1
|
Quan W, Xu CS, Ma C, Chen X, Yu DH, Li ZY, Wang DW, Tang F, Wan GP, Wan J, Wang ZF, Li ZQ. Anti-tumor effects of telmisartan in glioma-astrocyte non-contact co-cultures: A critical role of astrocytic IL-6-mediated paracrine growth promotion. Int Immunopharmacol 2024; 139:112707. [PMID: 39032472 DOI: 10.1016/j.intimp.2024.112707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Telmisartan, an angiotensin II type 1 receptor (AT1R) blocker, exhibits broad anti-tumor activity. However, in vitro, anti-proliferative effects are shown at doses far beyond the therapeutic plasma concentration. Considering the role of tumor microenvironment in glioma progression, glioma-astrocyte co-cultures were employed to test the anti-tumor potential of low-dose telmisartan. When a high dose was required for a direct anti-proliferative effect on glioma cell lines, a low dose significantly inhibited glioma cell proliferation and migration in the co-culture system. Under co-culture conditions, upregulated IL-6 expression in astrocytes played a critical role in glioma progression. Silencing IL-6 in astrocytes or IL-6R in glioma cells reduced proliferation and migration. Telmisartan (5 μM) inhibited astrocytic IL-6 expression, and its anti-tumor effects were reversed by silencing IL-6 or IL-6R and inhibiting signal transducer and activator of transcription 3 (STAT3) activity in glioma cells. Moreover, the telmisartan-driven IL-6 downregulation was not imitated by losartan, an AT1R blocker with little capacity of peroxisome proliferator-activated receptor-gamma (PPARγ) activation, but was eliminated by a PPARγ antagonist, indicating that the anti-glioma effects of telmisartan rely on its PPARγ agonistic activity rather than AT1R blockade. This study highlights the importance of astrocytic IL-6-mediated paracrine signaling in glioma growth and the potential of telmisartan as an adjuvant therapy for patients with glioma, especially those with hypertension.
Collapse
Affiliation(s)
- Wei Quan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng-Shi Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chao Ma
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xi Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong-Hu Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhi-Yu Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan-Wen Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Feng Tang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gui-Ping Wan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Wan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Hubei, China.
| |
Collapse
|
2
|
Pan Y, Li Y, Fan H, Cui H, Chen Z, Wang Y, Jiang M, Wang G. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of hepatocellular carcinoma (HCC). Biomed Pharmacother 2024; 177:117089. [PMID: 38972148 DOI: 10.1016/j.biopha.2024.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) holds a prominent position among global cancer types. Classically, HCC manifests in individuals with a genetic predisposition when they encounter risk elements, particularly in the context of liver cirrhosis. Peroxisome proliferator-activated receptors (PPARs), which are transcription factors activated by fatty acids, belong to the nuclear hormone receptor superfamily and play a pivotal role in the regulation of energy homeostasis. At present, three distinct subtypes of PPARs have been recognized: PPARα, PPARγ, and PPARβ/δ. They regulate the transcription of genes responsible for cellular development, energy metabolism, inflammation, and differentiation. In recent years, with the rising incidence of HCC, there has been an increasing focus on the mechanisms and roles of PPARs in HCC. PPARα primarily mediates the occurrence and development of HCC by regulating glucose and lipid metabolism, inflammatory responses, and oxidative stress. PPARβ/δ is closely related to the self-renewal ability of liver cancer stem cells (LCSCs) and the formation of the tumor microenvironment. PPARγ not only influences tumor growth by regulating the glucose and lipid metabolism of HCC, but its agonists also have significant clinical significance for the treatment of HCC. Therefore, this review offers an exhaustive examination of the role of the three PPAR subtypes in HCC progression, focusing on their mediation of critical cellular processes such as glucose and lipid metabolism, inflammation, oxidative stress, and other pivotal signaling pathways. At the end of the review, we discuss the merits and drawbacks of existing PPAR-targeted therapeutic strategies and suggest a few alternative combinatorial therapeutic approaches that diverge from conventional methods.
Collapse
Affiliation(s)
- Yujie Pan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hongyu Fan
- Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, No. 246 Baojian Road, Harbin 150086, China
| | - Huijuan Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhiyue Chen
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yunzhu Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Mengyu Jiang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
3
|
Zhao Y, Tan H, Zhang X, Zhu J. Roles of peroxisome proliferator-activated receptors in hepatocellular carcinoma. J Cell Mol Med 2024; 28:e18042. [PMID: 37987033 PMCID: PMC10902579 DOI: 10.1111/jcmm.18042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the main pathological type of liver cancer, is linked to risk factors such as viral hepatitis, alcohol intake and non-alcoholic fatty liver disease (NAFLD). Recent advances have greatly improved our understanding that NAFLD is playing a major risk factor for HCC. Peroxisome proliferator-activated receptors (PPARs) are a class of transcription factors divided into three subtypes: PPARα (PPARA), PPARδ/β (PPARD) and PPARγ (PPARG). As important nuclear receptors, PPARs are involved in many physiological processes, and PPARs can improve NAFLD by regulating lipid metabolism, accelerating fatty acid oxidation and inhibiting inflammation. In recent years, some studies have shown that PPARs can participate in the occurrence and development of HCC by regulating metabolic pathways. In addition, PPAR modulators have been reported to inhibit the proliferation and metastasis of HCC cells and can enhance the curative effect of conventional treatments. This article reviews the role of PPARs in the occurrence and development of HCC, as well as its value in the diagnosis, treatment and prognosis of HCC, in order to provide directions for future research.
Collapse
Affiliation(s)
- Yaqin Zhao
- Department of Abdominal Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin HospitalHubei University of MedicineShiyanHubeiChina
| | - Xiaoyu Zhang
- Division of Gastrointestinal Surgery, Department of General SurgeryThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Jing Zhu
- Nanjing Drum Tower HospitalNanjingChina
| |
Collapse
|
4
|
Li Y, Pan Y, Zhao X, Wu S, Li F, Wang Y, Liu B, Zhang Y, Gao X, Wang Y, Zhou H. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin Nutr 2024; 43:332-345. [PMID: 38142478 DOI: 10.1016/j.clnu.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Lipids represent the essential components of membranes, serve as fuels for high-energy processes, and play crucial roles in signaling and cellular function. One of the key hallmarks of cancer is the reprogramming of metabolic pathways, especially abnormal lipid metabolism. Alterations in lipid uptake, lipid desaturation, de novo lipogenesis, lipid droplets, and fatty acid oxidation in cancer cells all contribute to cell survival in a changing microenvironment by regulating feedforward oncogenic signals, key oncogenic functions, oxidative and other stresses, immune responses, or intercellular communication. Peroxisome proliferator-activated receptors (PPARs) are transcription factors activated by fatty acids and act as core lipid sensors involved in the regulation of lipid homeostasis and cell fate. In addition to regulating whole-body energy homeostasis in physiological states, PPARs play a key role in lipid metabolism in cancer, which is receiving increasing research attention, especially the fundamental molecular mechanisms and cancer therapies targeting PPARs. In this review, we discuss how cancer cells alter metabolic patterns and regulate lipid metabolism to promote their own survival and progression through PPARs. Finally, we discuss potential therapeutic strategies for targeting PPARs in cancer based on recent studies from the last five years.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yujie Pan
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Changizi Z, Kajbaf F, Moslehi A. An Overview of the Role of Peroxisome Proliferator-activated Receptors in Liver Diseases. J Clin Transl Hepatol 2023; 11:1542-1552. [PMID: 38161499 PMCID: PMC10752810 DOI: 10.14218/jcth.2023.00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a superfamily of nuclear transcription receptors, consisting of PPARα, PPARγ, and PPARβ/δ, which are highly expressed in the liver. They control and modulate the expression of a large number of genes involved in metabolism and energy homeostasis, oxidative stress, inflammation, and even apoptosis in the liver. Therefore, they have critical roles in the pathophysiology of hepatic diseases. This review provides a general insight into the role of PPARs in liver diseases and some of their agonists in the clinic.
Collapse
Affiliation(s)
- Zahra Changizi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Forough Kajbaf
- Veterinary Department, Faculty of Agriculture, Islamic Azad University, Shoushtar Branch, Shoushtar, Iran
| | - Azam Moslehi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
6
|
Nasr M, Kira AY, Saber S, Essa EA, El-Gizawy SA. Lactosylated Chitosan Nanoparticles Potentiate the Anticancer Effects of Telmisartan In Vitro and in a N-Nitrosodiethylamine-Induced Mice Model of Hepatocellular Carcinoma. Mol Pharm 2023; 20:4758-4769. [PMID: 37585079 DOI: 10.1021/acs.molpharmaceut.3c00542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality worldwide. Telmisartan (TLM), a BSC class II drug, has been reported to have antiproliferative activity in HCC. However, its therapeutic activity is limited by poor bioavailability and unpredictable distribution. This work aimed to enhance TLM's liver uptake for HCC management through passive and active targeting pathways utilizing chitosan nanoparticles decorated with lactose (LCH NPs) as a delivery system. In vitro cell cytotoxicity and cellular uptake studies indicated that TLM-LCH NPs significantly (p < 0.05) enhanced the antiproliferative activity and cellular uptake percentage of TLM. In vivo bioavailability and liver biodistribution studies indicated that TLM-LCH NPs significantly (p < 0.05) enhanced TLM concentrations in plasma and the liver. The relative liver uptake of TLM from TLM-LCH NPs was 2-fold higher than that of unmodified NPs and 5-fold higher than that of plain TLM suspension. In vivo studies of a N-nitrosodiethylamine-induced HCC model revealed that administration of TLM through LCH NPs improved liver histology and resulted in lower serum alpha-fetoprotein (AFP), matrix metalloproteinase 2 (MMP-2), vascular endothelial growth factor (VEGF) levels, and liver weight index compared to plain TLM and TLM-loaded unmodified NPs. These results reflected the high potentiality of LCH NPs as a liver-targeted delivery system for TLM in the treatment of HCC.
Collapse
Affiliation(s)
- Mohamed Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11790, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed Y Kira
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ebtessam A Essa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Sanaa A El-Gizawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| |
Collapse
|
7
|
Nasr M, Kira AY, Saber S, Essa EA, El-Gizawy SA. Telmisartan-Loaded Lactosylated Chitosan Nanoparticles as a Liver Specific Delivery System: Synthesis, Optimization and Targeting Efficiency. AAPS PharmSciTech 2023; 24:144. [PMID: 37353643 DOI: 10.1208/s12249-023-02605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has a significant economic impact and a high mortality rate. Telmisartan (TLM) is a potential therapy for HCC, but it has a limited scope in drug delivery due to unpredictable distribution and poor bioavailability. The objective of this study was to prepare, design, and in vitro evaluate lactose-modified chitosan nanoparticles (LCH NPs) as a liver-targeted nanocarrier for TLM with the potential to offer a promising HCC therapy. The combination of chitosan with lactose was successfully attained using the Maillard reaction. TLM-LCH NPs were prepared, characterized, and optimized with the developed 23 full factorial design. The optimized formulation (F1) was in vitro and in vivo characterized. LCH was synthesized with an acceptable yield of 43.8 ± 0.56%, a lactosylation degree of 14.34%, and a significantly higher aqueous solubility (6.28 ± 0.21 g/L) compared to native chitosan (0.25 ± 0.03 g/L). In vitro characterization demonstrated that, F1 had a particle size of 145.46 ± 0.7 nm, an entrapment efficiency of 90.21 ± 0.28%, and a surface charge of + 27.13 ± 0.21 mV. In vitro TLM release from F1 was most consistent with the Higuchi model and demonstrated significantly higher release at pH 5.5. Moreover, a significantly higher ratio of liver to plasma concentration was observed with TLM-LCH NPs compared to plain TLM and unmodified TLM-NPs. The obtained results nominate TLM-LCH NPs as a promising carrier for enhancing liver targeting of TLM in treatment of HCC.
Collapse
Affiliation(s)
- Mohamed Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11790, Egypt.
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 35712, Egypt.
| | - Ahmed Y Kira
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 35712, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 35712, Egypt
| | - Ebtessam A Essa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Sanaa A El-Gizawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| |
Collapse
|
8
|
Zhang CY, Liu S, Yang M. Antioxidant and anti-inflammatory agents in chronic liver diseases: Molecular mechanisms and therapy. World J Hepatol 2023; 15:180-200. [PMID: 36926234 PMCID: PMC10011909 DOI: 10.4254/wjh.v15.i2.180] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Chronic liver disease (CLD) is a continuous process that causes a reduction of liver function lasting more than six months. CLD includes alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), chronic viral infection, and autoimmune hepatitis, which can lead to liver fibrosis, cirrhosis, and cancer. Liver inflammation and oxidative stress are commonly associated with the development and progression of CLD. Molecular signaling pathways such as AMP-activated protein kinase (AMPK), C-Jun N-terminal kinase, and peroxisome proliferator-activated receptors (PPARs) are implicated in the pathogenesis of CLD. Therefore, antioxidant and anti-inflammatory agents from natural products are new potent therapies for ALD, NAFLD, and hepatocellular carcinoma (HCC). In this review, we summarize some powerful products that can be potential applied in all the stages of CLD, from ALD/NAFLD to HCC. The selected agents such as β-sitosterol, curcumin, genistein, and silymarin can regulate the activation of several important molecules, including AMPK, Farnesoid X receptor, nuclear factor erythroid 2-related factor-2, PPARs, phosphatidylinositol-3-kinase, and lysyl oxidase-like proteins. In addition, clinical trials are undergoing to evaluate their efficacy and safety.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
9
|
Mohamed EE, Ahmed OM, Abdel-Moneim A, Zoheir KMA, Elesawy BH, Al Askary A, Hassaballa A, El-Shahawy AAG. Protective Effects of Naringin-Dextrin Nanoformula against Chemically Induced Hepatocellular Carcinoma in Wistar Rats: Roles of Oxidative Stress, Inflammation, Cell Apoptosis, and Proliferation. Pharmaceuticals (Basel) 2022; 15:1558. [PMID: 36559011 PMCID: PMC9786090 DOI: 10.3390/ph15121558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Nanotechnology holds great promise for the development of treatments for deadly human diseases, such as hepatocellular carcinoma (HCC). In the current study, we compared the hepatoprotective effects of naringin-dextrin nanoparticles (NDNPs) against HCC in male Wistar rats with those of pure naringin and investigated the underlying cellular and molecular mechanisms. HCC was induced by intraperitoneal injection of diethylnitrosamine (DEN, 150 mg/kg body weight (b.w.) per week) for two weeks, followed by oral administration of 2-acetylaminofluorene (2AAF, 20 mg/kg b.w.) four times per week for three weeks. DEN/2AAF-administered rats were divided into three groups that respectively received 1% carboxymethyl cellulose (as vehicle), 10 mg/kg b.w. naringin, or 10 mg/kg b.w. NDNP every other day by oral gavage for 24 weeks. Both naringin and NDNP significantly attenuated the harmful effects of DEN on liver function. Both compounds also suppressed tumorigenesis as indicated by the reduced serum concentrations of liver tumor markers, and this antitumor effect was confirmed by histopathological evaluation. Additionally, naringin and NDNP prevented DEN-induced changes in hepatic oxidative stress and antioxidant activities. In addition, naringin and NDNP suppressed inflammation induced by DEN. Moreover, naringin and NDNP significantly reduced the hepatic expression of Bcl-2 and increased Bax, p53, and PDCD5 expressions. Naringin and NDNP also reduced expression of IQGAP1, IQGAP3, Ras signaling, and Ki-67 while increasing expression of IQGAP2. Notably, NDNP more effectively mitigated oxidative stress and inflammatory signaling than free naringin and demonstrated improved antitumor efficacy, suggesting that this nanoformulation improves bioavailability within nascent tumor sites.
Collapse
Affiliation(s)
- Eman E. Mohamed
- Physiology Division, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef 2722165, Egypt
| | - Osama M. Ahmed
- Physiology Division, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef 2722165, Egypt
| | - Adel Abdel-Moneim
- Physiology Division, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef 2722165, Egypt
| | - Khairy M. A. Zoheir
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmad Al Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Hassaballa
- Nutrition and Food Science, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI 48202, USA
- ZeroHarm L.C., Farmington Hills, Farmington, MI 48333, USA
| | - Ahmed A. G. El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 2722165, Egypt
| |
Collapse
|
10
|
Weiss M, Nikisher B, Haran H, Tefft K, Adams J, Edwards JG. High throughput screen of small molecules as potential countermeasures to galactic cosmic radiation induced cellular dysfunction. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:76-87. [PMID: 36336373 DOI: 10.1016/j.lssr.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 06/16/2023]
Abstract
Space travel increases galactic cosmic ray exposure to flight crews and this is significantly elevated once travel moves beyond low Earth orbit. This includes combinations of high energy protons and heavy ions such as 56Fe or 16O. There are distinct differences in the biological response to low-energy transfer (x-rays) or high-energy transfer (High-LET). However, given the relatively low fluence rate of exposure during flight operations, it might be possible to manage these deleterious effects using small molecules currently available. Virtually all reports to date examining small molecule management of radiation exposure are based on low-LET challenges. To that end an FDA approved drug library (725 drugs) was used to perform a high throughput screen of cultured cells following exposure to galactic cosmic radiation. The H9c2 myoblasts, ES-D3 pluripotent cells, and Hy926 endothelial cell lines were exposed to a single exposure (75 cGy) using the 5-ion GCRsim protocol developed at the NASA Space Radiation Laboratory (NSRL). Following GCR exposure cells were maintained for up to two weeks. For each drug (@10µM), a hierarchical cumulative score was developed incorporating measures of mitochondrial and cellular function, oxidant stress and cell senescence. The top 160 scores were retested following a similar protocol using 1µM of each drug. Within the 160 drugs, 33 are considered to have an anti-inflammatory capacity, while others also indirectly suppressed pro-inflammatory pathways or had noted antioxidant capacity. Lead candidates came from different drug classes that included angiotensin converting enzyme inhibitors or AT1 antagonists, COX2 inhibitors, as well as drugs mediated by histamine receptors. Surprisingly, different classes of anti-diabetic medications were observed to be useful including sulfonylureas and metformin. Using a hierarchical decision structure, we have identified several lead candidates. That no one drug or even drug class was completely successful across all parameters tested suggests the complexity of managing the consequences of galactic cosmic radiation exposure.
Collapse
Affiliation(s)
- M Weiss
- Department of Physiology, New York Medical College, Valhalla, New York
| | - B Nikisher
- Department of Physiology, New York Medical College, Valhalla, New York
| | - H Haran
- Department of Physiology, New York Medical College, Valhalla, New York
| | - K Tefft
- Department of Physiology, New York Medical College, Valhalla, New York
| | - J Adams
- Department of Physiology, New York Medical College, Valhalla, New York
| | - J G Edwards
- Department of Physiology, New York Medical College, Valhalla, New York.
| |
Collapse
|
11
|
Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM. The role of inflammation in cadmium nephrotoxicity: NF-κB comes into view. Life Sci 2022; 308:120971. [PMID: 36130617 DOI: 10.1016/j.lfs.2022.120971] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Kidney diseases are major health problem and understanding the underlined mechanisms that lead to kidney diseases are critical research points with a marked potential impact on health. Cadmium (Cd) is a heavy metal that occurs naturally and can be found in contaminated food. Kidneys are the most susceptible organ to heavy metal intoxication as it is the main route of waste excretion. The harmful effects of Cd were previously well proved. Cd induces inflammatory responses, oxidative injury, mitochondrial dysfunction and disturbs Ca2+ homeostasis. The nuclear factor-kappa B (NF-κB) is a cellular transcription factor that regulates inflammation and controls the expression of many inflammatory cytokines. Therefore, great therapeutic benefits can be attained from NF-κB inhibition. In this review we focused on certain compounds including cytochalasin D, mangiferin, N-acetylcysteine, pyrrolidine dithiocarbamate, roflumilast, rosmarinic acid, sildenafil, sinapic acid, telmisartan and wogonin and certain plants as Astragalus Polysaccharide, Ginkgo Biloba and Thymus serrulatus that potently inhibit NF-κB and effectively counteracted Cd-associated renal intoxication. In conclusion, the proposed NF-κB involvement in Cd-renal intoxication clarified the underlined inflammation associated with Cd-nephropathy and the beneficial effects of NF-κB inhibitors that make them the potential to substantially optimize treatment protocols for Cd-renal intoxication.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
12
|
Katoch S, Sharma V, Patial V. Peroxisome proliferator-activated receptor gamma as a therapeutic target for hepatocellular carcinoma: Experimental and clinical scenarios. World J Gastroenterol 2022; 28:3535-3554. [PMID: 36161051 PMCID: PMC9372809 DOI: 10.3748/wjg.v28.i28.3535] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/25/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer worldwide. Viral hepatitis is a significant risk factor for HCC, although metabolic syndrome and diabetes are more frequently associated with the HCC. With increasing prevalence, there is expected to be > 1 million cases annually by 2025. Therefore, there is an urgent need to establish potential therapeutic targets to cure this disease. Peroxisome-proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that plays a crucial role in the patho-physiology of HCC. Many synthetic agonists of PPARγ suppress HCC in experimental studies and clinical trials. These synthetic agonists have shown promising results by inducing cell cycle arrest and apoptosis in HCC cells and preventing the invasion and metastasis of HCC. However, some synthetic agonists also pose severe side effects in addition to their therapeutic efficacy. Thus natural PPARγ agonists can be an alternative to exploit this potential target for HCC treatment. In this review, the regulatory role of PPARγ in the pathogenesis of HCC is elucidated. Furthermore, the experimental and clinical scenario of both synthetic and natural PPARγ agonists against HCC is discussed. Most of the available literature advocates PPARγ as a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Swati Katoch
- Division of Dietetics and Nutrition Technology, Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, UP, India
| | - Vinesh Sharma
- Division of Dietetics and Nutrition Technology, Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, UP, India
| | - Vikram Patial
- Division of Dietetics and Nutrition Technology, Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, UP, India
| |
Collapse
|
13
|
Alkaloids from Aconitum carmichaelii Alleviates DSS-Induced Ulcerative Colitis in Mice via MAPK/NF- κB/STAT3 Signaling Inhibition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6257778. [PMID: 35685720 PMCID: PMC9173982 DOI: 10.1155/2022/6257778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022]
Abstract
Fuzi (Aconitum carmichaelii Debx) has been traditionally used for the treatment of ulcerative colitis (UC) in China for thousands of years. The total alkaloids of A. carmichaelii (AAC) have been considered as the main medicinal components of fuzi, whereas its underlying anti-UC mechanisms remain elusive. In the present study, the dextran sulfate sodium (DSS)-induced UC mice model, which was consistent with the symptoms and pathological features of human UC, was established to comprehensively evaluate the anti-UC effects of AAC. The results indicated that AAC effectively improved the weight loss, disease activity index (DAI), spleen hyperplasia, and colon shortening, and thus alleviated the symptoms of UC mice. Meanwhile, AAC not only inhibited the MPO enzyme and the abnormal secretion of inflammatory cytokines (TNF-α, IL-1β, IL-6, IFN-γ, and IL-17A) and suppressed the overexpression of inflammatory mediators (TNF-α, IL-1β, and IL-6) of mRNA but also reduced the phosphorylation of p38 MAPK, ERK, and JNK, and the protein expressions of NF-κB, IκB-α, STAT3, and JAK2 in the colon tissue. Furthermore, the LC-MS/MS quantitative determination suggested that the three low toxic monoester alkaloids were higher in both contents and proportion than that of the three high toxic diester alkaloids. Additionally, molecular docking was hired to investigate the interactions between alkaloid-receptor complexes, and it suggested the three monoester alkaloids exhibited higher binding affinities with the key target proteins of MAPK, NF-κB, and STAT3. Our finding showcased the noteworthy anti-UC effects of AAC based on the MAPK/NF-κB/STAT3 signaling pathway, which would provide practical and edge-cutting background information for the development and utilization of A. carmichaelii as a potential natural anti-UC remedy.
Collapse
|
14
|
Kast RE, Alfieri A, Assi HI, Burns TC, Elyamany AM, Gonzalez-Cao M, Karpel-Massler G, Marosi C, Salacz ME, Sardi I, Van Vlierberghe P, Zaghloul MS, Halatsch ME. MDACT: A New Principle of Adjunctive Cancer Treatment Using Combinations of Multiple Repurposed Drugs, with an Example Regimen. Cancers (Basel) 2022; 14:2563. [PMID: 35626167 PMCID: PMC9140192 DOI: 10.3390/cancers14102563] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
In part one of this two-part paper, we present eight principles that we believe must be considered for more effective treatment of the currently incurable cancers. These are addressed by multidrug adjunctive cancer treatment (MDACT), which uses multiple repurposed non-oncology drugs, not primarily to kill malignant cells, but rather to reduce the malignant cells' growth drives. Previous multidrug regimens have used MDACT principles, e.g., the CUSP9v3 glioblastoma treatment. MDACT is an amalgam of (1) the principle that to be effective in stopping a chain of events leading to an undesired outcome, one must break more than one link; (2) the principle of Palmer et al. of achieving fractional cancer cell killing via multiple drugs with independent mechanisms of action; (3) the principle of shaping versus decisive operations, both being required for successful cancer treatment; (4) an idea adapted from Chow et al., of using multiple cytotoxic medicines at low doses; (5) the idea behind CUSP9v3, using many non-oncology CNS-penetrant drugs from general medical practice, repurposed to block tumor survival paths; (6) the concept from chess that every move creates weaknesses and strengths; (7) the principle of mass-by adding force to a given effort, the chances of achieving the goal increase; and (8) the principle of blocking parallel signaling pathways. Part two gives an example MDACT regimen, gMDACT, which uses six repurposed drugs-celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, and telmisartan-to interfere with growth-driving elements common to cholangiocarcinoma, colon adenocarcinoma, glioblastoma, and non-small-cell lung cancer. gMDACT is another example of-not a replacement for-previous multidrug regimens already in clinical use, such as CUSP9v3. MDACT regimens are designed as adjuvants to be used with cytotoxic drugs.
Collapse
Affiliation(s)
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| | - Hazem I. Assi
- Naef K. Basile Cancer Center, American University of Beirut, Beirut 1100, Lebanon;
| | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Ashraf M. Elyamany
- Oncology Unit, Hemato-Oncology Department, SECI Assiut University Egypt/King Saud Medical City, Riyadh 7790, Saudi Arabia;
| | - Maria Gonzalez-Cao
- Translational Cancer Research Unit, Dexeus University Hospital, 08028 Barcelona, Spain;
| | | | - Christine Marosi
- Clinical Division of Medical Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael E. Salacz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA;
| | - Iacopo Sardi
- Department of Pediatric Oncology, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy;
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Mohamed S. Zaghloul
- Children’s Cancer Hospital & National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| |
Collapse
|
15
|
Youssef ME, El-Azab MF, Abdel-Dayem MA, Yahya G, Alanazi IS, Saber S. Electrocardiographic and histopathological characterizations of diabetic cardiomyopathy in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25723-25732. [PMID: 34845640 DOI: 10.1007/s11356-021-17831-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Diabetes is a clinical condition that is associated with insulin deficiency and hyperglycemia. Cardiomyopathy, retinopathy, neuropathy, and nephropathy are well known complications of the elevated blood glucose. Diabetic cardiomyopathy is a clinical disorder that is associated with systolic and diastolic dysfunction along with cardiac fibrosis, inflammation, and elevated oxidative stress. In this study, diabetes was induced by intraperitoneal injection of streptozotocin (STZ) 50 mg/kg. We determined the plasma levels of cardiac troponin-T (cTnT) and creatinine kinase MB (CK-MB) by ELISA. Diabetic rats showed abnormal cardiac architecture and increased collagen production. Significant elevation in ST-segment, prolonged QRS, and QT-intervals and increased ventricular rate were detected. Additionally, diabetic rats showed a prolongation in P wave duration and atrial tachyarrhythmia was observed. Plasma levels of cTnT and CK-MB were elevated. In conclusion, these electrocardiographic changes (elevated ST-segment, prolonged QT interval, and QRS complex, and increased heart rate) along with histopathological changes and increased collagen formation could be markers for the development of diabetic cardiomyopathy in rats.
Collapse
Affiliation(s)
- Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology Gamasa, Talkha, Egypt
| | - Mona F El-Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Marwa A Abdel-Dayem
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia, 44519, Egypt.
| | - Ibtesam S Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology Gamasa, Talkha, Egypt
| |
Collapse
|
16
|
Abd El-Fattah EE, Saber S, Youssef ME, Eissa H, El-Ahwany E, Amin NA, Alqarni M, Batiha GES, Obaidullah AJ, Kaddah MMY, Ahmed Gaafar AG, Mourad AAE, Mostafa-Hedeab G, Abdelhamid AM. AKT-AMPKα-mTOR-dependent HIF-1α Activation is a New Therapeutic Target for Cancer Treatment: A Novel Approach to Repositioning the Antidiabetic Drug Sitagliptin for the Management of Hepatocellular Carcinoma. Front Pharmacol 2022; 12:720173. [PMID: 35095479 PMCID: PMC8790251 DOI: 10.3389/fphar.2021.720173] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
HIF-1α is a key factor promoting the development of hepatocellular carcinoma (HCC). As well, AKT-AMPKα-mTOR signaling is a promising target for cancer therapy. Yet, the AKT-AMPKα-mTOR-dependent activation of HIF-1α has not been studied in livers with HCC. In addition, the mechanisms underlying the potential antineoplastic effects of sitagliptin (STGPT), an antidiabetic agent, have not yet been elucidated. For that purpose, the N-nitrosodiethylamine (NDEA)-induced HCC mouse model was used in the present study using a dose of 100 mg/kg/week, i.p., for 8 weeks. NDEA-induced HCC mice received STGPT 20, 40, or 80 mg/kg starting on day 61 up to day 120. The present study revealed that STGPT inhibited HIF-1α activation via the interference with the AKT-AMPKα-mTOR axis and the interruption of IKKβ, P38α, and ERK1/2 signals as well. Accordingly, STGPT prolonged the survival, restored the histological features and improved liver function. Additionally, STGPT inhibited angiogenesis, as revealed by a significant downregulation in the VEGF and mRNA expression of CD309 with concomitant inhibition of tissue invasion was evident by an increased ratio of TIMP-1/MMP-2. STGPT exhibited apoptotic stimulatory effect as indicated upon calculating the BCL-2/Bax ratio and by the gene expression of p53. The decrease in AFP and liver index calculation, gene expression of Ki-67 confirmed the antiproliferative activity of STGPT. The anti-inflammatory potential was revealed by the decreased TNF-α level and the downregulation of MCP-1 gene expression. Moreover, an antifibrotic potential was supported by lower levels of TGF-β. These effects appear to be GLP1R-independent. The present study provides a potential basis for repurposing STGPT for the inhibition of HCC progression. Since STGPT is unlikely to cause hypoglycemia, it may be promising as monotherapy or adjuvant therapy to treat diabetic or even normoglycemic patients with HCC.
Collapse
Affiliation(s)
- Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Hanan Eissa
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Noha A Amin
- Department of Hematology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmad J Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab, Egypt
| | - Ahmed Gaafar Ahmed Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Ahmed A E Mourad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, Jouf, Saudi Arabia.,Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
17
|
Tsujiya Y, Hasegawa A, Yamamori M, Okamura N. Telmisartan-Induced Cytotoxicity via G 2/M Phase Arrest in Renal Cell Carcinoma Cell Lines. Biol Pharm Bull 2021; 44:1878-1885. [PMID: 34853271 DOI: 10.1248/bpb.b21-00654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer. Given that stage IV RCC is intractable, there is a need for a novel treatment strategy. We investigated the antitumor effects of telmisartan (TEL) and their underlying mechanisms in RCC, including their impact on apoptosis, Akt/mammalian target of rapamycin (mTOR) pathways, and the cell cycle using two human RCC cell lines: 786-O and Caki-2. Cell viability was detected via fluorescence-based assays. Cells were stained with Hoechst 33342 to observe chromatin condensation, and Western blotting was performed to analyze protein expression. The cell cycle was assessed using flow cytometry. Invasion and migration assays were performed using 24-well chambers. TEL induced cell death in a dose-dependent manner and increased the percentage of cells with high chromatin condensation and Bax/Bcl-2 ratio in both cell lines. TEL-induced cell death was attenuated by neither peroxisome proliferator-activated receptor-γ nor -δ inhibitors. Although TEL elevated c-Jun N-terminal kinase levels and p38 phosphorylation rates in Caki-2 cells, as well as extracellular signal-regulated kinase phosphorylation rates in 786-O cells, their inhibitors did not suppress TEL-induced cell death. TEL decreased Akt phosphorylation in 786-O cells and mTOR phosphorylation in both cell lines, increased the population of cells in the G2/M phase, and altered G2/M-related proteins in both cell lines. TEL moderately suppressed cell invasion and migration in 786-O and Caki-2 cells, respectively, and increased cell invasion in Caki-2 cells, suggesting a potential therapeutic role of TEL in RCC.
Collapse
Affiliation(s)
- Yoshie Tsujiya
- Department of Clinical Pharmacy, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Ai Hasegawa
- Department of Clinical Pharmacy, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Motohiro Yamamori
- Department of Clinical Pharmacy, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Noboru Okamura
- Department of Clinical Pharmacy, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| |
Collapse
|
18
|
Blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhances the antifibrotic effect of metformin and augments its AMPK-induced NF-κB inactivation in mice intoxicated with carbon tetrachloride. Life Sci 2021; 286:120070. [PMID: 34688695 DOI: 10.1016/j.lfs.2021.120070] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
AIM Metformin and empagliflozin combined therapy may have complementary effects that go beyond the well-recognized targets of their monotherapy through AMPK activation. Therefore, the current study was designed to investigate for the first time the hepatoprotective effects of such combination therapy in the carbon tetrachloride (CCl4)-induced hepatic fibrosis model in mice. MATERIALS AND METHODS Determination of liver enzymes and the liver content of oxidative stress parameters, and hydroxyproline were performed biochemically. ELISA was performed to measure PDGF-BB, TNF-α, TGF-β, TIMP-1, AMPK, p-mTOR, NF-κB P65 binding activity, p38 MAPKα, JNK1/2 and ERK1/2. Real-time qPCR was conducted to determine Col1a1 and α-SMA. In addition, histopathological examination using H&E and Masson's trichrome stain were performed for determination of histopathological changes. KEY FINDINGS Empagliflozin inhibited the activation of p38 MAPK and ERK1/2 and exhibited a weak AMPKα stimulation. On the other hand, metformin exerted a more robust stimulatory action on the AMPKα that was accompanied by a notable decrease in the NF-κB nuclear binding activity and a decline in the p-mTOR levels. Nevertheless, the effect of metformin on MAPK kinases was insignificant. Our results revealed that blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhanced the antifibrotic effect of metformin and augmented its AMPK-induced NF-κB inactivation. SIGNIFICANCE As diabetes is one of the most common risk factors for liver fibrosis, the use of antidiabetic drugs is expected to improve therapeutic outcome. Therefore, metformin/empagliflozin combined therapy could be promising in preventing hepatic inflammation and fibrosis via exhibiting complementary effects particularly in diabetic patients.
Collapse
|
19
|
Abdelhamid AM, Saber S, Youssef ME, Gaafar AGA, Eissa H, Abd-Eldayem MA, Alqarni M, Batiha GES, Obaidullah AJ, Shahien MA, El-Ahwany E, Amin NA, Etman MA, Kaddah MMY, Abd El-Fattah EE. Empagliflozin adjunct with metformin for the inhibition of hepatocellular carcinoma progression: Emerging approach for new application. Biomed Pharmacother 2021; 145:112455. [PMID: 34844106 DOI: 10.1016/j.biopha.2021.112455] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is on the rise worldwide, and its incidence in diabetic patients is two to three times that of non-diabetics. Current therapeutic options fail to provide considerable survival benefits to patients with HCC. There is a strong possibility that the FDA-approved antidiabetic combination of empagliflozin and metformin could show complementary effects to control HCC progression. However, their multitarget effects have not yet been studied on HCC development. Therefore, the present study aims to evaluate the antitumorigenic activity of this combination in non-diabetic mice with diethylnitrosamine-induced HCC. Empagliflozin/metformin combination prolonged survival and improved histological features of mice livers. Additionally, Empagliflozin/metformin showed anti-inflammatory potential and relieved oxidative stress. On the one hand these effects are likely attributed to the ability of metformin to inactivate NF-κB in an AMPK-dependent mechanism and on the other hand to the ability of the empagliflozin to inhibit the MAPKs, p38 and ERK1/2. Empagliflozin also showed a less robust effect on AMPK than that of metformin. Moreover, empagliflozin enhanced the autophagy inducing activity of metformin. Furthermore, empagliflozin/metformin exhibited increased apoptotic potential. Consequently, empagliflozin augmented the antitumorigenic function of metformin by exerting better control of angiogenesis, and metastasis. To conclude, our findings suggest empagliflozin as an ideal adjunct to metformin for the inhibition of HCC progression. In addition, since the incidence of hypoglycemia is minimal due to insulin-independent mechanism of action of both treatments, empagliflozin/metformin could be a promising therapeutic modality for the management of diabetic patients with HCC; and even non diabetic ones.
Collapse
Affiliation(s)
- Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ahmed Gaafar Ahmed Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Hanan Eissa
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Marwa A Abd-Eldayem
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Ahmad J Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Awad Shahien
- Department of Clinical Pharmacology, Faculty of Medicine, Damietta University, Damietta, Egypt
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Noha A Amin
- Department of Hematology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed Ali Etman
- Research and Development, Department of Drug Stability, Safe Pharma, Pharco Pharmaceuticals, Alexandria, Egypt
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt
| | - Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
20
|
Saber S, Nasr M, Saad AS, Mourad AAE, Gobba NA, Shata A, Hafez AM, Elsergany RN, Elagamy HI, El-Ahwany E, Amin NA, Girgis S, Elewa YHA, Mahmoud MH, Batiha GES, El-Rous MA, Kamal I, Kaddah MMY, Khodir AE. Albendazole-loaded cubosomes interrupt the ERK1/2-HIF-1α-p300/CREB axis in mice intoxicated with diethylnitrosamine: A new paradigm in drug repurposing for the inhibition of hepatocellular carcinoma progression. Biomed Pharmacother 2021; 142:112029. [PMID: 34416629 DOI: 10.1016/j.biopha.2021.112029] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer related deaths worldwide. It was suggested that albendazole (ABZ) is a powerful inhibitor of several carcinoma types. However, the bioavailability of ABZ is very poor. Additionally, the mechanisms underlying the antitumor effects of ABZ may go beyond its tubulin-inhibiting activity. Therefore, we aimed to examine the effects of ABZ suspension (i.p. and p.o.) and ABZ-loaded cubosomes (LC) on the diethylnitrosamine-induced HCC in mice. ABZ-loaded nanoparticles exhibited a mean particle size of 48.17 ± 0.65 nm and entrapped 93.26 ± 2.48% of ABZ. The in vivo absorption study confirmed a two-fold improvement in the relative bioavailability compared with aqueous ABZ suspension. Furthermore, the oral administration of ABZ cubosomal dispersion demonstrated regression of tumor production rates that was comparable with ABZ (i.p.). ABZ relieved oxidative stress, improved liver function, and decreased necroinflammation score. The antiangiogenic activity was evident as ABZ effectively downregulated tissue expression of CD34, mRNA expression of CD309 and VEGF at the protein expression level. Besides, lower levels of MMP-9 and CXCR4 indicated antimetastatic activity. ABZ showed a considerable level of apoptotic activity as indicated by increased mRNA expression level of p53 and the increased Bax/BCL-2 ratio and active caspase-3. Additionally, Ki-67 expression levels were downregulated showing an antiproliferative potential. These protective effects contributed to increasing survival rate of diethylnitrosamine-treated mice. These effects found to be mediated via interrupting ERK1/2-HIF-1α-p300/CREB interactions. Therefore, our findings revealed that disrupting ERK1/2-HIF-1α-p300/CREB interplay might create a novel therapeutic target for the management of HCC.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Mohamed Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ahmed S Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port-Said University, Port-Said, Egypt
| | - Ahmed A E Mourad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port-Said University, Port-Said, Egypt
| | - Naglaa A Gobba
- Department of Pharmacology and Toxicology, College of Pharmacy, Misr University for Science and Technology, Egypt
| | - Ahmed Shata
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Abdel-Moneim Hafez
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Egypt; Department of Physiology, College of Medicine, Qassim University, Saudi Arabia
| | - Ramy N Elsergany
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Heba I Elagamy
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Noha A Amin
- Department of Haematology, Theodor Bilharz Research Institute, Egypt
| | - Samuel Girgis
- Department of Pharmaceutics, Faculty of Pharmacy, Alsalam University, Egypt
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Mohamed H Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Magdy Abou El-Rous
- Department of Biochemistry, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Islam Kamal
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt
| | - Ahmed E Khodir
- Department of Pharmacology, Faculty of Pharmacy, Horus University, Egypt
| |
Collapse
|
21
|
Monroy-Ramirez HC, Galicia-Moreno M, Sandoval-Rodriguez A, Meza-Rios A, Santos A, Armendariz-Borunda J. PPARs as Metabolic Sensors and Therapeutic Targets in Liver Diseases. Int J Mol Sci 2021; 22:ijms22158298. [PMID: 34361064 PMCID: PMC8347792 DOI: 10.3390/ijms22158298] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Carbohydrates and lipids are two components of the diet that provide the necessary energy to carry out various physiological processes to help maintain homeostasis in the body. However, when the metabolism of both biomolecules is altered, development of various liver diseases takes place; such as metabolic-associated fatty liver diseases (MAFLD), hepatitis B and C virus infections, alcoholic liver disease (ALD), and in more severe cases, hepatocelular carcinoma (HCC). On the other hand, PPARs are a family of ligand-dependent transcription factors with an important role in the regulation of metabolic processes to hepatic level as well as in other organs. After interaction with specific ligands, PPARs are translocated to the nucleus, undergoing structural changes to regulate gene transcription involved in lipid metabolism, adipogenesis, inflammation and metabolic homeostasis. This review aims to provide updated data about PPARs’ critical role in liver metabolic regulation, and their involvement triggering the genesis of several liver diseases. Information is provided about their molecular characteristics, cell signal pathways, and the main pharmacological therapies that modulate their function, currently engaged in the clinic scenario, or in pharmacological development.
Collapse
Affiliation(s)
- Hugo Christian Monroy-Ramirez
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (H.C.M.-R.); (M.G.-M.); (A.S.-R.)
| | - Marina Galicia-Moreno
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (H.C.M.-R.); (M.G.-M.); (A.S.-R.)
| | - Ana Sandoval-Rodriguez
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (H.C.M.-R.); (M.G.-M.); (A.S.-R.)
| | - Alejandra Meza-Rios
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45138, Jalisco, Mexico; (A.M.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45138, Jalisco, Mexico; (A.M.-R.); (A.S.)
| | - Juan Armendariz-Borunda
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (H.C.M.-R.); (M.G.-M.); (A.S.-R.)
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45138, Jalisco, Mexico; (A.M.-R.); (A.S.)
- Correspondence:
| |
Collapse
|
22
|
Saber S, Yahya G, Gobba NA, Sharaf H, Alshaman R, Alattar A, Amin NA, El-Shedody R, Aboutouk FH, Abd El-Galeel Y, El-Hefnawy A, Shabaka D, Khalifa A, Saleh R, Osama D, El-Zoghby G, Youssef ME. The Supportive Role of NSC328382, a P2X7R Antagonist, in Enhancing the Inhibitory Effect of CRID3 on NLRP3 Inflammasome Activation in Rats with Dextran Sodium Sulfate-Induced Colitis. J Inflamm Res 2021; 14:3443-3463. [PMID: 34321905 PMCID: PMC8313402 DOI: 10.2147/jir.s315938] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose The NLRP3 inflammasome is a substantial component of the inflammation process. The complex pathogenesis of and the implication of a vast number of components in the inflammasome-activation pathway prompted us to search for compounds that have a wide therapeutic index and act at the level of multiple cellular targets. Although CRID3 blocks NLRP3 with high specificity in the laboratory, clinical trials of the compound reported weaker potency. Methods We used NSC328382, a P2X7R antagonist, as an adjunctive therapy and generated a strategy to potentiate the effects of CRID3 in rats with DSS-induced colitis. Results NSC328382/CRID3 combined therapy exhibited a significantly increased efficacy compared with either of the monotherapies. NSC328382/CRID3 was more efficient in 1) attenuating colon shortening and disease activity; 2) improving goblet cell density and both the macroscopic and microscopic scenario of the injured colon; 3) improving the antioxidant defense mechanisms of the inflamed colon against oxidative stress; and 4) mitigating the inflammation state by downregulating the proinflammatory cytokines. Pyroptotic cell death was also conspicuously restrained. Additionally, NSC328382 interrupted the MyD88/NF-κB axis. Moreover, NSC328382/CRID3 exhibited the ability to alter Th1/Th2 dominance. Conclusion The clinical application of NSC328382/CRID3 may result in the generation of a novel approach for the treatment of IBDs.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia, Egypt
| | - Naglaa A Gobba
- Department of Pharmacology and Toxicology, College of Pharmacy, Misr University for Science and Technology, Cairo, Egypt
| | - Hossam Sharaf
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Noha A Amin
- Department of Haematology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ruwyda El-Shedody
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Farah H Aboutouk
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Yumna Abd El-Galeel
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Amr El-Hefnawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Dina Shabaka
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Arwa Khalifa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Renad Saleh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Donya Osama
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ghada El-Zoghby
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
23
|
Abdelhamid AM, Elsheakh AR, Suddek GM, Abdelaziz RR. Telmisartan alleviates alcohol-induced liver injury by activation of PPAR-γ/ Nrf-2 crosstalk in mice. Int Immunopharmacol 2021; 99:107963. [PMID: 34273638 DOI: 10.1016/j.intimp.2021.107963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023]
Abstract
Excessive consumption of alcohol may induce severe liver damage, in part via oxidative stress and inflammatory responses, which implicates these processes as potential therapeutic approaches. Prior literature has shown that Telmisartan (TEL) may provide protective effects, presumably mediated by its anti-oxidant and anti-inflammatory activities. The purpose of this study was to determine TEL's hepatoprotective effects and to identify its possible curative mechanisms in alcoholic liver disease. A mouse chronic alcohol plus binge feedings model was used in the current study for induction of alcoholic liver disease (ALD). Our results showed that TEL (10 mg/kg/day) has the ability to reduce serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). TEL also increased the activity of superoxide dismutase (SOD) and glutathione (GSH) with concomitant reduction of nitric oxide (NO) malonaldehyde (MDA) in the liver homogenate. Moreover, TEL downregulated nuclear factor kappa B (NF-κB) expression and decreased liver content of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α). These anti-inflammatory and anti-oxidant activities were associated with a significant increase in the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), peroxisome proliferator-activated receptors -γ (PPAR-γ), and heme oxygenase-1 (Hmox-1). In conclusion, TEL's hepatoprotective effects against ALD may be attributable to its anti-inflammatory and anti-oxidant activities which may be in part via the modulation of PPAR-γ/ Nrf-2/ NF-κB crosstalk.
Collapse
Affiliation(s)
- Amir Mohamed Abdelhamid
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Egypt
| | - Ahmed Ramadan Elsheakh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Ghada Mohamed Suddek
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | | |
Collapse
|
24
|
Saber S, Youssef ME, Sharaf H, Amin NA, El-Shedody R, Aboutouk FH, El-Galeel YA, El-Hefnawy A, Shabaka D, Khalifa A, Saleh RA, Osama D, El-Zoghby G, Gobba NA. BBG enhances OLT1177-induced NLRP3 inflammasome inactivation by targeting P2X7R/NLRP3 and MyD88/NF-κB signaling in DSS-induced colitis in rats. Life Sci 2021; 270:119123. [PMID: 33548287 DOI: 10.1016/j.lfs.2021.119123] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Chronic ulceration of the colon is associated with the activation of TLR4/NF-κB and P2X7R/NLRP3 signaling pathways. We investigated the effect of individual or combined administration of BBG, a P2X7R blocker, and OLT1177, a selective NLRP3 inhibitor, in the dextran sodium sulfate-induced ulcerative colitis (UC) rat model. The ulcerative rats were treated orally with brilliant blue G (BBG) (50 mg/kg/day) or OLT1177 (200 mg/kg/day) or a combination of both. Myd88 and NF-κB levels were measured by ELISA, qRT-PCR, and immunohistochemical staining. Cytokines known to be associated with TLR4/NF-κB or P2X7R/NLRP3 signaling were measured by ELISA. P2X7R and NLRP3 expression were measured by ELISA and qRT-PCR. The administration of BBG or OLT1177 ameliorated the toxic effects of DSS on the colon as they restored normal colonic macroscopic and microscopic morphology. BBG administration, but not OLT1177, reduced the expression of Myd88, NF-κB, IL-6, and TNF-α in addition to lowering P2X7R and oxidative stress levels. Individual BBG or OLT1177 administration decreased NLRP3 inflammasome recruitment and subsequent activation of caspase-1, IL-1β, and IL-18. However, the combined administration of OLT1177 with BBG potentiated its inhibitory effect on the NLRP3, which was reflected by the additional suppressive effect on caspase-1, IL-1β, IL-18 levels. In conclusion, BBG/OLT1177 exhibited complementary effects and effectively ameliorated UC. This novel approach provides a basis for the clinical application of this combination for the treatment of IBDs and might also be promising for the pharmacological intervention of other NLRP3 inflammasome-dependent inflammatory conditions.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Hossam Sharaf
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Noha A Amin
- Department of Haematology, Theodor Bilharz Research Institute, Egypt
| | - Ruwyda El-Shedody
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Farah H Aboutouk
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Yumna Abd El-Galeel
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Amr El-Hefnawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Dina Shabaka
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Arwa Khalifa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Renad A Saleh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Donya Osama
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ghada El-Zoghby
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Naglaa A Gobba
- Department of Pharmacology and Toxicology, College of Pharmacy, Misr University for Science and Technology, Egypt
| |
Collapse
|
25
|
Youssef ME, Abdelrazek HM, Moustafa YM. Cardioprotective role of GTS-21 by attenuating the TLR4/NF-κB pathway in streptozotocin-induced diabetic cardiomyopathy in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:11-31. [PMID: 32776158 DOI: 10.1007/s00210-020-01957-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
The cholinergic anti-inflammatory pathway (CAP) was investigated in a variety of inflammatory conditions and constitutes a valuable line in their treatment. In the current study, we investigated the anti-inflammatory effect of GTS-21 (GTS) as a partial selective α7 nicotinic acetylcholine receptor (α7-nAchR) agonist in diabetic cardiomyopathy model in rats. This mechanism was elaborated to study whether it could alleviate the electrocardiographic, histopathological, and molecular levels of Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB) pathway proteins. Diabetes was induced by the injection of streptozotocin (STZ) (50 mg/kg). Diabetic rats were treated with GTS (1 or 2 mg/kg/day), methyllycaconitine (MLA), a selective α7-nAchR antagonist (2 mg/kg/day) plus GTS (2 mg/kg/day), or the vehicle. All treatments were given by the intraperitoneal route. Ventricular rate and different electrocardiograph (ECG) anomalies were detected. Plasma levels of cardiac troponin T (cTnT) and creatine kinase MB (CK-MB) were measured by ELISA. Additionally, we elucidated the levels of several proteins involved in the TLR4/NF-κB pathway. Cardiac levels of TLR4 and phosphorylated protein kinase B (p-Akt) were detected by ELISA. The cardiac expression of myeloid differentiation primary response 88 (Myd88), tumor necrosis factor receptor-associated factor 6 (TRAF6), NF-κB, interleukin 1β (IL-1β), and active caspase-1 were evaluated by immunohistochemical staining. Finally, the cardiac levels of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) were determined by ELISA. Diabetic rats showed (i) ECG signs of cardiomyopathy such as significant ST segment elevations, prolonged QRS, QT intervals, and ventricular tachycardia; (ii) increased plasma levels of cTnT and CK-MB; (iii) increased expression of cardiac TLR4; (iv) elevated immunohistochemical expression of cardiac, Myd88, TRAF6, and NF-κB; (v) diminution in the cardiac expression of p-Akt; and (vi) adaptive increases in cardiac expression of TNF-α and IL-6. These effects were ameliorated in diabetic rats treated with both doses of GTS. Pretreatment with MLA did not completely reverse the ameliorative effect of GTS on cTnT, TRAF6, TNF-α, and IL-6, thereby reinforcing the presence of possible α7-nAchR-independent mechanisms. The activation of α7-nAchR with GTS offers a promising prophylactic strategy for diabetic cardiomyopathy by attenuating the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Mahmoud E Youssef
- Department of pharmacology and biochemistry, Faculty of pharmacy, Delta University for Science and Technology, Mansoura, Egypt.
| | - Heba M Abdelrazek
- Department of Physiology, Faculty of veterinary medicine, Suez Canal University, Ismailia, Egypt
| | - Yasser M Moustafa
- Department of Pharmacology and Toxicology, Dean of the Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
26
|
Khalil R, Shata A, Abd El-Kader EM, Sharaf H, Abdo WS, Amin NA, Saber S. Vildagliptin, a DPP-4 inhibitor, attenuates carbon tetrachloride-induced liver fibrosis by targeting ERK1/2, p38α, and NF-κB signaling. Toxicol Appl Pharmacol 2020; 407:115246. [PMID: 32956689 DOI: 10.1016/j.taap.2020.115246] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 02/08/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-ĸB signaling have been recognized for their causal connection with liver fibrosis. Hence, it is encouraging to discover drugs that can modify the interactions between these signaling cascades. It has been suggested that glucagon-like peptide-1 receptors (GLP-1Rs) might have a role in the observed hepatoprotection of dipeptidyl peptidase-4 inhibitors other than vildagliptin (VLD). Consequently, we aimed to elucidate the mechanisms underlying its potential antifibrotic activity in a CCl4-intoxicated mouse model. VLD increased the percentage of viable CCl4-intoxicated primary rat hepatocytes in vitro. It also attenuated hepatic fibrosis, improved liver function, and prolonged survival of CCl4-intoxicated mice in a dose-dependent manner. This hepatoprotection might be mediated mainly through interference with extracellular signal-regulated protein kinase 1/2 phosphorylation, the most downstream signal of the MAPK pathway. In addition, VLD hepatoprotective activity could be partially mediated through inhibition of p38α phosphorylation and phosphorylation-induced NF-ĸB activation. As a result, VLD downregulated profibrogenic mediators, such as tumor necrosis factor α, transforming growth factor β, tissue inhibitor of metalloproteinase 1 and platelet-derived growth factor BB. Consequently, decreased expression levels of fibrosis markers, such as hydroxyproline and α smooth muscle actin, were confirmed. VLD showed a strong trend toward increasing the antioxidant defense machinery of fibrotic tissue, and we confirmed that GLP-1Rs were not implicated in the observed hepatoprotection. Since VLD poses little risk of hypoglycemia and is a safe drug for patients with liver injury, it may be a hopeful candidate for adjuvant treatment of liver fibrosis in humans.
Collapse
Affiliation(s)
- Rania Khalil
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ahmed Shata
- Department of Clinical pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Eman M Abd El-Kader
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Hossam Sharaf
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Walied S Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Noha A Amin
- Department of Haematology, Theodor Bilharz Research Institute, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| |
Collapse
|
27
|
Saber S, Ghanim AMH, El-Ahwany E, El-Kader EMA. Novel complementary antitumour effects of celastrol and metformin by targeting IκBκB, apoptosis and NLRP3 inflammasome activation in diethylnitrosamine-induced murine hepatocarcinogenesis. Cancer Chemother Pharmacol 2020; 85:331-343. [DOI: 10.1007/s00280-020-04033-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
|
28
|
Mebendazole augments sensitivity to sorafenib by targeting MAPK and BCL-2 signalling in n-nitrosodiethylamine-induced murine hepatocellular carcinoma. Sci Rep 2019; 9:19095. [PMID: 31836811 PMCID: PMC6911098 DOI: 10.1038/s41598-019-55666-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Sorafenib (SO) is a multi-kinase inhibitor that targets upstream signals in the MAPK pathway. Drug resistance and transient survival benefits are the main obstacles associated with SO treatment in Hepatocellular carcinoma (HCC) patients. Mebendazole (MBZ), an anthelmintic agent, has demonstrated activity against various cancer types. Therefore, we aimed to investigate the possible mechanisms of MBZ other than its anti-tubulin activity. MBZ (100 mg/kg/day, P.O.) was administered to N-nitrosodiethylamine-induced HCC mice as a monotherapeutic agent or in combination with SO. Our results revealed that MBZ decreased AFP levels, improved liver function and histology and increased survival in HCC mice, particularly when administered in combination with SO. MBZ also reduced hepatic inflammation and fibrogenesis as evidenced by reductions in TNF-α and TGF-β1 levels, respectively. Increased hepatic caspases-3 and -9 and decreased BCL-2 levels suggest induced-cell death. In addition, MBZ demonstrated anti-angiogenic, anti-metastatic, and anti-proliferative effects, as indicated by reduced VEGF levels, MMP-2:TIMP-1 ratios, and reduced cyclin D1 levels and Ki67 immunostaining, respectively. Our main finding was that MBZ targeted downstream signal of the MAPK pathway by inhibiting ERK1/2 phosphorylation. Targeting downstream MAPK signalling by MBZ and upstream signalling by SO is a novel approach to minimizing resistance and prolonging survival.
Collapse
|