1
|
Singh J, Srivastava S, Zehra A, Prajapati P, Agarwal V, Kumar A, Mishra V, Kushwaha S. Beta(β)-sitosterol attenuates Chronic Unpredictable Stress (CUS) Induced Testicular Damage in the Experimental Rat Model. Reprod Sci 2025; 32:1312-1330. [PMID: 40044991 DOI: 10.1007/s43032-025-01825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/13/2025] [Indexed: 04/10/2025]
Abstract
Chronic stress is a major contributor to male reproductive dysfunction leading to testicular damage and impaired spermatogenesis. This study investigates the protective effects of β-sitosterol, a phytosterol with known antioxidant properties, against CUS-induced testicular damage in rats. Male Wistar rats were divided into Control, Chronic Unpredictable Stress (CUS), and CUS + β-sitosterol. The CUS and CUS + β-sitosterol groups were exposed to random stressors for eight weeks. β-Sitosterol was administered orally at a dose of 20 mg/kg for three weeks, starting from the fifth week of CUS induction. Behavioral tests like EPMT and NSFT were conducted to confirm CUS induction, after which serum, testis, and epididymis samples were collected for analysis. β-sitosterol significantly increased testis and epididymis weight, along with sperm counts in CUS rats. Histological analysis revealed restoration of testicular cellular structure, as indicated by an improved Johnsen's index scores. Additionally, β-sitosterol restored antioxidant levels and oxidative stress parameters in testicular tissue. TEM showed germ cell integrity and restored basement membrane structure in the CUS + β-sitosterol group. In silico analysis indicated strong interactions of β-sitosterol with FNDC5, P450scc, and 3β-HSD proteins involved in steroidogenesis. Immunohistochemistry confirmed an increased expression of FNDC5 in the CUS + β-sitosterol group, β-sitosterol ameliorates CUS-induced testicular damage and improves sperm count, highlighting its potential as a dietary intervention for stress-related male infertility. Further preclinical and clinical studies are warranted to explore its therapeutic potential.
Collapse
Affiliation(s)
- Jiten Singh
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India
- Department of Pharmaceutical Sciences, School of Interdisciplinary Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Areesh Zehra
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Priyanka Prajapati
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Anand Kumar
- Department of Pharmacy School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India.
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, 226002, India.
| |
Collapse
|
2
|
Jiang L, Sun X, Wan Y, Qin Q, Xu M, Ma J, Zan L, Wang H. Transcriptome Reveals the Promoting Effect of Beta-Sitosterol on the Differentiation of Bovine Preadipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3400-3412. [PMID: 39874185 DOI: 10.1021/acs.jafc.4c10452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Natural small molecule compounds play crucial roles in regulating fat deposition. Beta-sitosterol exhibits multiple biological activities such as cholesterol reduction and anticancer effects. However, its regulatory mechanism in the differentiation of bovine preadipocytes remains unclear. We identified potential associations of Beta-sitosterol with biological processes such as cholesterol regulation and lipid metabolism through the prediction of its targets. We utilized techniques such as Oil Red O staining, Western blotting, RNA-seq, and others to elucidate the promoting effect of Beta-sitosterol on the differentiation of bovine preadipocytes. Furthermore, reducing the expression of the most downregulated gene among differential expressed genes (DEGs), MGP, promotes the differentiation of bovine preadipocytes. After interfering with MGP, RNA-seq analysis on the sixth day of differentiation revealed that DEGs were most significantly enriched in the PPAR signaling pathway. In this pathway, the expression levels of genes related to adipocyte differentiation, including CD36, RXRα, RXRγ, FABP4, PLIN1, ADIPO, and CAP, were significantly upregulated (P < 0.01). Western blot and ELISA analysis on genes related to the PPAR signaling pathway showed that interfering with MGP increased the expression of proteins such as RXRα, indicating the possible activation of the PPAR signaling pathway. In summary, Beta-sitosterol may promote the differentiation of bovine preadipocytes by reducing the expression of MGP, thereby activating the PPAR signaling pathway.
Collapse
Affiliation(s)
- Lei Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolei Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Wan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qihua Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianqiang Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- National Beef Cattle Improvement Centre, Yangling, Shaanxi 712100, China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- National Beef Cattle Improvement Centre, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Ezhilarasan D, Karthikeyan S, Najimi M, Vijayalakshmi P, Bhavani G, Jansi Rani M. Preclinical liver toxicity models: Advantages, limitations and recommendations. Toxicology 2025; 511:154020. [PMID: 39637935 DOI: 10.1016/j.tox.2024.154020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Experimental animal models are crucial for elucidating the pathophysiology of liver injuries and for assessing new hepatoprotective agents. Drugs and chemicals such as acetaminophen, isoniazid, valproic acid, ethanol, carbon tetrachloride (CCl4), dimethylnitrosamine (DMN), and thioacetamide (TAA) are metabolized by the CYP2E1 enzyme, producing hepatotoxic metabolites that lead to both acute and chronic liver injuries. In experimental settings, acetaminophen (centrilobular necrosis), carbamazepine (centrilobular necrosis and inflammation), sodium valproate (necrosis, hydropic degeneration and mild inflammation), methotrexate (sinusoidal congestion and inflammation), and TAA (centrilobular necrosis and inflammation) are commonly used to induce various types of acute liver injuries. Repeated and intermittent low-dose administration of CCl4, TAA, and DMN activates quiescent hepatic stellate cells, transdifferentiating them into myofibroblasts, which results in abnormal extracellular matrix production and fibrosis induction, more rapidly with DMN and CCL4 than TAA (DMN > CCl4 > TAA). Regarding toxicity and mortality, CCl4 is more toxic than DMN and TAA (CCl4 > DMN > TAA). Models used to induce metabolic dysfunction-associated liver disease (MAFLD) vary, but MAFLD's multifactorial nature driven by factors like obesity, fatty liver, dyslipidaemia, type II diabetes, hypertension, and cardiovascular disease makes it challenging to replicate human metabolic dysfunction-associated steatohepatitis accurately. From an experimental point of view, the degree and pattern of liver injury are influenced by various factors, including the type of hepatotoxic agent, exposure duration, route of exposure, dosage, frequency of administration, and the animal model utilized. Therefore, there is a pressing need for standardized protocols and regulatory guidelines to streamline the selection of animal models in preclinical studies.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Sivanesan Karthikeyan
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Paramasivan Vijayalakshmi
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Asan Memorial Dental College and Hospital, Chengalpattu, Tamil Nadu, India
| | - Ganapathy Bhavani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Muthukrishnan Jansi Rani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
4
|
Yang Q, Fan L, Hao E, Hou X, Deng J, Du Z, Xia Z. Construction of an explanatory model for predicting hepatotoxicity: a case study of the potentially hepatotoxic components of Gardenia jasminoides. Drug Chem Toxicol 2025; 48:107-119. [PMID: 38938098 DOI: 10.1080/01480545.2024.2364905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/17/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024]
Abstract
It is well-known that the hepatotoxicity of drugs can significantly influence their clinical use. Despite their effective therapeutic efficacy, many drugs are severely limited in clinical applications due to significant hepatotoxicity. In response, researchers have created several machine learning-based hepatotoxicity prediction models for use in drug discovery and development. Researchers aim to predict the potential hepatotoxicity of drugs to enhance their utility. However, current hepatotoxicity prediction models often suffer from being unverified, and they fail to capture the detailed toxicological structures of predicted hepatotoxic compounds. Using the 56 chemical constituents of Gardenia jasminoides as examples, we validated the trained hepatotoxicity prediction model through literature reviews, principal component analysis (PCA), and structural comparison methods. Ultimately, we successfully developed a model with strong predictive performance and conducted visual validation. Interestingly, we discovered that the predicted hepatotoxic chemical constituents of Gardenia possess both toxic and therapeutic effects, which are likely dose-dependent. This discovery greatly contributes to our understanding of the dual nature of drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Qi Yang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
| | - Lili Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhongshang Xia
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
5
|
Tlili ML, Laib I, Hammoudi R, Hadj-Mohamed M, Laouini SE, Bouafia A, Alharthi F, Bin Emran T. Therapeutic Efficacy of Salvia chudaei Ethanol Extract in Hyperlipidemia, Hyperglycemia, and Oxidative Stress in Triton X-100-Induced Wistar Rats. Chem Biodivers 2024:e202403017. [PMID: 39739250 DOI: 10.1002/cbdv.202403017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/02/2025]
Abstract
The study explored the efficacy of Salvia chudaei ethanolic extract in managing hyperlipidemia, hyperglycemia, and oxidative stress induced by Triton X-100 in Wistar rats. Twenty-four rats were divided into four groups: Control, S. chudaei-treated, Triton-induced hyperlipidemic, and a combination of Triton + S. chudaei treatment. Triton X-100 raised serum levels of total cholesterol, triacylglycerol, and low-density lipoprotein (LDL) while lowering high-density lipoprotein (HDL) cholesterol, leading to oxidative stress marked by increased malondialdehyde (MDA) and reduced antioxidant activity in liver and kidney tissues. Administration of S. chudaei extract effectively reversed these adverse effects, significantly lowering cholesterol, triacylglycerol, and LDL levels, and improving HDL cholesterol. It also enhanced antioxidant defenses and reduced oxidative stress markers, demonstrating its protective role against metabolic dysfunction. High-performance liquid chromatography analysis confirmed the presence of bioactive compounds in the extract that contribute to these benefits. The findings suggest that S. chudaei ethanolic extract possesses strong antihyperlipidemic, antihyperglycemic, and antioxidant properties, making it a promising natural agent for preventing and treating hyperlipidemia and oxidative stress. This positions S. chudaei as a potential new therapeutic approach in the management of metabolic disorders.
Collapse
Affiliation(s)
- Mohammed Laid Tlili
- Department of Cellular and Molecular Biology, El Oued University, El Oued, Algeria
- Biogeochemistry of Desert Environments laboratory, Ouargla University, Ouargla, Algeria
| | - Ibtissam Laib
- Department of Cellular and Molecular Biology, El Oued University, El Oued, Algeria
| | - Rokia Hammoudi
- Department of Biology, Ouargla University, Ouargla, Algeria
| | - Mahfoud Hadj-Mohamed
- Biogeochemistry of Desert Environments laboratory, Ouargla University, Ouargla, Algeria
| | - Salah Eddine Laouini
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Faculty of Technology, BBCM Laboratory, University of El Oued, El Oued, Algeria
| | - Abderrhmane Bouafia
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Faculty of Technology, BBCM Laboratory, University of El Oued, El Oued, Algeria
| | - Fahad Alharthi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Faculty of Allied Health Sciences, Department of Pharmacy, Daffodil International University, Daffodil Smart City, Bangladesh
| |
Collapse
|
6
|
Nechchadi H, Nadir Y, Benhssaine K, Alem C, Sellam K, Boulbaroud S, Berrougui H, Ramchoun M. Hypolipidemic activity of phytochemical combinations: A mechanistic review of preclinical and clinical studies. Food Chem 2024; 459:140264. [PMID: 39068825 DOI: 10.1016/j.foodchem.2024.140264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Hyperlipidemia, a condition characterized by elevated levels of lipids in the blood, poses a significant risk factor for various health disorders, notably cardiovascular diseases. Phytochemical compounds are promising alternatives to the current lipid-lowering drugs, which cause many undesirable effects. Based on in vivo and clinical studies, combining phytochemicals with other phytochemicals, prebiotics, and probiotics and their encapsulation in nanoparticles is more safe and effective for managing hyperlipidemia than monotherapy. To this end, the results obtained and the mechanisms of action of these combinations were examined in detail in this review.
Collapse
Affiliation(s)
- Habiba Nechchadi
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco.
| | - Youssef Nadir
- Laboratory of Biological Engineering, Faculty of Sciences and Techniques, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Khalid Benhssaine
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Chakib Alem
- Biochemistry of Natural Products Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| |
Collapse
|
7
|
Grabeklis SA, Kozlova MA, Mikhaleva LM, Dygai AM, Vandysheva RA, Anurkina AI, Areshidze DA. Effect of Constant Illumination on the Morphofunctional State and Rhythmostasis of Rat Livers at Experimental Toxic Injury. Int J Mol Sci 2024; 25:12476. [PMID: 39596541 PMCID: PMC11594381 DOI: 10.3390/ijms252212476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
The effect of dark deprivation on the morphofunctional state and rhythmostasis of the liver under CCl4 toxic exposure has been studied. The relevance of this study is due to the fact that the hepatotoxic effect of carbon tetrachloride on the liver is well studied, but there are very few data on the relationship between CCl4 intoxication and circadian biorhythms, and most of the studies consider the susceptibility of the organism in general and of the liver in particular to the influence of CCl4 in some separate periods of the rhythm, but not the influence of this chemical agent on the structure of the whole rhythm. In addition, earlier studies indicate that light disturbance causes certain changes in the morphofunctional state of the liver and the structure of the circadian rhythm of a number of parameters. As a result of this study, we found that the effect of CCl4 in conditions of prolonged dark deprivation causes more significant structural and functional changes in hepatocytes, as well as leading to significant changes in the circadian rhythms of a number of parameters, which was not observed in the action of CCl4 as a monofactor. We assume that the severity of structural and functional changes is due to the light-induced deficiency of melatonin, which has hepatoprotective properties. Thus, the mechanisms of CCl4 action on CRs under conditions of light regime violations leave a large number of questions requiring further study, including the role of melatonin in these processes.
Collapse
Affiliation(s)
- Sevil A. Grabeklis
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - Maria A. Kozlova
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - Lyudmila M. Mikhaleva
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - Alexander M. Dygai
- Research Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Rositsa A. Vandysheva
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - Anna I. Anurkina
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - David A. Areshidze
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| |
Collapse
|
8
|
Jiang L, Wan Y, Pan J, Mao X, Sun X, Zan L, Wang H. Transcriptomic analysis reveals the inhibitory effect of beta-sitosterol on proliferation of bovine preadipocytes. Anim Biotechnol 2024; 35:2339406. [PMID: 38634284 DOI: 10.1080/10495398.2024.2339406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Fat deposition affects beef quantity and quality via preadipocyte proliferation. Beta-sitosterol, a natural small molecular compound, has various functions, such as anti-inflammation, antibacterial, and anticancer properties. The mechanism of action of Beta-sitosterol on bovine preadipocytes remains unclear. This study, based on RNA-seq, reveals the impact of Beta -sitosterol on the proliferation of bovine preadipocytes. Compared to the control group, Beta-sitosterol demonstrated a more pronounced inhibitory effect on cell proliferation after 48 hours of treatment than after 24 hours, as evidenced by the results of EdU staining and flow cytometry. RNA-seq and Western Blot analyses further substantiated these findings. Our results suggest that the impact of Beta-sitosterol on the proliferation of bovine preadipocytes is not significant after a 24-hour treatment. It is only after extending the treatment time to 48 hours that Beta-sitosterol may induce cell cycle arrest at the G2/M phase by suppressing the expression of CCNB1, thereby inhibiting the proliferation of bovine preadipocytes.
Collapse
Affiliation(s)
- Lei Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Wan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinhai Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyu Mao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolei Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Centre, Yangling, Shaanxi, China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Centre, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Pan Y, Lin W, Huang Y, Pan J, Dong Y. Decoding the mechanism of Qingjie formula in the prevention of COVID-19 based on network pharmacology and molecular docking. Heliyon 2024; 10:e39167. [PMID: 39640673 PMCID: PMC11620151 DOI: 10.1016/j.heliyon.2024.e39167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Traditional Chinese medicine (TCM) has played a positive role in preventing and controlling the coronavirus disease 2019 (COVID-19) epidemic. Qingjie formula (QJF) developed to prevent COVID-19 is widely used in Wenzhou, Zhejiang province, China. However, the biological active ingredients of QJF and their specific mechanisms for preventing COVID-19 remain unclear. The study focused on exploring the pharmacological mechanism of QJF for the prevention of COVID-19 based on network pharmacology and molecular docking. The active ingredients of QJF were screened by TCMSP database. Databases such as Genecards and Swiss Target Prediction predicted potential targets of QJF against COVID-19. The "drug-active ingredient-potential target" network was constructed by Cytoscape software. We used STRING database to construct the protein-protein interaction (PPI) network. Enrichment of biological functions and signaling pathways were analyzed by using the DAVID database and R language. Then AutoDock Vina and Python software were used for molecular docking of hub targets and active ingredients. 147 active ingredients interacted with 316 potential targets of COVID-19. A PPI network consisting of 30 hub genes was constructed, and the top 10 hub genes were ALB, AKT1, TP53, TNF, IL6, VEGFA, IL1B, CASP3, JUN and STAT3. The results of GO analysis showed that these targets were mainly enriched in cell responses to oxidative stress, chemical stress, and other functions. KEGG analysis revealed that viral protein interactions with cytokines (e.g., human cytomegalovirus infection), endocrine resistance pathways (e.g., AGE-RAGE signaling pathway), PI3K-Akt signaling pathway, and lipid and atherosclerosis signaling pathway were the major signaling pathways. Moreover, the core active ingredients of QJF had good binding affinity with hub genes by molecular docking. QJF plays an important role in the prevention of COVID-19 by regulating host immune inflammatory response and oxidative stress response, inhibiting virus, improving immune function, regulating the hypoxia-cytokine storm, and inhibiting cell migration.
Collapse
Affiliation(s)
- Yu Pan
- Department of Pharmacy, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, 325000, China
| | - Wanchun Lin
- Department of Pharmacy, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, 325000, China
| | - Yueyue Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yihua Dong
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
10
|
Jiang S, Gao K, Zhang F, Wang Y, He X, Yang J. β-sitosterol alleviates atherosclerosis by regulating catalase. Heliyon 2024; 10:e35639. [PMID: 39165938 PMCID: PMC11334795 DOI: 10.1016/j.heliyon.2024.e35639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
The aim of this study is to investigate the main active components of Gegen (Puerariae Lobatae Radix) on atherosclerosis and its mechanism of action. Bioinformatics analysis showed that β-sitosterol was the most likely active ingredient to mediate the anti-atherosclerotic effects. In vivo experiments showed that β-sitosterol inhibited plaque formation and platelet activation, and decreased serum total cholesterol (TC) and triglyceride (TG) levels. In vitro experiments showed that β-sitosterol can inhibit lipid deposition and phenotypic transformation of vascular smooth muscle cells (VSMCs). However, knocking down catalase (CAT), the direct target of β-sitosterol, not only promoted lipid deposition and phenotypic transformation of VSMCs, but also activated the PI3K/Akt/mTOR pathway, and the mTOR inhibitor (ink-128) can eliminate the effect of CAT knockdown, suggesting that β-sitosterol may inhibit lipid deposition and phenotypic transformation of VSMCs by activating CAT and silencing the PI3K/Akt/mTOR signaling pathway, thereby alleviating atherosclerosis.
Collapse
Affiliation(s)
- Shuntao Jiang
- Department of Cardiovascular Medicine, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000, Guizhou, China
| | - Kui Gao
- Department of Cardiology, People's Hospital of Lanshan District, NO.566, Lanshan West Road, Lanshan District, Rizhao, 276800, Shandong, China
| | - Furong Zhang
- Department of Cardiology, Huantai People's Hospital, No.2198, Huan Tai Avenue, Huantai suo Town, Zibo, 256400, Shandong, China
| | - Yanli Wang
- Department of Geriatrics, Traditional Chinese and Western Medicine Hospital of Qingdao, No.3, Jiaxiang Road, Qingdao, 266000, Shandong, China
| | - Xiaojing He
- Department of Cardiology, The First People's Hospital of Ningyang, No.872, Jinyang Street, Ningyang County, Taian, 271400, Shandong, China
| | - Jun Yang
- Department of Outpatient, The First People's Hospital of Yunnan, No.157, Jinbi road, Kunming, 650000, Yunnan, China
| |
Collapse
|
11
|
Liu C, Yu X, Zhang M, Wang S, Ni J, Yuan X, Han H. Antioxidant and Hepatoprotective Effect of Rosa davurica Pall Seed Oil on CCl 4-Induced Acute Liver Injury in Mice. J Med Food 2024; 27:636-650. [PMID: 38722249 DOI: 10.1089/jmf.2024.k.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Affiliation(s)
- Caiyan Liu
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaojin Yu
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Zhang
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuo Wang
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiating Ni
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Yuan
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Han
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
12
|
Feng X, Liu H, Sheng Y, Li J, Guo J, Song W, Li S, Liu Z, Zhou H, Wu N, Wang R, Chu J, Han X, Hu B, Qi Y. Yinchen gongying decoction mitigates CCl 4-induced chronic liver injury and fibrosis in mice implicated in inhibition of the FoxO1/TGF-β1/ Smad2/3 and YAP signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117975. [PMID: 38432576 DOI: 10.1016/j.jep.2024.117975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis (LF) is a common reversible consequence of chronic liver damage with limited therapeutic options. Yinchen Gongying decoction (YGD) composed of two homologous plants: (Artemisia capillaris Thunb, Taraxacum monochlamydeum Hand.-Mazz.), has a traditionally application as a medicinal diet for acute icteric hepatitis. However, its impact on LF and underlying mechanisms remain unclear. AIM OF THE STUDY This study aims to assess the impact of YGD on a carbon tetrachloride (CCl4) induced liver fibrosis and elucidate its possible mechanisms. The study seeks to establish an experimental foundation for YGD as a candidate drug for hepatic fibrosis. MATERIALS AND METHODS LC-MS/MS identified 11 blood-entry components in YGD, and network pharmacology predicted their involvement in the FoxO signaling pathway, insulin resistance, and PI3K-AKT signaling pathway. Using a CCl4-induced LF mouse model, YGD's protective effects were evaluated in comparison to a positive control and a normal group. The underlying mechanisms were explored through the assessments of hepatic stellate cells (HSCs) activation, fibrotic signaling, and inflammation. RESULTS YGD treatment significantly improved liver function, enhanced liver morphology, and reduced liver collagen deposition in CCl4-induced LF mice. Mechanistically, YGD inhibited HSC activation, elevated MMPs/TIMP1 ratios, suppressed the FoxO1/TGF-β1/Smad2/3 and YAP pathways, and exhibited anti-inflammatory and antioxidant effects. Notably, YGD improved the insulin signaling pathway. CONCLUSION YGD mitigates LF in mice by modulating fibrotic and inflammatory pathways, enhancing antioxidant responses, and specifically inhibiting FoxO1/TGF-β1/Smad2/3 and YAP signal pathways.
Collapse
Affiliation(s)
- Xinyi Feng
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Hengxu Liu
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Yifei Sheng
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Jiaqi Li
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Jiyuan Guo
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Wenxuan Song
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Sha Li
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Zixuan Liu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Haoyu Zhou
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Naijun Wu
- Department of Endocrinology, North China University of Science and Technology Affiliated Hospital, Tangshan 063210, China
| | - Rui Wang
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Jinxiu Chu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China; Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Xiaolei Han
- Qian 'an Hospital of Chinese Medicine, Tangshan 063210, China
| | - Baofeng Hu
- Qian 'an Hospital of Chinese Medicine, Tangshan 063210, China
| | - Yajuan Qi
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China; School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China; School of Public Health, North China University of Science and Technology, Tangshan 063210, China; Tangshan Key Laboratory of Basic Research in Medicine Development, North China University of Science and Technology, Tangshan 063210, China; Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China; Department of Endocrinology, North China University of Science and Technology Affiliated Hospital, Tangshan 063210, China.
| |
Collapse
|
13
|
El Omari N, Bakrim S, Khalid A, Abdalla AN, Iesa MAM, El Kadri K, Tang SY, Goh BH, Bouyahya A. Unveiling the molecular mechanisms: dietary phytosterols as guardians against cardiovascular diseases. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:27. [PMID: 38722432 PMCID: PMC11082103 DOI: 10.1007/s13659-024-00451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Until recently, the main pharmaceuticals used to control cholesterol and prevent cardiovascular disease (CVD) were statin-related drugs, known for their historical side effects. Therefore, there is growing interest in exploring alternatives, such as nutritional and dietary components, that could play a central role in CVD prevention. This review aims to provide a comprehensive understanding of how natural phytosterols found in various diets combat CVDs. We begin with a description of the overall approach, then we explore in detail the different direct and indirect mechanisms that contribute to reducing cardiovascular incidents. Phytosterols, including stigmasterol, β-sitosterol, ergosterol, and fucosterol, emerge as promising molecules within nutritional systems for protection against CVDs due to their beneficial effects at different levels through direct or indirect cellular, subcellular, and molecular mechanisms. Specifically, the mentioned phytosterols exhibit the ability to diminish the generation of various radicals, including hydroperoxides and hydrogen peroxide. They also promote the activation of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione, while inhibiting lipid peroxidation through the activation of Nrf2 and Nrf2/heme oxygenase-1 (HO-1) signaling pathways. Additionally, they demonstrate a significant inhibitory capacity in the generation of pro-inflammatory cytokines, thus playing a crucial role in regulating the inflammatory/immune response by inhibiting the expression of proteins involved in cellular signaling pathways such as JAK3/STAT3 and NF-κB. Moreover, phytosterols play a key role in reducing cholesterol absorption and improving the lipid profile. These compounds can be used as dietary supplements or included in specific diets to aid control cholesterol levels, particularly in individuals suffering from hypercholesterolemia.
Collapse
Affiliation(s)
- Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, 80000, Agadir, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, 45142, Jazan, Saudi Arabia.
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Mohamed A M Iesa
- Department of Physiology, Al Qunfudah Medical College, Umm Al Qura University, Mecca, Saudi Arabia
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, 10106, Rabat, Morocco
| | - Siah Ying Tang
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Malaysia.
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, 10106, Rabat, Morocco.
| |
Collapse
|
14
|
Miszczuk E, Bajguz A, Kiraga Ł, Crowley K, Chłopecka M. Phytosterols and the Digestive System: A Review Study from Insights into Their Potential Health Benefits and Safety. Pharmaceuticals (Basel) 2024; 17:557. [PMID: 38794127 PMCID: PMC11124171 DOI: 10.3390/ph17050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Phytosterols are a large group of substances belonging to sterols-compounds naturally occurring in the tissues of plants, animals, and humans. The most well-known animal sterol is cholesterol. Among phytosterols, the most significant compounds are β-sitosterol, stigmasterol, and campesterol. At present, they are mainly employed in functional food products designed to counteract cardiovascular disorders by lowering levels of 'bad' cholesterol, which stands as their most extensively studied purpose. It is currently understood that phytosterols may also alleviate conditions associated with the gastrointestinal system. Their beneficial pharmacological properties in relation to gastrointestinal tract include anti-inflammatory and hepatoprotective activity. Also, the anti-cancer properties as well as the impact on the gut microbiome could be a very interesting area of research, which might potentially lead to the discovery of their new application. This article provides consolidated knowledge on a new potential use of phytosterols, namely the treatment or prevention of gastrointestinal diseases. The cited studies indicate high therapeutic efficacy in conditions such as peptic ulcer disease, IBD or liver failure caused by hepatotoxic xenobiotics, however, these are mainly in vitro or in vivo studies. Nevertheless, studies to date indicate their therapeutic potential as adjunctive treatments to conventional therapies, which often exhibit unsatisfactory efficacy or serious side effects. Unfortunately, at this point there is a lack of significant clinical study data to use phytosterols in clinical practice in this area.
Collapse
Affiliation(s)
- Edyta Miszczuk
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (E.M.); (K.C.)
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J, 15-245 Bialystok, Poland;
| | - Łukasz Kiraga
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (E.M.); (K.C.)
| | - Kijan Crowley
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (E.M.); (K.C.)
| | - Magdalena Chłopecka
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (E.M.); (K.C.)
| |
Collapse
|
15
|
Han L, Lin G, Li J, Zhang Q, Ran T, Huang T, Hu R, Feng S, Zou G, Chen S, Zhao X. Network pharmacology and transcriptomic profiling elucidate the therapeutic effects of Ranunculus ternatus Thunb on liver fibrosis via MK3-NF-κB inhibition. Aging (Albany NY) 2024; 16:4759-4777. [PMID: 38461449 PMCID: PMC10968670 DOI: 10.18632/aging.205629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/23/2024] [Indexed: 03/12/2024]
Abstract
Activation of hepatic stellate cells (HSCs) is critical in the progression of liver fibrosis and is a promising target for anti-hepatic fibrosis drug development. Moreover, effective pharmacological interventions targeting this pathomechanism are scarce. Our study confirms the therapeutic value of β-sitosterol, a major constituent of Ranunculus ternatus Thunb, in hepatic fibrosis and identifies its underlying mechanisms. After treatment with β-sitosterol, CCL4-induced hepatic fibrosis was reversed in mice, while inflammatory and hepatic fibrosis indices were improved. Meanwhile, we explored the molecular mechanism of β-sitosterol treatment for hepatic fibrosis and, based on RNA-seq results, found that the ameliorative effect of β-sitosterol on hepatic fibrosis was associated with the MK3 and NF-κB signalling pathways. MK3, an important kinase in the MAPK pathway, plays a role in transmitting upstream and downstream signals, whereas the NF-κB signalling pathway has been shown to be associated with HSC activation. We verified the interaction between MK3 and IκB in HSC cells using endogenous Co-IP, whereas β-sitosterol reduced the binding of MK3 to IκB and the activation of the NF-κB signalling pathway. Our findings reveal the mechanism of β-sitosterol in the treatment of liver fibrosis, suggesting that β-sitosterol may be a promising drug for the treatment of liver fibrosis and deserves further investigation.
Collapse
Affiliation(s)
- Lu Han
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- Department of Gastroenterology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Guoyuan Lin
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Jianchao Li
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qingxiu Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Tao Ran
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Tao Huang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Ruihan Hu
- Department of Cardiology, Guiqian International General Hospital, Guiyang, Guizhou Province, China
| | - Shu Feng
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Gaoliang Zou
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Shaojie Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xueke Zhao
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
16
|
Hu X, Liu F, Yang H, Qi M, Ren Y, Zhu W, Dai C. Protective Effect and Related Mechanism of Modified Danggui Buxue Decoction on Retinal Oxidative Damage in Mice based on Network Pharmacology. Curr Pharm Des 2024; 30:1912-1926. [PMID: 38835123 DOI: 10.2174/0113816128293824240517113238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is one of the common diseases that cause vision loss in the elderly, and oxidative stress has been considered a major pathogenic factor for AMD. Modified Danggui Buxue Decoction (RRP) has a good therapeutic effect on non-proliferatic diabetic retinopathy and can improve the clinical symptoms of patients. METHODS The key ingredients and core targets of RRP protecting retinal oxidative damage were obtained by Network pharmacology analysis. A mouse retinal oxidative damage model induced by tail vein injection of 1% NaIO3 solution (25 mg/kg) was treated with RRP for 4 weeks and used to verify the pharmacodynamics and related mechanism. AIM This study aimed to predict and verify the protective effect and mechanism of RRP on retinal oxidative damage in mice based on network pharmacology and animal experiments. RESULTS A total of 15 key active components included in RRP interacted with 57 core targets related to retinal oxidative damage (such as AKT1, NFE2L2, HMOX1), mainly involved in the AGE-RAGE signaling pathway in diabetic complications, PI3K-AKT signaling pathway and so on. Further studies in vivo found that RRP improved the retinal oxidative damage, increased the content of SOD and GSH, decreased the content of MDA in mouse serum, promoted the expression of p-PI3K, p-AKT, Nrf2, HO-1 and NQO1 proteins in the mouse retina, and inhibited the expression of Nrf2 in the cytoplasm. CONCLUSION This study revealed that RRP had a protective effect on oxidative damage of the retina in mice, and might exert anti-oxidative effect by activating the PI3K/Akt/Nrf2 signal pathway. This study provided scientific data for the further development of hospital preparations of RRP, and a good theoretical basis for the clinical application of RRP.
Collapse
Affiliation(s)
- Xiangka Hu
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Feifei Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - He Yang
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Mushuang Qi
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ying Ren
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wanjun Zhu
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chunmei Dai
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
17
|
Yalcinkaya A, Öztaş YE, Sabuncuoğlu S. Sterols in Inflammatory Diseases: Implications and Clinical Utility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:261-275. [PMID: 38036884 DOI: 10.1007/978-3-031-43883-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The characteristic steroid skeleton, with its 4-ringed 17-carbon structure, is one of the most recognizable organic compounds in biochemistry. In the presence of a hydroxyl ion bound to the third carbon, this structure is defined as a "sterol" (chemical formula: C17H28O). The hydroxyl group provides a hydrophilic site for the otherwise hydrophobic molecule, yielding an amphipathic lipid, which is a vital property for cellular function. It is crucial to remark that the term "steroid" describes a larger group of compounds that often retain the hydroxyl group but are primarily characterized by methyl groups, double bonds in the rings, and an aliphatic side-chain extending from the 17th carbon. In addition to serving various structural roles in the cellular membrane, sterols and steroids contribute to cellular and systemic functions as messengers, hormones, and regulators of several critical metabolic pathways.Sterol nomenclature is often confusing, partly due to structural complexity and partly due to the sheer number of different compounds that fall under the definition. Fortunately, the foremost sterols of interest in biochemistry are much fewer, and therefore, these lipids have been defined and studied vigorously. With the renaissance of lipid research during the 1990s and 2000s, many different metabolites of sterols, and more specifically phytosterols, were found to be associated with various diseases and conditions, including cardiovascular disease, hypercholesterolemia, cancer, obesity, inflammation, diabetes, and inborn errors of metabolism; thus, it is evident that the ever-evolving research in this field has been, and will continue to be, exceedingly productive.With respect to inflammation and inflammatory diseases, plant-based sterols (i.e., phytosterols) have gained considerable fame due to their anti-inflammatory and cholesterol-lowering effects demonstrated by experimental and clinical research. Besides, the exceptional pharmacological benefits of these sterols, which operate as antioxidant, antidiabetic, and anti-atherosclerotic agents, have been the subject of various investigations. While the underlying mechanisms necessitate further research, the possible function of phytosterols in improving health outcomes is an important topic to explore.In this regard, the current review aims to offer comprehensive information on the therapeutic potential of plant-based sterols in the context of human health, with a focus on preclinical effects, bioavailability, and clinical use.
Collapse
Affiliation(s)
- Ahmet Yalcinkaya
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Yeşim Er Öztaş
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Suna Sabuncuoğlu
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
18
|
Ai Z, Wang M, Zhou Y, Yuan D, Jian Q, Wu S, Liu B, Yang Y. Deciphering the pharmacological mechanisms of Rostellularia procumbens (L) Nees. Extract alleviates adriamycin-induced nephropathy in vivo and in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154736. [PMID: 36907143 DOI: 10.1016/j.phymed.2023.154736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/09/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Rostellularia procumbens (L) Nees. is an effective traditional Chinese herbal medicine for the treatment of patients with chronic glomerulonephritis (CGN) in the clinic. However, the underlying molecular mechanisms need further elucidation. PURPOSE This study aims to investigate the renoprotective mechanisms of n-butanol extract from Rostellularia procumbens (L) Nees. (J-NE) in vivo and in vitro. METHODS The components of J-NE were analyzed by UPLC-MS/MS. In vivo, the nephropathy model was induced in mice by tail vein injection with adriamycin (10 mg·kg-1), and mice were treated with vehicle or J-NE or benazepril by daily gavage. In vitro, MPC5 cells exposed to adriamycin (0.3 μg/ml) were treated with J-NE. The effects of J-NE inhibit podocyte apoptosis and protect against adriamycin-induced nephropathy were determined by Network pharmacology, RNA-seq, qPCR, ELISA, immunoblotting, flow cytometry, and TUNEL assay, according to the experimental protocols. RESULT The results showed that treatment significantly improved ADR-induced renal pathological changes, and the therapeutic mechanism of J-NE was related to the inhibition of podocyte apoptosis. Further molecular mechanism studies found that J-NE inhibited inflammation, increase the proteins expression levels of Nephrin and Podocin, reduce TRPC6 and Desmin expression levels and calcium ion levels in podocytes, and decrease the proteins expression levels of PI3K, p-PI3K, Akt and p-Akt to attenuated apoptosis. Furthermore, 38 compounds of J-NE were identified. CONCLUSION J-NE exerted the renoprotective effects by inhibiting podocyte apoptosis, which provides effective evidence for the treatment of J-NE targeting renal injury in CGN.
Collapse
Affiliation(s)
- Zhongzhu Ai
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan 430065, China; Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan 430065, China
| | - Mengfan Wang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan 430065, China; Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan 430065, China
| | - Yi Zhou
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Dongfeng Yuan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qiuyuan Jian
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Songtao Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Bo Liu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan 430065, China; Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan 430065, China
| | - Yanfang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan 430065, China; Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan 430065, China.
| |
Collapse
|
19
|
Abo-Zaid OA, Moawed FS, Ismail ES, Ahmed ESA. β-Sitosterol mitigates hepatocyte apoptosis by inhibiting endoplasmic reticulum stress in thioacetamide-induced hepatic injury in γ-irradiated rats. Food Chem Toxicol 2023; 172:113602. [PMID: 36610474 DOI: 10.1016/j.fct.2023.113602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The endoplasmic reticulum (ER) controls many biological functions besides maintaining the function of liver cells. Various studies reported the role of the ER stress and UPR signaling pathway in various liver diseases via triggering hepatocytes apoptosis. This study aims to investigate the suppressive effect of β-sitosterol (βS) on apoptosis associated with liver injury and ER stress. METHODS Liver damage in rats was induced by TAA (150 mg/kg I.P twice a week/3 weeks) and γ-irradiation (single dose 3.5 Gy) and treated with βS (20 mg/kg daily for 30 days). Serum aminotransferase activity, lipid profile and lipid metabolic factors were measured beside liver oxidative stress and inflammatory markers. Moreover, the hepatic expression of ER stress markers (inositol-requiring enzyme 1 alpha (IRE1α), X-box-binding protein 1 (XBP1) and CCAAT/enhancer binding protein homologous protein (CHOP) and apoptotic markers were detected together with histopathological examination. RESULTS βS diminished the aminotransferase activity, the oxidative stress markers as well as the inflammatory mediators. Furthermore, βS lowered the circulating TG and TC and the hepatic lipotoxicity via the suppression of lipogenesis (Srebp-1c) and improved the β-oxidation (Pparα and Cpt1a) together with the mitochondrial biogenesis (Pgc-1 α). Moreover, the upregulated levels of ER stress markers were reduced upon treatment with βS, which consequently attenuated hepatic apoptosis. CONCLUSION βS relieves hepatic injury, ameliorates mitochondrial biogenesis, and reduces lipotoxicity and apoptosis via inhibition of CHOP and ER stress response.
Collapse
Affiliation(s)
- Omayma Ar Abo-Zaid
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med. Benha University, Egypt.
| | - Fatma Sm Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Effat Soliman Ismail
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med. Benha University, Egypt.
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
20
|
Wang R, Zeng M, Zhang B, Zhang Q, Jia J, Cao B, Liu M, Guo P, Zhang Y, Zheng X, Feng W. β-Sitosterol inhibits ovalbumin-induced asthma-related inflammation by regulating dendritic cells. Immunopharmacol Immunotoxicol 2022; 44:1013-1021. [PMID: 35850599 DOI: 10.1080/08923973.2022.2102990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM To investigate the effects of β-sitosterol (B-SIT) and the underlying mechanisms of action in an ovalbumin-induced rat model of asthma. METHODS The pathological and morphological changes in lung and tracheal tissues were observed by H&E, PAS, and Masson's staining. The levels of IgE, TNF-α, and IFN-γ in the bronchoalveolar lavage fluid (BALF) and those of IL-6, TGF-β1, and IL-10 in serum were measured by ELISA. The relative expression levels of IL-5, IL-13, IL-21, CD11c, CD80, and CD86 mRNA in lung tissue were examined by RT-qPCR. Flow cytometry was performed to assess the levels of immune cells, including macrophages and neutrophils in spleen tissue and Th cells, Tc cells, NK cells, and DCs in peripheral blood. The protein expression levels of CD68, MPO, CD11c, CD80, and CD86 were detected by western blotting or immunohistochemistry. RESULTS B-SIT improved the injury in OVA-induced pathology, decreased the levels of inflammatory factors of IgE, TNF-α, IL-6, TGF-β1, IL-5, IL-13, and IL-21 and increased the levels of IFN-γ and IL-10. In addition, B-SIT decreased the number of macrophages and neutrophils and the relative expression levels of CD68 and MPO in the spleen. Moreover, B-SIT increased the number of Th cells, Tc cells, NK cells, and DCs in peripheral blood and upregulated the levels of CD11c, CD80, and CD86 in the spleen and lung. CONCLUSION B-SIT improved symptoms in a rat model of asthma likely via the inhibition of inflammation by regulating dendritic cells.
Collapse
Affiliation(s)
- Ru Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Mengnan Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Beibei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Qinqin Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Jufang Jia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Bing Cao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Meng Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Pengli Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Yuhan Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R., Henan University of Chinese Medicine, Zhengzhou, China
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R., Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
21
|
Mechanisms of Xiaochaihu Decoction on Treating Hepatic Fibrosis Explored by Network Pharmacology. DISEASE MARKERS 2022; 2022:8925637. [PMID: 36246566 PMCID: PMC9553551 DOI: 10.1155/2022/8925637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Purpose. To explore the material basis and pharmacological mechanism of Xiaochaihu Decoction (XCHD), the classic Traditional Chinese Medicine (TCM) formula in inhibiting hepatic fibrosis (HF). Methods. The main components in XCHD were screened from the TCMSP database, ETCM database, and literature, and their potential targets were detected and predicted using the Swiss Target Prediction platform. The HF-related targets were retrieved and screened through GeneCard database and OMIM database, combined with GEO gene chips. The XCHD targets and HF targets were mapped to search common targets. The protein-protein interaction (PPI) network was acquired via the STRING11.0 database and analyzed visually using Cytoscape 3.8.0 software. The potential mechanisms of the common targets identified through GO and KEGG pathway enrichment analysis were analyzed by using Metascape database. The results were visualized through OmicShare Tools. The “XCHD compound-HF target” network was visually constructed by Cytoscape 3.8.0 software. AutoDockVina1.1.2 and PyMoL software were used to verify the molecular docking of XCHD main active compounds and HF key targets. Results. A total of 164 potential active compounds from XCHD were screened to act on 95 HF-related targets. Bioinformatics analysis revealed that quercetin, β-sitosterol, and kaempferol may be candidate agents, which acted on multiple targets like PTGS2, HSP90AA1, and PTGS1 and regulate multiple key biological pathways like IL-17 signaling pathway, TNF signaling pathway and PI3K-Akt signaling pathway to relieve HF. Moreover, molecular docking suggested that quercetin and PTGS2 could statically bind and interact with each other through amino acid residues val-349, LEU-352, PHE-381, etc. Conclusion. This work provides a systems perspective to study the relationship between Chinese medicines and diseases. The therapeutic efficacy of XCHD on HF was the sum of multitarget and multi-approach effects from the bioactive ingredients. This study could be one of the cornerstones for further research.
Collapse
|
22
|
Hu Y, Liu X, Wu X, Zhang Z, Wu D, Chen C, Su W, Zhang L, Li J, Wang HMD. Several natural phytochemicals from Chinese traditional fermented food-pickled Raphanus sativus L.: Purification and characterization. Food Chem X 2022; 15:100390. [PMID: 35874426 PMCID: PMC9303827 DOI: 10.1016/j.fochx.2022.100390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
β-Sitosterol, β-sitosterol-3-o-glucose glycosides, α-linolenic acid, 1-monopalmitin and chaenomic acid A were identified from 5-year-old pickled radish. Production of the merad product 5-hydroxymethylfurfural in fresh white radish after salting and fermentation. β-Sitosterol, β-sitosterol-3-O-glucose glycosides have good affinity with antioxidant enzymes.
In this study, we aimed to isolate and identify the bioactive compounds from 5-year pickled radish. The pickled radish was extracted with methanol or ethyl acetate. Sephadex LH-20, normal phase and reverse phase silica gel column chromatography were used for separation and purification, combined with thin layer chromatography (TLC), high performance liquid chromatography (HPLC), electrospray mass spectrometry (ESI-MS), nuclear magnetic resonance spectroscopy (NMR) technology for structural identification. The results showed that 6 compounds were separated and purified from methanol and ethyl acetate extracts of 5-year-old pickled radish. The structures were identified as 5-hydroxymethylfurfural, β-sitosterol, β-sitosterol-3-O-glucose glycosides, α-linolenic acid, 1-monopalmitin and chaenomic acid A. Using molecular docking, it was determined that β-sitosterol and its derivative β-sitosterol-3-O-glucose glycosides have high affinity for five antioxidant enzymes, and there were multiple hydrogen bonds between them. These results indicated that pickled radishes might be used as an important source of natural chemical substances.
Collapse
|
23
|
Khan Z, Nath N, Rauf A, Emran TB, Mitra S, Islam F, Chandran D, Barua J, Khandaker MU, Idris AM, Wilairatana P, Thiruvengadam M. Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications. Chem Biol Interact 2022; 365:110117. [PMID: 35995256 DOI: 10.1016/j.cbi.2022.110117] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 12/17/2022]
Abstract
Currently, available therapeutic medications are both costly as well as not entirely promising in terms of potency. So, new candidates from natural resources are of research interest to find new alternative therapeutics. A well-known combination is a β-sitosterol, a plant-derived nutrient with anticancer properties against breast, prostate, colon, lung, stomach, and leukemia. Studies have shown that β-sitosterol interferes with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis, anti-inflammatory, anticancer, hepatoprotective, antioxidant, cardioprotective, and antidiabetic effects have been discovered during pharmacological screening without significant toxicity. The pharmacokinetic profile of β-sitosterol has also been extensively investigated. However, a comprehensive review of the pharmacology, phytochemistry and analytical methods of β-sitosterol is desired. Because β-sitosterol is a significant component of most plant materials, humans use it for various reasons, and numerous β-sitosterol-containing products have been commercialized. To offset the low efficacy of β-sitosterol, designing β-sitosterol delivery for "cancer cell-specific" therapy holds great potential. Delivery of β-sitosterol via liposomes is a demonstration that has shown great promise. But further research has not progressed on the drug delivery of β-sitosterol or how it can enhance β-sitosterol mediated anti-inflammatory activity, thus making β-sitosterol an orphan nutraceutical. Therefore, extensive research on β-sitosterol as an anticancer nutraceutical is recommended.
Collapse
Affiliation(s)
- Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23430, Khyber Pakhtunkhwa, Pakistan.
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, 642109, India
| | - Jackie Barua
- Department of Biology, University of Louisiana at Lafayette, 410 East Saint Mary Boulevard, Lafayette, LA, 70503, USA
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, 05029, South Korea; Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India.
| |
Collapse
|
24
|
Shi J, Hou J, Sun Y, Jia Z, Zhou Y, Wang C, Zhao H. Chaihujialonggumulitang shows psycho-cardiology therapeutic effect on acute myocardial infarction with comorbid anxiety by the activation of Nrf2/HO-1 pathway and suppression of oxidative stress and apoptosis. Biomed Pharmacother 2022; 153:113437. [PMID: 36076489 DOI: 10.1016/j.biopha.2022.113437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Anxiety is a common comorbidity of cardiovascular diseases, which deteriorated cardiac function. Chaihujialonggumulitang (BFG) was reported to have antioxidant properties, alleviate myocardial ischemia injury and improve anxiety-like behavior. The Nuclear factor erythroid 2-related factor 2 (Nrf2) /heme oxygenase-1 (HO-1) pathway is the main mechanism to defend against oxidative stress, and improve cardiac function. This study was to investigate the possible mechanism of BFG in the treatment of psycho-cardiology. METHODS AMI with comorbid anxiety rat model was established by ligation of the left anterior descending coronary artery combined with uncertain empty bottle stimulation, followed by the administration of BFG (1 mL/100 g/d by gavage) or Dimethyl fumarate (DMF, 10 mg/kg/d by intraperitoneal injection) for 6 days. Echocardiography, myocardial injury markers, H&E, and Masson staining were employed to evaluate cardiac function. Behavioral tests and hippocampus neurotransmitters were applied to record anxiety-like behavior. We employed immunohistochemistry, RT-PCR, western blotting, and biochemical analysis to detect the protein and gene expression of Nrf2/HO-1 pathway-related factors, and oxidative stress and apoptosis parameters. RESULTS Rats in the AMI and complex groups showed cardiac function deterioration, as well as anxiety-like behavior. BFG improved echocardiography indicators, reduced myocardial injury markers, and attenuated myocardial pathological changes. BFG also ameliorated anxiety-like behaviors and elevated neurotransmitters levels. BFG promoted the activation of Nrf2/HO-1 pathway, increased antioxidant enzyme activities, reduced lipid peroxidation levels, and alleviated oxidative damage and apoptosis. DMF showed therapeutic effects and molecular mechanisms similar to BFG. CONCLUSION BFG may possess a psycho-cardiology therapeutic effect on AMI with comorbid anxiety by the activation of the Nrf2/HO-1 pathway and suppression of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Jinyu Shi
- Beijing University of Chinese Medicine, Beijing 100029, China; The DongFang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Jiqiu Hou
- The DongFang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yize Sun
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zihao Jia
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Zhou
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chao Wang
- The DongFang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China.
| | - Haibin Zhao
- The DongFang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China.
| |
Collapse
|
25
|
Xie T, Liu W, Chen Y, Zhou Y. An evaluation of graded levels of beta-sitosterol supplementation on growth performance, antioxidant status, and intestinal permeability-related parameters and morphology in broiler chickens at an early age. Poult Sci 2022; 101:102108. [PMID: 36099659 PMCID: PMC9472065 DOI: 10.1016/j.psj.2022.102108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
This study was designed to examine the effects of different levels of beta-sitosterol (BS) supplementation on growth performance, serum biochemical indices, redox status, and intestinal permeability-related parameters and morphology of young broilers. Two hundred and forty male Arbor Acres broiler chicks were allocated into 5 groups of 6 replicates with 8 birds each, and fed a basal diet supplemented with 0, 25, 50, 75, and 100 mg/kg BS for 21-d, respectively. The BS quadratically decreased feed conversion ratio during 1 to 14 d and 1 to 21 d, with its effect being more prominent at 25 or 50 mg/kg (P < 0.05). The BS linearly and quadratically reduced 14-d plasma diamine oxidase activity and D-lactate level, and this effect was more pronounced when its supplemental level was 25 or 50 mg/kg (P < 0.05). The BS linearly increased duodenal villus height (VH) and quadratically increased jejunal VH and ratio of VH and crypt depth (CD) at 14 d, and these effects in 25 mg/kg group were more remarkable (P < 0.05). Similarly, BS linearly or quadratically increased VH and ratio of VH and CD, but decreased CD in the jejunum and ileum at 21 d, with these effects being more pronounced at 50 mg/kg (P < 0.05). The BS supplementation especially at 50 or 75 mg/kg linearly or quadratically reduced 14-d serum and 21-d hepatic malondialdehyde concentration, and increased serum glutathione peroxidase and catalase activities at 14 and 21 d (P < 0.05). Moreover, the BS administration linearly and/or quadratically increased glutathione peroxidase, catalase, and superoxide dismutase activities and glutathione level, and reduced malondialdehyde accumulation in the intestinal mucosa at 14 and/or 21 d, and these consequences were more significant in 50 to 100 mg/kg BS-supplemented groups (P < 0.05). The results demonstrated that BS administration could improve growth performance, intestinal barrier function, and antioxidant status of broilers at an early age, with these effects being more pronounced at a level of 50 mg/kg.
Collapse
Affiliation(s)
- Ting Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wenhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
26
|
Chen YP, Wang KX, Cai JQ, Li Y, Yu HL, Wu Q, Meng W, Wang H, Yin CH, Wu J, Huang MB, Li R, Guan DG. Detecting Key Functional Components Group and Speculating the Potential Mechanism of Xiao-Xu-Ming Decoction in Treating Stroke. Front Cell Dev Biol 2022; 10:753425. [PMID: 35646921 PMCID: PMC9136080 DOI: 10.3389/fcell.2022.753425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Stroke is a cerebrovascular event with cerebral blood flow interruption which is caused by occlusion or bursting of cerebral vessels. At present, the main methods in treating stroke are surgical treatment, statins, and recombinant tissue-type plasminogen activator (rt-PA). Relatively, traditional Chinese medicine (TCM) has widely been used at clinical level in China and some countries in Asia. Xiao-Xu-Ming decoction (XXMD) is a classical and widely used prescription in treating stroke in China. However, the material basis of effect and the action principle of XXMD are still not clear. To solve this issue, we designed a new system pharmacology strategy that combined targets of XXMD and the pathogenetic genes of stroke to construct a functional response space (FRS). The effective proteins from this space were determined by using a novel node importance calculation method, and then the key functional components group (KFCG) that could mediate the effective proteins was selected based on the dynamic programming strategy. The results showed that enriched pathways of effective proteins selected from FRS could cover 99.10% of enriched pathways of reference targets, which were defined by overlapping of component targets and pathogenetic genes. Targets of optimized KFCG with 56 components can be enriched into 166 pathways that covered 80.43% of 138 pathways of 1,012 pathogenetic genes. A component potential effect score (PES) calculation model was constructed to calculate the comprehensive effective score of components in the components-targets-pathways (C-T-P) network of KFCGs, and showed that ferulic acid, zingerone, and vanillic acid had the highest PESs. Prediction and docking simulations show that these components can affect stroke synergistically through genes such as MEK, NFκB, and PI3K in PI3K-Akt, cAMP, and MAPK cascade signals. Finally, ferulic acid, zingerone, and vanillic acid were tested to be protective for PC12 cells and HT22 cells in increasing cell viabilities after oxygen and glucose deprivation (OGD). Our proposed strategy could improve the accuracy on decoding KFCGs of XXMD and provide a methodologic reference for the optimization, mechanism analysis, and secondary development of the formula in TCM.
Collapse
Affiliation(s)
- Yu-peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Ke-xin Wang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-qi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-lang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Qi Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Handuo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chuan-hui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Mian-bo Huang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| | - Rong Li
- Department of Cardiovascular Disease, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| | - Dao-gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| |
Collapse
|
27
|
Green Synthesis of Silymarin-Chitosan Nanoparticles as a New Nano Formulation with Enhanced Anti-Fibrotic Effects against Liver Fibrosis. Int J Mol Sci 2022; 23:ijms23105420. [PMID: 35628233 PMCID: PMC9141191 DOI: 10.3390/ijms23105420] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Silymarin (SIL) has long been utilized to treat a variety of liver illnesses, but due to its poor water solubility and low membrane permeability, it has a low oral bioavailability, limiting its therapeutic potential. Aim: Design and evaluate hepatic-targeted delivery of safe biocompatible formulated SIL-loaded chitosan nanoparticles (SCNPs) to enhance SIL’s anti-fibrotic effectiveness in rats with CCl4-induced liver fibrosis. Methods: The SCNPs and chitosan nanoparticles (CNPs) were prepared by ionotropic gelation technique and are characterized by physicochemical parameters such as particle size, morphology, zeta potential, and in vitro release studies. The therapeutic efficacy of successfully formulated SCNPs and CNPs were subjected to in vivo evaluation studies. Rats were daily administered SIL, SCNPs, and CNPs orally for 30 days. Results: The in vivo study revealed that the synthesized SCNPs demonstrated a significant antifibrotic therapeutic action against CCl4-induced hepatic injury in rats when compared to treated groups of SIL and CNPs. SCNP-treated rats had a healthy body weight, with normal values for liver weight and liver index, as well as significant improvements in liver functions, inflammatory indicators, antioxidant pathway activation, and lipid peroxidation reduction. The antifibrotic activities of SCNPs were mediated by suppressing the expression of the main fibrosis mediators TGFβR1, COL3A1, and TGFβR2 by boosting the hepatic expression of protective miRNAs; miR-22, miR-29c, and miR-219a, respectively. The anti-fibrotic effects of SCNPs were supported by histopathology and immunohistochemistry (IHC) study. Conclusions: According to the above results, SCNPs might be the best suitable carrier to target liver cells in the treatment of liver fibrosis.
Collapse
|
28
|
Stability, bioavailability, and antimicrobial activity of garlic extract liposomes prepared from lecithin and β-sitosterol. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Habibi E, Baâti T, Njim L, M’Rabet Y, Hosni K. Antioxidant and protective effects of extra virgin olive oil incorporated with diallyl sulfide against CCl 4-induced acute liver injury in mice. Food Sci Nutr 2021; 9:6818-6830. [PMID: 34925810 PMCID: PMC8645721 DOI: 10.1002/fsn3.2638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
The present study delineates the effects of incorporation of 1% diallyl sulfide (DAS) into extra virgin olive oil (EVOO) on the physico-chemical characteristics, in vitro antioxidant, and in vivo hepatoprotective properties in CCl4-induced acute liver injury in mice. Results showed that the DAS-rich EVOO exhibited good oxidative stability over one-month storage and preserved its original quality-related parameters including major components (oleic acid, linoleic acid, and palmitic acid), and minor components (tocopherols, chlorophylls and carotenoids, tyrosol, hydroxytyrosol, elenolic acid, oleuropein and its aglycone, pinoresinol, vanilic acid, cinnamic acid, ferulic acid, luteolin, apigenin, and sterols). Compared with EVOO or DAS, the DAS-rich EVOO displayed the highest DPPH and ABTS-radical scavenging activities and showed the strongest cellular antioxidant activity (CAA). In connection with its free radical scavenging activity and CAA, DAS-rich EVOO significantly normalized the serum ALT and AST levels and prevented the increase in interleukin-6 in CCl4-intoxicated mice. The manifest anti-inflammatory and hepatoprotective effects of DAS-rich EVOO were further supported by liver histopathological examinations. Overall, the EVOO enrichment with DAS could open up opportunities for the development of novel functional food with improved antioxidant and hepatoprotective properties.
Collapse
Affiliation(s)
- Emna Habibi
- Laboratoire des Substances NaturellesInstitut National de Recherche et d’Analyse Physico‐chimique (INRAP)Sidi thabetArianaTunisia
- Faculté des Sciences de GabesUniversité de GabesTunisTunisia
| | - Tarek Baâti
- Laboratoire des Substances NaturellesInstitut National de Recherche et d’Analyse Physico‐chimique (INRAP)Sidi thabetArianaTunisia
| | - Leila Njim
- Service d’Anatomie et de Cytologie PathologiqueCHU Fattouma BourguibaMonastirTunisia
| | - Yassine M’Rabet
- Laboratoire des Substances NaturellesInstitut National de Recherche et d’Analyse Physico‐chimique (INRAP)Sidi thabetArianaTunisia
| | - Karim Hosni
- Laboratoire des Substances NaturellesInstitut National de Recherche et d’Analyse Physico‐chimique (INRAP)Sidi thabetArianaTunisia
| |
Collapse
|
30
|
Preparation and Characterization of Silymarin-Conjugated Gold Nanoparticles with Enhanced Anti-Fibrotic Therapeutic Effects against Hepatic Fibrosis in Rats: Role of MicroRNAs as Molecular Targets. Biomedicines 2021; 9:biomedicines9121767. [PMID: 34944582 PMCID: PMC8698929 DOI: 10.3390/biomedicines9121767] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The main obstacles of silymarin (SIL) application in liver diseases are its low bioavailability, elevated metabolism, rapid excretion in bile and urine, and inefficient intestinal resorption. The study aimed to synthesize and characterize silymarin-conjugated gold nanoparticles (SGNPs) formulation to improve SIL bioavailability and release for potentiating its antifibrotic action. METHODS Both SGNPs and gold nanoparticles (GNPs) were prepared and characterized using standard characterization techniques. The improved formulation was assessed for in vitro drug release study and in vivo study on rats using CCl4 induced hepatic fibrosis model. SIL, SGNPs, and GNPs were administered by oral gavage daily for 30 days. At the end of the study, rats underwent anesthesia and were sacrificed, serum samples were collected for biochemical analysis. Liver tissues were collected to measure the genes and microRNAs (miRNAs) expressions. Also, histopathological and immunohistochemistry (IHC) examinations of hepatic tissues supported these results. RESULTS The successful formation and conjugation of SGNPs were confirmed by measurements methods. The synthesized nanohybrid SGNPs showed significant antifibrotic therapeutic action against CCl4-induced hepatic damage in rats, and preserved normal body weight, liver weight, liver index values, retained normal hepatic functions, lowered inflammatory markers, declined lipid peroxidation, and activated the antioxidant pathway nuclear factor erythroid-2-related factor 2 (NRF2). The antifibrotic activities of SGNPs mediated through enhancing the hepatic expression of the protective miRNAs; miR-22, miR-29c, and miR-219a which results in suppressed expression of the main fibrosis mediators; TGFβR1, COL3A1, and TGFβR2, respectively. The histopathology and IHC analysis confirmed the anti-fibrotic effects of SGNPs. CONCLUSIONS The successful synthesis of SGNPs with sizes ranging from 16 up to 20 nm and entrapment efficiency and loading capacity 96% and 38.69%, respectively. In vivo studies revealed that the obtained nano-formulation of SIL boosted its anti-fibrotic effects.
Collapse
|
31
|
Ditty MJ, Ezhilarasan D. β-sitosterol induces reactive oxygen species-mediated apoptosis in human hepatocellular carcinoma cell line. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:541-550. [PMID: 34804892 PMCID: PMC8588954 DOI: 10.22038/ajp.2021.17746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 01/27/2023]
Abstract
Objective: It is of interest to investigate the anti-proliferative effect of β-sitosterol (BS) on human hepatocellular carcinoma (HepG2) cell line. Materials and Methods: β-sitosterol treatments (0.6 and 1.2 mM/ml) were done in HepG2 and after 24 hr, cell viability was evaluated by MTT assay. Reactive oxygen species (ROS) accumulating potential of BS was assessed by dichloro-dihydro-fluorescein diacetate staining. Morphology related to apoptosis was investigated by acridine orange and ethidium bromide dual staining. Cytochrome c and caspase 3 expressions were evaluated by immunofluorescence and western blot analyses. Results: β-sitosterol induced cytotoxicity (p<0.001) and intracellular ROS in HepG2 cells in a dose-dependent manner. BS treatments accumulated induced intracellular ROS accumulation which led to membrane damage and mitochondrial toxicity. At the molecular level, BS treatments induced cytochrome c release from mitochondria and enhanced the protein expressions (p<0.05 vs 0.6 mM/ml and p<0.001 vs 1.2 mM/ml) of both caspase 3 and cleaved caspase 3. Conclusion: β-sitosterol induced ROS accumulation which plays a critical role in apoptosis via the intrinsic pathway in HepG2 cells. The present investigation paves the way for further in vivo studies.
Collapse
Affiliation(s)
- Mary J Ditty
- Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
32
|
Rouf R, Ghosh P, Uzzaman MR, Sarker DK, Zahura FT, Uddin SJ, Muhammad I. Hepatoprotective Plants from Bangladesh: A Biophytochemical Review and Future Prospect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1633231. [PMID: 34504532 PMCID: PMC8423546 DOI: 10.1155/2021/1633231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Liver diseases are quite prevalant in many densely populated countries, including Bangladesh. The liver and its hepatocytes are targeted by virus and microbes, as well as by chemical environmental toxicants, causing wide-spread disruption of metabolic fuctions of the human body, leading to death from end-stage liver diseases. The aim of this review is to systematically explore and record the potential of Bangladeshi ethnopharmacological plants to treat liver diseases with focus on their sources, constituents, and therapeutic uses, including mechanisms of actions (MoA). A literature survey was carried out using Pubmed, Google Scholar, ScienceDirect, and Scopus databases with articles reported until July, 2020. A total of 88 Bangladeshi hepatoprotective plants (BHPs) belonging to 47 families were listed in this review, including Euphorbiaceae, Cucurbitaceae, and Compositae families contained 20% of plants, while herbs were the most cited (51%) and leaves were the most consumed parts (23%) as surveyed. The effect of BHPs against different hepatotoxins was observed via upregulation of antioxidant systems and inhibition of lipid peroxidation which subsequently reduced the elevated liver biomarkers. Different active constituents, including phenolics, curcuminoids, cucurbitanes, terpenoids, fatty acids, carotenoids, and polysaccharides, have been reported from these plants. The hepatoameliorative effect of these constituents was mainly involved in the reduction of hepatic oxidative stress and inflammation through activation of Nrf2/HO-1 and inhibition of NF-κB signaling pathways. In summary, BHPs represent a valuable resource for hepatoprotective lead therapeutics which may offer new alternatives to treat liver diseases.
Collapse
Affiliation(s)
- Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Puja Ghosh
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Raihan Uzzaman
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Dipto Kumer Sarker
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Fatima Tuz Zahura
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Ilias Muhammad
- National Center for Natural Products Research, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
33
|
Rohit Singh T, Ezhilarasan D. Lagerstroemia speciosa (L.) Pers., ethanolic leaves extract attenuates dapsone-induced liver inflammation in rats. Drug Chem Toxicol 2021; 45:2361-2370. [PMID: 34225555 DOI: 10.1080/01480545.2021.1945079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Drug-induced liver injury is a common cause of acute liver failure. Dapsone is increasingly used in combination with rifampicin for the treatment of leprosy and also for several dermatological disorders. Clinically, abnormal liver function and focal bile duct destruction were reported after dapsone therapy. Lagerstroemia speciosa Pers., commonly known as Banaba has been traditionally used to treat various ailments including diabetes and obesity due to its antioxidant and anti-inflammatory efficacies. This study investigated the hepatoprotective effect of ethanolic banaba leaves extract (EBLE) against dapsone-induced hepatotoxicity in rats. Dapsone (30 mg/kg, i.p.) was administered twice daily for 30 days. In separate groups, rats were post-treated orally with EBLE (250 and 500 mg/kg) and silymarin (100 mg/kg) once daily for 30 days after dapsone administration. The marker enzymes of hepatotoxicity, oxidative stress markers, inflammatory markers and histopathology of liver were done. HPTLC analysis confirmed the presence of 12.87 µg of corosolic acid per mg of EBLE. Dapsone administration-induced significant (p < 0.001) elevation of marker enzymes of hepatotoxicity in serum. This treatment also increased lipid peroxidation (p < 0.001) and pro-inflammatory markers (tumor necrosis factor-alpha, transforming growth factor-beta, and nuclear factor kappa-B) expressions (p < 0.001) and decreased antioxidants (p < 0.001) such superoxide dismutase, catalase and glutathione in the liver tissue. All these abnormalities were significantly (p < 0.001) mitigated after EBLE (500 mg/kg) and silymarin post-treatments. The results of this study suggest that silymarin and EBLE can be used for dapsone-induced hepatotoxicity.
Collapse
Affiliation(s)
- Thakur Rohit Singh
- Department of Pharmacology, Malla Reddy Institute of Medical Sciences, Hyderabad, India.,Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India.,Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
34
|
Hepatotoxic potentials of methotrexate: Understanding the possible toxicological molecular mechanisms. Toxicology 2021; 458:152840. [PMID: 34175381 DOI: 10.1016/j.tox.2021.152840] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
Methotrexate (MTX) is one of the most effective and widely used drugs in the management of autoimmune and dermatological diseases. Rheumatoid arthritis and psoriasis patients who are under long term MTX-therapy are at high risk of developing a liver injury. Accumulation of intracellular MTX-polyglutamate (MTX-PG), a metabolite of MTX triggers oxidative stress, inflammation, steatosis, fibrosis, and apoptosis in hepatocytes. MTX-PG causes oxidative stress in the liver by inducing lipid peroxidation thereby releasing reactive oxygen species and suppressing antioxidant response elements. MTX-PG induces several pro-inflammatory signaling pathways and cytokines such as tumor necrosis factor-α, nuclear factor kappa B and interleukin 6 (IL-6), IL- β1, IL-12. MTX-PG depletes hepatic folate level and decreases RNA and DNA synthesis leading to hepatocyte death. MTX-PG inhibits 5-aminoimidazole-4-carboxamide ribonucleotide transformylase enzyme and thereby causes accumulation of intracellular adenosine, which causes activation of hepatic stellate cells, extracellular matrix accumulation and hepatic fibrosis. MTX-PG induces hepatocytes apoptosis by activation of caspase 3 via the intrinsic pathway. Clinically, aggravation of underlying fatty liver to non-alcoholic steatohepatitis with fibrosis seems to be an important mechanism of liver injury in MTX-treated RA patients. Therefore, there is a need for monitoring liver injury in RA, psoriatic and cancer patients with NAFLD and fibrosis risk factors during MTX treatment. This review summarizes the possible molecular mechanism of MTX-induced hepatotoxicity. It may pave the way for early detection of liver injury and develop novel strategies for treating MTX mediated hepatotoxicity.
Collapse
|
35
|
Comparative Studies on the Hepatoprotective Effect of White and Coloured Rice Bran Oil against Acetaminophen-Induced Oxidative Stress in Mice through Antioxidant- and Xenobiotic-Metabolizing Systems. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5510230. [PMID: 33995822 PMCID: PMC8096545 DOI: 10.1155/2021/5510230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022]
Abstract
Rice bran oil (RBO) comprises various nutrients and phytochemicals which exhibit several health benefits. There are no studies regarding the functional effects of different colours of RBO. This study was aimed to compare the constituents and antioxidant activities of white rice bran oil (WRBO) and coloured rice bran oil (CRBO). Each RBO showed similar free fatty acid profiles. However, greater amounts of vitamin E, phytosterols, carotenoids, and chlorophylls were found in CRBO, which had lower γ-oryzanol content than WRBO. Oxidative stress was induced in male mice by an overdose of acetaminophen (APAP) at 300 mg/kg body weight. The mice were then fed with RBO at the equivalent dose to 100 mg/kg body weight of γ-oryzanol three hours later and sacrificed six hours after APAP treatment. The administration of 100 mg γ-oryzanol equivalent in CRBO ameliorated APAP-induced hepatotoxicity in mice more strongly than 100 mg γ-oryzanol equivalent in WRBO, as evidenced by the significant reduction of serum ALT, hepatocellular necrosis, and hepatic lipid peroxidation. CRBO could improve xenobiotic-metabolizing and antioxidant enzyme activities, including glutathione S-transferase, superoxide dismutase, glutathione peroxidase, and glutathione reductase, and also increase mRNA expression of various antioxidant-responsive genes. Vitamin E, phytosterols, carotenoids, and chlorophyll might be the protective compounds in CRBO that alleviate APAP-induced hepatotoxicity through the interruption of APAP metabolism and the activation of antioxidant systems at both transcriptional and enzymatic levels. These findings might provide a protective role of CRBO on oxidative stress associated with several degenerative diseases.
Collapse
|
36
|
A Preliminary Study on the Effect of Psyllium Husk Ethanolic Extract on Hyperlipidemia, Hyperglycemia, and Oxidative Stress Induced by Triton X-100 Injection in Rats. BIOLOGY 2021; 10:biology10040335. [PMID: 33923513 PMCID: PMC8074146 DOI: 10.3390/biology10040335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The aim of this study is to assess the efficiency of psyllium husk ethanolic extract (PHEE) on Triton X-100 induced hyperlipidemic rats by studying the changes in hepatic and pancreatic function and histopathology. Forty male albino rats (bodyweight 175-188 g) were grouped randomly into four sets with ten rats. The experimental groups included: (1) control group (CON); (2) Triton X-100 induced hyperlipidemic group-rats were intraperitoneally injected with a single dose of Triton X-100 (100 mg/kg body weight) on the 21st day of Trial onset; (3) PHEE group-PHEE was orally administered (100 mg/kg body weight dissolved in 1 mL of distilled water) by gastric tube from the first day of the experiment until the fortieth day, once daily, (PHEE); (4) PHEE +Triton group, which received PHEE orally with the induction of hyperlipidemia. Treating hyperlipidemic rats with PHEE showed a decrease in the total serum lipids, triglyceride (TG), total cholesterol (TC), atherogenic index (AI), and malondialdehyde (MDA) with an increase in superoxide dismutase (SOD) and catalase (CAT) activities. PHEE administration alleviated the negative impact of Triton on the serum levels of glucose, insulin, glycated hemoglobin (HbA1c), homeostatic model assessment for insulin resistance (HOMA IR index), leptin hormone, Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), Gamma-Glutamyl Transferase (GGT) and proteinogram. The Triton-induced hyperlipidemic rats showed extensive histopathological changes in the liver and pancreas, which were alleviated with PHEE administration. It could be concluded that PHEE has potent effects against hyperlipidemia, hyperglycemia, and oxidative stress due to its biologically active constituents detected by GC-MS analysis. This study's findings may help develop a novel trial against the effects of hyperlipidemia in the future.
Collapse
|
37
|
Network Pharmacology-Based Study on the Molecular Biological Mechanism of Action for Qingdu Decoction against Chronic Liver Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6661667. [PMID: 33747110 PMCID: PMC7952185 DOI: 10.1155/2021/6661667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
Background Qingdu Decoction (QDD) is a traditional Chinese medicine formula for treating chronic liver injury (CLI). Materials and methods. A network pharmacology combining experimental validation was used to investigate potential mechanisms of QDD against CLI. We firstly screened the bioactive compounds with pharmacology analysis platform of the Chinese medicine system (TCMSP) and gathered the targets of QDD and CLI. Then, we constructed a compound-target network and a protein-protein interaction (PPI) network and enriched core targets in Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways. At last, we used a CLI rat model to confirm the effect and mechanism of QDD against CLI. Enzyme-linked immunosorbent assay (ELISA), western blot (WB), and real-time quantitative polymerase chain reaction (RT-qPCR) were used. Results 48 bioactive compounds of QDD passed the virtual screening criteria, and 53 overlapping targets were identified as core targets of QDD against CLI. A compound-CLI related target network containing 94 nodes and 263 edges was constructed. KEGG enrichment of core targets contained some pathways related to CLI, such as hepatitis B, tumor necrosis factor (TNF) signaling pathway, apoptosis, hepatitis C, interleukin-17 (IL-17) signaling pathway, and hypoxia-inducible factor (HIF)-1 signaling pathway. Three PPI clusters were identified and enriched in hepatitis B and tumor necrosis factor (TNF) signaling pathway, apoptosis and hepatitis B pathway, and peroxisome pathway, respectively. Animal experiment indicated that QDD decreased serum concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), endotoxin (ET), and IL-17 and increased prothrombin time activity (PTA) level. WB and RT-qPCR analyses indicated that, compared with the model group, the expression of cysteinyl aspartate specific proteinase-9 (caspase-9) protein, caspase-3 protein, B-cell lymphoma-2 associated X protein (Bax) mRNA, and cytochrome c (Cyt c) mRNA was inhibited and the expression of B-cell lymphoma-2 (Bcl-2) mRNA was enhanced in the QDD group. Conclusions QDD has protective effect against CLI, which may be related to the regulation of hepatocyte apoptosis. This study provides novel insights into exploring potential biological basis and mechanisms of clinically effective formula systematically.
Collapse
|
38
|
Karabulut D, Akin AT, Unsal M, Lekesizcan A, Ozyazgan TM, Keti DB, Yakan B, Ekebas G. L-Carnitine ameliorates the liver by regulating alpha-SMA, iNOS, HSP90, HIF-1alpha, and RIP1 expressions of CCL4-toxic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:184-190. [PMID: 33953857 PMCID: PMC8061326 DOI: 10.22038/ijbms.2020.47711.10990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/05/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Carbon tetrachloride (CCL4) toxicity triggers fibrosis, activating various mechanisms within the cell. We aimed to create damage with CCL4 and investigate the effectiveness of L-carnitine on the mechanisms we identified. MATERIALS AND METHODS Forty rats were divided into 5 groups with equal number of rats in each group. Group I: Control group, Group II: L-carnitine group, 200 mg/kg L-carnitine twice a week, Group III: CCL4 group, 0.2 ml/100 gr CCL4, IP, dissolved in olive oil 2 times a week during 6 weeks; Group IV: L-carnitine + CCL4 group, 200 mg/kg L-carnitine 24 hr before 0.2 ml/100 g CCL4 application twice a week; Group V: CCL4 + L-carnitine, 200 mg/kg L-carnitine half an hour after 0.2 ml/100 g CCL4 application. The liver was evaluated histologically. Immunohistochemically stained with α-SMA, iNOS, HSP90, HIF-1α, and RIP1. TNF-α, TGF-β, AST, ALT, ALP, and GGT measurements were evaluated. RESULTS In the classical lobule periphery, an increase in lipid accumulation and a decrease in glycogen accumulation were observed. After immunohistochemical measurements and biochemical analyzes, an increase in the expression density of all proteins was observed in group III. In group IV and V, an improvement in tissue and a decrease in protein expression densities were observed. CONCLUSION iNOS serves as a free radical scavenger in response to damage caused by increased toxicity of α-SMA, HSP90, and HIF-1α. Especially, increased RIP1 level in the tissue indicates the presence of necrosis in the tissue after CCL4-toxicity. Supplementing the amount of endogenous L-carnitine with supplementation provides a significant improvement in the tissue.
Collapse
Affiliation(s)
- Derya Karabulut
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ali Tugrul Akin
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Murat Unsal
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ayça Lekesizcan
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Tuğçe Merve Ozyazgan
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Didem Barlak Keti
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Görkem Ekebas
- Department of Pathology, Faculty of Veterinary, Erciyes University, Kayseri, Turkey
| |
Collapse
|
39
|
Jie F, Yang X, Wu L, Wang M, Lu B. Linking phytosterols and oxyphytosterols from food to brain health: origins, effects, and underlying mechanisms. Crit Rev Food Sci Nutr 2021; 62:3613-3630. [PMID: 33397124 DOI: 10.1080/10408398.2020.1867819] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phytosterols and their oxidation products, namely oxyphytosterols, are natural compounds present in plant foods. With increased intake of phytosterol-enriched functional food products, the exposure of both phytosterols and oxyphytosterols is rising. Over the past ten years, researches have been focused on their absorption and metabolism in human body, as well as their biological effects. More importantly, recent studies showed that phytosterols and oxyphytosterols can traverse the blood-brain barrier and accumulate in the brain. As brain health problems resulting from ageing being more serious, attenuating central nervous system (CNS) disorders with active compounds in food are becoming a hot topic. Phytosterols and oxyphytosterols have been shown to implicated in cognition altering and the pathologies of several CNS disorders, including Alzheimer's disease and multiple sclerosis. We will overview these findings with a focus on the contents of phytosterols and oxyphytosterols in food and their dietary intake, as well as their origins in the brain, and illustrate molecular pathways through which they affect brain health, in terms of inflammation, cholesterol homeostasis, oxidative stress, and mitochondria function. The existing scientific gaps of phytosterols and oxyphytosterols to brain health in knowledge are also discussed, highlighting research directions in the future.
Collapse
Affiliation(s)
- Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Lipeng Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mengmeng Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
40
|
Ezhilarasan D, Raghunandhakumar S. Boldine treatment protects acetaminophen-induced liver inflammation and acute hepatic necrosis in mice. J Biochem Mol Toxicol 2021; 35:e22697. [PMID: 33393705 DOI: 10.1002/jbt.22697] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/21/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022]
Abstract
Drug-induced liver injury (DILI) is a frequent cause responsible for acute liver failure (ALF). Acetaminophen (APAP) is a known hepatotoxin predictably causing intrinsic DILI. At high doses, APAP causes acute liver necrosis and responsible for ALF and liver transplant cases in 50% and 20% of patients, respectively, in the United States alone. Oxidative stress and glutathione depletion are implicated in APAP-induced liver necrosis. Boldine, a plant-derived compound is shown to have promising antioxidant potential. Therefore, this study investigates the protective effect of boldine against APAP-induced acute hepatic necrosis in mice. A single toxic dose of APAP (300 mg/kg b.w. p.o.) was administered in overnight-fasted mice to induce acute liver necrosis. Separately, APAP + boldine and APAP + N-acetylcysteine (NAC) simultaneous treatments were also given. Serum transaminases and reduced glutathione, enzymic antioxidants, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and, IL-6 were evaluated in liver tissue. Acute APAP intoxication significantly elevated serum marker enzymes of hepatotoxicity. APAP administration increased lipid peroxidation, TNF-α, IL-1β, and IL-6 protein expressions. The enzymic antioxidants and reduced glutathione levels were decreased in liver tissue of APAP intoxicated mice. Boldine and NAC simultaneous treatments prevented APAP-induced oxidative stress, inflammation, and necrosis. The results of this study suggest the crucial role of boldine to protect against APAP induced hepatotoxicity by virtue of its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, The Blue Lab (Molecular Pharmacology and Toxicology Division), Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.,Department of Pharmacology, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Subramanian Raghunandhakumar
- Department of Pharmacology, The Blue Lab (Molecular Pharmacology and Toxicology Division), Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
41
|
Han H, Li X, Guo Y, Zheng M, Xue T, Wang L. Plant sterol ester of α-linolenic acid ameliorates high-fat diet-induced nonalcoholic fatty liver disease in mice: association with regulating mitochondrial dysfunction and oxidative stress via activating AMPK signaling. Food Funct 2021; 12:2171-2188. [DOI: 10.1039/d0fo02623a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plant sterol ester of α-linolenic acid prevents nonalcoholic fatty liver disease by improving mitochondrial function, modifying lipid metabolism, and inhibiting oxidative stress via AMPK signaling.
Collapse
Affiliation(s)
- Hao Han
- Department of Nutrition and Food Hygiene
- School of Public Health
- Shanxi Medical University
- Taiyuan
- PR China
| | - Xiaoyu Li
- Department of Nutrition and Food Hygiene
- School of Public Health
- Shanxi Medical University
- Taiyuan
- PR China
| | - Yan Guo
- Department of Nutrition and Food Hygiene
- School of Public Health
- Shanxi Medical University
- Taiyuan
- PR China
| | - Mingming Zheng
- Oil Crops Research Institute
- Chinese Academy of Agricultural Sciences
- Hubei Key Laboratory of Lipid Chemistry and Nutrition
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory
- Key Laboratory of Oilseeds Processing
| | - Tingli Xue
- Department of Nutrition and Food Hygiene
- School of Public Health
- Shanxi Medical University
- Taiyuan
- PR China
| | - Linqi Wang
- Department of Nutrition and Food Hygiene
- School of Public Health
- Shanxi Medical University
- Taiyuan
- PR China
| |
Collapse
|
42
|
Shi YY, Li YQ, Xie X, Zhou YT, Zhang Q, Yu JL, Li P, Mi N, Li F. Homotherapy for heteropathy active components and mechanisms of Qiang-Huo-Sheng-Shi decoction for treatment of rheumatoid arthritis and osteoarthritis. Comput Biol Chem 2020; 89:107397. [PMID: 33035753 DOI: 10.1016/j.compbiolchem.2020.107397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/29/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
Qiang-Huo-Sheng-Shi decoction (QHSSD), a classic traditional Chinese herbal formula, which has been reported to be effective in rheumatoid arthritis (RA) and osteoarthritis (OA). However, the concurrent targeting mechanism of how the aforementioned formula is valid in the two distinct diseases OA and RA, which represents the homotherapy-for-heteropathy principle in traditional Chinese medicine (TCM), have not yet been clarified. In the present study, network pharmacology was adopted to analyze the potential molecular mechanism, and therapeutic effective components of QHSSD on both OA and RA. A total of 153 active ingredients in QHSSD were identified, 142 of which associated with 59 potential targets for the two diseases were identified. By constructing the protein-protein interaction network and the compound-target-disease network, 72 compounds and 10 proteins were obtained as the hub targets of QHSSD against OA and RA. The hub genes of ESR1, PTGS2, PPARG, IL1B, TNF, MMP2, IL6, CYP3A4, MAPK8, and ALB were mainly involved in osteoclast differentiation, the NF-κB and TNF signaling pathways. Moreover, molecular docking results showed that the screened active compounds had a high affinity for the hub genes. This study provides new insight into the molecular mechanisms behind how QHSSD presents homotherapy-for-heteropathy therapeutic efficacy in both OA and RA. For the first time, a two-disease model was linked with a TCM formula using network pharmacology to identify the key active components and understand the common mechanisms of its multi-pathway regulation. This study will inspire more innovative and important studies on the modern research of TCM formulas.
Collapse
Affiliation(s)
- Yuan-Yuan Shi
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying-Qi Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiang Xie
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Yu-Ting Zhou
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Qian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jia-Lin Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Na Mi
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Fei Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
43
|
Ellagic acid prevents kidney injury and oxidative damage via regulation of Nrf-2/NF-κB signaling in carbon tetrachloride induced rats. Mol Biol Rep 2020; 47:7959-7970. [PMID: 33006714 DOI: 10.1007/s11033-020-05873-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
Phytochemicals, bioactive food compounds, found in plants have been described as protective agents against renal injury. This work was planned to evaluate the effects of EA on anti-oxidative and anti-inflammation pathways in kidney damage induced with carbon tetrachloride. In this study, experimental animals (n = 36, 8 weeks old rats) were divided into 4 groups as follows: 1) Control group 2) EA group (10 mg/kg body weight) 3) CCl4 group (1.5 ml/kg, body weight) 4) EA + CCl4 group. The potentially protective effect of EA on kidney damage exposed by CCl4 in rats were evaluated. EA administration protects CCl4 induced kidney damage against oxidative stress through its antioxidant protection. Treatment of EA significantly reduced lipid peroxidation and improved glutathione and catalase enzyme activity. Recently studies showed that EA activated caspase-3 and nuclear transcription factor erythroid 2 related factor driven antioxidant signal pathway and protected the kidney against damage induced by oxidative stress. Furthermore, EA also markedly decreased the level of cyclooxygenase-2, the vascular endothelial growth factor and tumor necrosis factor-alpha and suppressed the protein synthesis of nuclear factor-kappa-B. This study reveals that EA has kidney protective effect against CCl4 induced oxidative damage and inflammation.
Collapse
|
44
|
Systemic pharmacology understanding of the key mechanism of Sedum sarmentosum Bunge in treating hepatitis. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:421-430. [PMID: 32734365 DOI: 10.1007/s00210-020-01952-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Sedum sarmentosum Bunge is a Traditional Chinese Medicine that is widely used in treating hepatitis, whereas the detailed mechanisms have not been fully interpreted. A systemic pharmacology method including absorption, distribution, metabolism and elimination screening, drug targeting, interaction network plotting, and enrichment analysis was applied for exploring the underlying mechanisms of Sedum sarmentosum Bunge in the treatment of hepatitis. A total of 47 ingredients were identified in Sedum sarmentosum Bunge, and 5 active ingredients (DFV, isorhamnetin, beta-sitosterol, luteolin and quercetin) were screened out with the criteria of oral bioavailability (OB) ≥ 30% and drug-likeness (DL) ≥ 0.18. Those 5 ingredients interacted with 170 targets, 163 of which were hepatitis-related. By compound-target-disease network plotting, protein-protein interaction network plotting and enrichment analysis, the pathways that the 5 ingredients engaged in during hepatitis development and progression were investigated, such as threonine-protein kinase signaling. The integrated systemic pharmacology analysis facilitates the in-depth understanding of Sedum sarmentosum Bunge in the hepatitis treatment, which also paves the way for further knowledge of the molecular mechanism of Sedum sarmentosum Bunge in treating hepatitis.
Collapse
|