-Fluorouracil-Induced Cardiotoxicity. Cardiovasc Drugs Ther 2021; 36:817-827. [PMID: 34185243 DOI: 10.1007/s10557-021-07214-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 01/24/2023]
Abstract
PURPOSE The cardiotoxicity of anticancer drugs such as 5-fluorouracil (5FU) is a major complication that challenges their clinical usefulness. Thus there is a critical need to find new protective drugs to defend against these harmful side effects. Up to now, there have been no studies evaluating the possible cardioprotective effects of fenofibrate (FEN) in 5FU-induced cardiotoxicity. Therefore, we aimed in the current model to evaluate such an effect of FEN and to explore different mechanisms mediating it. METHODS We used FEN (25, 50, 100 mg/kg/day) administered orally for 7 days with induction of cardiotoxicity by intraperitoneal (i.p.) injection of 5FU (150 mg/kg) on the fifth day. RESULTS The current study showed that 5FU succeeded in inducing cardiotoxicity, manifested by significantly elevated levels of cardiac enzymes, tissue malondialdehyde (MDA), interleukin 6 (IL-6), signal transducer and activator of transcription 4 (STAT4), and caspase-3. Furthermore, the 5FU group showed toxic histopathological changes including marked cardiac damage and a significant decrease in reduced glutathione (GSH), total antioxidant capacity (TAC), and peroxisome proliferator-activated receptor alpha (PPARα) expression. FEN reversed 5FU-induced cardiotoxicity by various mechanisms including upregulation of PPARα, inhibition of the IL-6/STAT signaling pathway, and anti-inflammatory, antiapoptotic, and antioxidant properties. CONCLUSION FEN demonstrated a significant cardioprotective effect against 5FU-induced cardiac damage.
Collapse
|
9
|
Shati AA, El-Kott AF. Acylated ghrelin protects against doxorubicin-induced nephropathy by activating silent information regulator 1. Basic Clin Pharmacol Toxicol 2021; 128:805-821. [PMID: 33547742 DOI: 10.1111/bcpt.13569] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
This study investigated the nephroprotective role of acylated ghrelin (AG) against DOX-induced nephropathy and examined whether the protection involves silent information regulator 1 (SIRT1). Rats were divided into control, control + AG, DOX, DOX + AG, DOX + AG + [D-Lys3]-GHRP-6 (a ghrelin receptor antagonist), and DOX + AG + EX-527 (a sirt1 inhibitor). DOX was given over the first 2 weeks. AG (10 ng/kg) and both inhibitors were given as 3 doses/wk for 5 weeks. AG improved the structure and the function of the kidneys; down-regulated the renal expression of TGF-β1, collagen 1A1 and α-SMA; and inhibited the renal collagen deposition in the kidneys of DOX-treated rats. Concomitantly, it reduced the renal levels of ROS, MDA, TNF-α, and IL-6 and protein levels of cytochrome-c, TGF-β1, Smad3 and α-SMA in these rats. In both the control and DOX-treated rats, AG significantly increased the renal levels of SOD and GSH, decreased the expression of cleaved caspase-3 and Bax, increased the total levels and the nuclear activity of SIRT1 and reduced the deacetylation of p53, NF-κB and FOXO-31. All the effects were abolished by the concurrent administration of EX-527 and [D-Lys3]-GHRP-6. In conclusion, AG prevents DOX-induced nephropathy in SIRT1 and GSHRa1-dependent mechanism.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
10
|
Gupta S, Mitra A. Heal the heart through gut (hormone) ghrelin: a potential player to combat heart failure. Heart Fail Rev 2020; 26:417-435. [PMID: 33025414 DOI: 10.1007/s10741-020-10032-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Ghrelin, a small peptide hormone (28 aa), secreted mainly by X/A-like cells of gastric mucosa, is also locally produced in cardiomyocytes. Being an orexigenic factor (appetite stimulant), it promotes release of growth hormone (GH) and exerts diverse physiological functions, viz. regulation of energy balance, glucose, and/or fat metabolism for body weight maintenance. Interestingly, administration of exogenous ghrelin significantly improves cardiac functions in CVD patients as well as experimental animal models of heart failure. Ghrelin ameliorates pathophysiological condition of the heart in myocardial infarction, cardiac hypertrophy, fibrosis, cachexia, and ischemia reperfusion injury. This peptide also exerts significant impact at the level of vasculature leading to lowering high blood pressure and reversal of endothelial dysfunction and atherosclerosis. However, the molecular mechanism of actions elucidating the healing effects of ghrelin on the cardiovascular system is still a matter of conjecture. Some experimental data indicate its beneficial effects via complex cellular cross talks between autonomic nervous system and cardiovascular cells, some other suggest more direct receptor-mediated molecular actions via autophagy or ionotropic regulation and interfering with apoptotic and inflammatory pathways of cardiomyocytes and vascular endothelial cells. Here, in this review, we summarise available recent data to encourage more research to find the missing links of unknown ghrelin receptor-mediated pathways as we see ghrelin as a future novel therapy in cardiovascular protection.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman, 713347, India
| | - Arkadeep Mitra
- Department of Zoology, City College , 102/1, Raja Rammohan Sarani, Kolkata, 700009, India.
| |
Collapse
|
11
|
Liang ZT, Li J, Rong R, Wang YJ, Xiao LG, Yang GT, Zhang HQ. Ghrelin up-regulates cartilage-specific genes via the ERK/STAT3 pathway in chondrocytes of patients with adolescent idiopathic scoliosis. Biochem Biophys Res Commun 2019; 518:259-265. [PMID: 31421834 DOI: 10.1016/j.bbrc.2019.08.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 01/19/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is a severe spinal deformity that often occurs during puberty. The occurrence of AIS is suggested to be related to abnormal development of cartilage. Our previous study found increased serum ghrelin levels in AIS patients that may linked to the development of AIS. However, whether ghrelin affects cartilage in AIS patients is unclear. We used quantitative real-time PCR (qRT-PCR) and immunohistochemistry to detect the expression of cartilage-specific genes and the ghrelin receptor, growth hormone secretagogue receptor (GHSR). The mRNA and protein levels of collagen II (COLII), SOX9, AGGRECAN (ACAN) and GHSR were higher in AIS patients than in controls. In addition, the protein levels of GHSR downstream signaling pathway members p-STAT3 (Ser727), and p-ERK1/2 were increased. Furthermore, we treated chondrocytes from AIS patients with 100 nM ghrelin, the cell proliferation assay and Western blotting showed that ghrelin promotes chondrocyte proliferation and enhances COLII, SOX9, ACAN, p-ERK1/2 and p-STAT3 expression, respectively. Interestingly, all these observed alterations were abolished by ghrelin + [D-Lys3]-GHRP-6 (a ghrelin receptor inhibitor) treatment. And after U0126 (an inhibitor of ERK1/2 phosphorylation) treatment, ERK1/2 and STAT3 (Ser727) phosphorylation was simultaneously suppressed indicating that ERK1/2 is an upstream pathway protein of STAT3 (Ser727). In conclusion, ghrelin plays an important role in upregulating cartilage-specific genes on AIS primary chondrocytes by activating ERK/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Zhuo-Tao Liang
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
| | - Jiong Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
| | - Rong- Rong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yun-Jia Wang
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
| | - Li-Ge Xiao
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
| | - Guan-Teng Yang
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
| | - Hong-Qi Zhang
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China.
| |
Collapse
|