1
|
Fan Z, Chen J, Yang Q, He J. Network Pharmacology and Experimental Validation to Reveal the Pharmacological Mechanisms of Chongcaoyishen Decoction Against Chronic Kidney Disease. Front Mol Biosci 2022; 9:847812. [PMID: 35433831 PMCID: PMC9008695 DOI: 10.3389/fmolb.2022.847812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
Objective: To explore the pharmacological mechanisms of Chongcaoyishen decoction (CCYSD) against chronic kidney disease (CKD) via network pharmacology analysis combined with experimental validation.Methods: The bioactive components and potential regulatory targets of CCYSD were extracted from the TCMSP database, and the putative CKD-related target proteins were collected from the GeneCards and OMIM database. We matched the active ingredients with gene targets and conducted regulatory networks through Perl5 and R 3.6.1. The network visualization analysis was performed by Cytoscape 3.7.1, which contains ClueGO plug-in for GO and KEGG analysis. In vivo experiments were performed on 40 male SD rats, which were randomly divided into the control group (n = 10), sham group (n = 10), UUO group (n = 10), and CCYSD group (n = 10). A tubulointerstitial fibrosis model was constructed by unilateral ureteral obstruction through surgery and treated for seven consecutive days with CCYSD (0.00657 g/g/d). At the end of treatment, the rats were euthanized and the serum and kidney were collected for further detection.Results: In total, 53 chemical compounds from CCYSD were identified and 12,348 CKD-related targets were collected from the OMIM and GeneCards. A total of 130 shared targets of CCYSD and CKD were acquired by Venn diagram analysis. Functional enrichment analysis suggested that CCYSD might exert its pharmacological effects in multiple biological processes, including oxidative stress, apoptosis, inflammatory response, autophagy, and fiber synthesis, and the potential targets might be associated with JAK-STAT and PI3K-AKT, as well as other signaling pathways. The results of the experiments revealed that the oxidative stress in the UUO group was significantly higher than that in normal state and was accompanied by severe tubulointerstitial fibrosis (TIF), which could be effectively reversed by CCYSD (p < 0.05). Meanwhile, aggravated mitochondrial injury and autophagy was observed in the epithelial cells of the renal tubule in the UUO group, compared to the normal ones (p < 0.05), while the intervention of CCYSD could further activate the autophagy and reduce the mitochondrial injury (p < 0.05).Conclusion: We provide an integrative network pharmacology approach combined with in vivo experiments to explore the underlying mechanisms governing the CCYSD treatment of CKD, which indicates that the relationship between CCYSD and CKD is related to its activation of autophagy, promotion of mitochondrial degradation, and reduction of tissue oxidative stress injury, promoting the explanation and understanding of the biological mechanism of CCYSD in the treatment of CKD.
Collapse
Affiliation(s)
- Zhenliang Fan
- Nephrology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingjing Chen
- Department of Rheumatology and Immunology, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Qiaorui Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiabei He
- Department of Oncology Radiotherapy, Affiliated Zhongshan Hospital to Dalian University, Liaoning, China
- *Correspondence: Jiabei He,
| |
Collapse
|
2
|
Vascular Endothelial Dysfunction in the Thoracic Aorta of Rats with Ischemic Acute Kidney Injury: Contribution of Indoxyl Sulfate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7547269. [PMID: 35251481 PMCID: PMC8896937 DOI: 10.1155/2022/7547269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 01/04/2023]
Abstract
Chronic kidney disease (CKD) and cardiovascular disease are known to be linked, and the involvement of indoxyl sulfate (IS), a type of uremic toxin, has been suggested as one of the causes. It is known that IS induces vascular dysfunction through overproduction of reactive oxygen species (ROS). On the other hand, the involvement of IS in the vascular dysfunction associated with acute kidney injury (AKI) is not fully understood. Therefore, we investigated this issue using the thoracic aorta of rats with ischemic AKI. Ischemic AKI was induced by occlusion of the left renal artery and vein for 45 min, followed by reperfusion 2 weeks after contralateral nephrectomy. One day after reperfusion, there was marked deterioration in renal function evidenced by an increase in plasma creatinine. Furthermore, blood IS levels increased markedly due to worsening renal function. Seven days and 28 days after reperfusion, blood IS levels decreased with the improvement in renal function. Of note, acetylcholine-induced vasorelaxation deteriorated over time after reperfusion, contradicting the recovery of renal function. In addition, 28 days after reperfusion, we observed a significant increase in ROS production in the vascular tissue. Next, we administered AST-120, a spherical adsorbent charcoal, after reperfusion to assess whether the vascular endothelial dysfunction associated with the ischemic AKI was due to a temporary increase in blood IS levels. AST-120 reduced the temporary increase in blood IS levels after reperfusion without influencing renal function, but did not restore the impaired vascular reactivity. Thus, in ischemic AKI, we confirmed that the vascular endothelial function of the thoracic aorta is impaired even after the recovery of kidney injury, probably with excessive ROS production. IS, which increases from ischemia to early after reperfusion, may not be a major contributor to the vascular dysfunction associated with ischemic AKI.
Collapse
|
3
|
Niu P, Ren X, Wu M, Wan S, Zheng Y, Jiao X, Yan L, Cao H, Yang L, Shao F. Effect of intrarenal renin-angiotensin-aldosterone system on renal function in patients after cardiac surgery. Medicine (Baltimore) 2022; 101:e28854. [PMID: 35363185 PMCID: PMC9282047 DOI: 10.1097/md.0000000000028854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/28/2022] [Indexed: 01/04/2023] Open
Abstract
The aim of the study was to investigate the influence of intrarenal RAS on the decrease of renal function in patients undergoing cardiac surgery with cardiopulmonary bypass. This observational study investigated the activation of intrarenal RAS in 24 patients with AKI after cardiac surgery with cardiopulmonary bypass. The activation of intrarenal RAS was determined by urinary angiotensinogen (uAGT), which was measured at 12 hours before surgery, 0 and12 hours after surgery. The results were compared with those of 21 patients without AKI after cardiac surgery with cardiopulmonary bypass. Clinical and laboratory data were collected. Compared with baseline, all patients with cardiac surgery had activation of intrarenal RAS at 0 and 12 hours after surgery. The activation of intrarenal RAS was found significantly higher at both 0 and 12 hours after surgery in AKI group versus non AKI group (6.18 ± 1.93 ng/mL vs 3.49 ± 1.71 ng/mL, 16.38 ± 7.50 ng/mL vs 6.04 ± 2.59 ng/mL, respectively). There was a positive correlation between the activation of RAS at 0 hour after surgery and the decrease of renal function at 48 hours after surgery (r = 0.654, P = .001). These findings suggest that uAGT might be a suitable biomarker for prediction of the occurrence and severity of AKI after cardiac surgery. Inhibition of intrarenal RAS activation might be one the path of future treatment for this type of disease.
Collapse
Affiliation(s)
- Peiyuan Niu
- Department of Nephrology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
- Henan Key Laboratory of Kidney Disease and Immunology, Zhengzhou, Henan, China
- Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou, Henan, China
| | - Xuejing Ren
- Department of Nephrology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
- Henan Key Laboratory of Kidney Disease and Immunology, Zhengzhou, Henan, China
- Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou, Henan, China
| | - Meihao Wu
- Department of Nephrology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
- Henan Key Laboratory of Kidney Disease and Immunology, Zhengzhou, Henan, China
- Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou, Henan, China
| | - Shengfeng Wan
- Department of Nephrology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
- Henan Key Laboratory of Kidney Disease and Immunology, Zhengzhou, Henan, China
- Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou, Henan, China
| | - Yan Zheng
- Department of Nephrology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
- Henan Key Laboratory of Kidney Disease and Immunology, Zhengzhou, Henan, China
- Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou, Henan, China
| | - Xiaojing Jiao
- Department of Nephrology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
- Henan Key Laboratory of Kidney Disease and Immunology, Zhengzhou, Henan, China
- Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou, Henan, China
| | - Lei Yan
- Department of Nephrology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
- Henan Key Laboratory of Kidney Disease and Immunology, Zhengzhou, Henan, China
- Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou, Henan, China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
- Henan Key Laboratory of Kidney Disease and Immunology, Zhengzhou, Henan, China
- Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou, Henan, China
| | - Leiyi Yang
- Department of Cardiopulmonary Bypass, Henan Provincial People's Hospital; Department of Cardiopulmonary Bypass of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
- Henan Key Laboratory of Kidney Disease and Immunology, Zhengzhou, Henan, China
- Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Fibrosis, the Bad Actor in Cardiorenal Syndromes: Mechanisms Involved. Cells 2021; 10:cells10071824. [PMID: 34359993 PMCID: PMC8307805 DOI: 10.3390/cells10071824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiorenal syndrome is a term that defines the complex bidirectional nature of the interaction between cardiac and renal disease. It is well established that patients with kidney disease have higher incidence of cardiovascular comorbidities and that renal dysfunction is a significant threat to the prognosis of patients with cardiac disease. Fibrosis is a common characteristic of organ injury progression that has been proposed not only as a marker but also as an important driver of the pathophysiology of cardiorenal syndromes. Due to the relevance of fibrosis, its study might give insight into the mechanisms and targets that could potentially be modulated to prevent fibrosis development. The aim of this review was to summarize some of the pathophysiological pathways involved in the fibrotic damage seen in cardiorenal syndromes, such as inflammation, oxidative stress and endoplasmic reticulum stress, which are known to be triggers and mediators of fibrosis.
Collapse
|
5
|
Spencer S, Wheeler-Jones C, Elliott J. Hypoxia and chronic kidney disease: Possible mechanisms, therapeutic targets, and relevance to cats. Vet J 2021; 274:105714. [PMID: 34252550 DOI: 10.1016/j.tvjl.2021.105714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
There is mounting evidence that kidney ischaemia/hypoxia plays an important role in feline chronic kidney disease (CKD) development and progression, as well as in human disease and laboratory animal models. Ischaemic acute kidney injury is widely accepted as a cause of CKD in people and data from laboratory species has identified some of the pathways underlying this continuum. Experimental kidney ischaemia in cats results in morphological changes, namely chronic tubulointerstitial inflammation, tubulointerstitial fibrosis, and tubular atrophy, akin to those observed in naturally-occurring CKD. Multiple situations are envisaged that could result in acute or chronic episodes of kidney hypoxia in cats, while risk factors identified in epidemiological studies provide further support that kidney hypoxia contributes to spontaneously occurring feline CKD. This review evaluates the evidence for the role of kidney ischaemia/hypoxia in feline CKD and the proposed mechanisms and consequences of kidney hypoxia. As no effective treatments exist that substantially slow or prevent feline CKD progression, there is a need for novel therapeutic strategies. Targeting kidney hypoxia is one such promising approach, with therapies including those that attenuate the hypoxia-inducible factor (HIF) pathway already being utilised in human CKD.
Collapse
Affiliation(s)
- Sarah Spencer
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| | - Caroline Wheeler-Jones
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Jonathan Elliott
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| |
Collapse
|
6
|
Rianto F, Hoang T, Revoori R, Sparks MA. Angiotensin receptors in the kidney and vasculature in hypertension and kidney disease. Mol Cell Endocrinol 2021; 529:111259. [PMID: 33781840 DOI: 10.1016/j.mce.2021.111259] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/05/2021] [Accepted: 03/20/2021] [Indexed: 12/24/2022]
Abstract
Kidney disease, blood pressure determination, hypertension pathogenesis, and the renin-angiotensin system (RAS) are inextricably linked. Hence, understanding the RAS is pivotal to unraveling the pathophysiology of hypertension and the determinants to maintaining normal blood pressure. The RAS has been the subject of intense investigation for over a century. Moreover, medications that block the RAS are mainstay therapies in clinical medicine and have been shown to reduce morbidity and mortality in patients with diabetes, cardiovascular, and kidney diseases. The main effector peptide of the RAS is the interaction of the octapeptide- Ang II with its receptor. The type 1 angiotensin receptor (AT1R) is the effector receptor for Ang II. These G protein-coupled receptors (GPCRs) are ubiquitously expressed in a variety of cell lineages and tissues relevant to cardiovascular disease throughout the body. The advent of cell specific deletion of genes using Cre LoxP technology in mice has allowed for the identification of discreet actions of AT1Rs in blood pressure control and kidney disease. The kidney is one of the major targets of the RAS, which is responsible in maintaining fluid, electrolyte balance, and blood pressure. In this review we will discuss the role of AT1Rs in the kidney, vasculature, and immune cells and address their effects on hypertension and kidney disease.
Collapse
MESH Headings
- Angiotensin I/genetics
- Angiotensin I/metabolism
- Angiotensin II/genetics
- Angiotensin II/metabolism
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Blood Pressure/genetics
- Gene Expression Regulation
- Humans
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Kidney Tubules, Proximal/enzymology
- Kidney Tubules, Proximal/pathology
- Mice
- Mice, Knockout
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renin-Angiotensin System/genetics
- Signal Transduction
- Water-Electrolyte Balance/genetics
Collapse
Affiliation(s)
- Fitra Rianto
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Thien Hoang
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Ritika Revoori
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States; Renal Section, Durham VA Health Care System, Durham, NC, United States.
| |
Collapse
|
7
|
Nishida K, Watanabe H, Murata R, Tokumaru K, Fujimura R, Oshiro S, Nagasaki T, Miyahisa M, Hiramoto Y, Nosaki H, Imafuku T, Maeda H, Fukagawa M, Maruyama T. Recombinant Long-Acting Thioredoxin Ameliorates AKI to CKD Transition via Modulating Renal Oxidative Stress and Inflammation. Int J Mol Sci 2021; 22:ijms22115600. [PMID: 34070521 PMCID: PMC8199127 DOI: 10.3390/ijms22115600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
An effective strategy is highly desirable for preventing acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Thioredoxin-1 (Trx), a redox-active protein that has anti-oxidative and anti-inflammatory properties, would be a candidate for this but its short half-life limits its clinical application. In this study, we examined the renoprotective effect of long-acting Trx that is comprised of human albumin and Trx (HSA-Trx) against AKI to CKD transition. AKI to CKD mice were created by renal ischemia-reperfusion (IR). From day 1 to day 14 after renal IR, the recovery of renal function was accelerated by HSA-Trx administration. On day 14, HSA-Trx reduced renal fibrosis compared with PBS treatment. At the early phase of fibrogenesis (day 7), HSA-Trx treatment suppressed renal oxidative stress, pro-inflammatory cytokine production and macrophage infiltration, thus ameliorating tubular injury and fibrosis. In addition, HSA-Trx treatment inhibited G2/M cell cycle arrest and apoptosis in renal tubular cells. While renal Trx protein levels were decreased after renal IR, the levels were recovered by HSA-Trx treatment. Together, HSA-Trx has potential for use in the treatment of AKI to CKD transition via its effects of modulating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
- Correspondence: (H.W.); (T.M.); Tel.: +81-96-371-4855 (H.W.); +81-96-371-4150 (T.M.); Fax: +81-96-371-4855 (H.W.); +81-96-371-4153 (T.M.)
| | - Ryota Murata
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Kai Tokumaru
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Rui Fujimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Shun Oshiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Masako Miyahisa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Yuto Hiramoto
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Hiroto Nosaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara 259-1193, Japan;
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
- Correspondence: (H.W.); (T.M.); Tel.: +81-96-371-4855 (H.W.); +81-96-371-4150 (T.M.); Fax: +81-96-371-4855 (H.W.); +81-96-371-4153 (T.M.)
| |
Collapse
|
8
|
Gupta G, Dahiya R, Singh Y, Mishra A, Verma A, Gothwal SK, Aljabali AA, Dureja H, Prasher P, Negi P, Kapoor DN, Goyal R, Tambuwala MM, Chellappan DK, Dua K. Monotherapy of RAAS blockers and mobilization of aldosterone: A mechanistic perspective study in kidney disease. Chem Biol Interact 2020; 317:108975. [DOI: 10.1016/j.cbi.2020.108975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/22/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
|