1
|
Li G, Chen W, Liu D, Tang S. Recent advances in medicinal chemistry strategies for the development of METTL3 inhibitors. Eur J Med Chem 2025; 290:117560. [PMID: 40147343 DOI: 10.1016/j.ejmech.2025.117560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
N6-methyladenosine (m6A), the most abundant RNA modification in eukaryotic cells, exerts a critical influence on RNA function and gene expression. It has attracted considerable attention within the rapidly evolving field of epitranscriptomics. METTL3 is a key enzyme for m6A modification and is essential for maintaining normal m6A levels. High expression of METTL3 is closely associated with various cancers, including gastric cancer, liver cancer, and leukemia. Inhibiting METTL3 has shown potential in slowing cancer progression, thereby driving the development of METTL3 inhibitors. In this work, we summarize recent advancements in the development of METTL3 inhibitor, with a focus on medicinal chemistry strategies employed during discovery and optimization phases. We explore the application of structure-activity relationship (SAR) studies and protein-targeted degradation techniques, while addressing key challenges associated with their characterization and clinical translation. This review underscores the therapeutic potential of METTL3 inhibitors in modulating epitranscriptomic pathways and aims to offer perspectives for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Gengwu Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shibing Tang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
2
|
Lee YJ, Hyun CG. Rifampicin Repurposing Reveals Anti-Melanogenic Activity in B16F10 Melanoma Cells. Molecules 2025; 30:900. [PMID: 40005210 PMCID: PMC11858211 DOI: 10.3390/molecules30040900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Drug repurposing is a cost-effective and innovative strategy for identifying new therapeutic applications for existing drugs, thereby shortening development timelines and accelerating the availability of treatments. Applying this approach to the development of cosmeceutical ingredients enables the creation of functional compounds with proven safety and efficacy, adding significant value to the cosmetic industry. This study evaluated the potential of rifampicin, a drug widely used for the treatment of tuberculosis and leprosy, as a cosmeceutical agent. The anti-melanogenic effects of rifampicin were assessed in B16F10 melanoma cells, showing no cytotoxicity at concentrations up to 40 µM and a significant reduction in intracellular tyrosinase activity and melanin content. Mechanistically, rifampicin reduced the expression of melanogenic enzymes, including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2, via a protein kinase A (PKA)-dependent pathway, leading to the suppression of microphthalmia-associated transcription factor (MITF), which is a key regulator of melanogenesis. Additionally, rifampicin inhibited the p38 signaling pathway but was independent of the PI3K/protein kinase B (Akt) pathway. Furthermore, it decreased Ser9 phosphorylation, enhancing glycogen synthase kinase-3β (GSK-3β) activity, promoted β-catenin phosphorylation, and facilitated β-catenin degradation, collectively contributing to the inhibition of melanin synthesis. To evaluate the topical applicability of rifampicin, primary human skin irritation tests were conducted, and no adverse effects were observed at concentrations of 20 µM and 40 µM. These findings demonstrate that rifampicin inhibits melanogenesis through multiple signaling pathways, including PKA, MAPKs, and GSK-3β/β-catenin. This study highlights the potential of rifampicin to be repurposed as a topical agent for managing hyperpigmentation disorders, offering valuable insights into novel therapeutic strategies for pigmentation-related conditions.
Collapse
Affiliation(s)
| | - Chang-Gu Hyun
- Department of Chemistry and Cosmetics, Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
3
|
Martins M, Veiga F, Paiva-Santos AC, Pires PC. Drug Repurposing and Nanotechnology for Topical Skin Cancer Treatment: Redirecting toward Targeted and Synergistic Antitumor Effects. ACS Pharmacol Transl Sci 2025; 8:308-338. [PMID: 39974652 PMCID: PMC11833728 DOI: 10.1021/acsptsci.4c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
Skin cancer represents a major health concern due to its rising incidence and limited treatment options. Current treatments (surgery, chemotherapy, radiotherapy, immunotherapy, and targeted therapy) often entail high costs, patient inconvenience, significant adverse effects, and limited therapeutic efficacy. The search for novel treatment options is also marked by the high capital investment and extensive development involved in the drug discovery process. In response to these challenges, repurposing existing drugs for topical application and optimizing their delivery through nanotechnology could be the answer. This innovative strategy aims to combine the advantages of the known pharmacological background of commonly used drugs to expedite therapeutic development, with nanosystem-based formulations, which among other advantages allow for improved skin permeation and retention and overall higher therapeutic efficacy and safety. The present review provides a critical analysis of repurposed drugs such as doxycycline, itraconazole, niclosamide, simvastatin, leflunomide, metformin, and celecoxib, formulated into different nanosystems, namely, nanoemulsions and nanoemulgels, nanodispersions, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanoparticles, hybrid lipid-polymer nanoparticles, hybrid electrospun nanofibrous scaffolds, liposomes and liposomal gels, ethosomes and ethosomal gels, and aspasomes, for improved outcomes in the battle against skin cancer. Enhanced antitumor effects on melanoma and nonmelanoma research models are highlighted, with some nanoparticles even showing intrinsic anticancer properties, leading to synergistic effects. The explored research findings highly evidence the potential of these approaches to complement the currently available therapeutic strategies in the hope that these treatments might one day reach the pharmaceutical market.
Collapse
Affiliation(s)
- Maria Martins
- Department
of Pharmaceutical Technology, Faculty of
Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Department
of Pharmaceutical Technology, Faculty of
Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV,
Group of Pharmaceutical Technology, Faculty
of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department
of Pharmaceutical Technology, Faculty of
Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV,
Group of Pharmaceutical Technology, Faculty
of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Department
of Pharmaceutical Technology, Faculty of
Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV,
Group of Pharmaceutical Technology, Faculty
of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- RISE-Health,
Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
4
|
Sase M, Sato T, Sato H, Miya F, Zhang S, Haeno H, Kajita M, Noguchi T, Mori Y, Ohteki T. Comparative analysis of tongue cancer organoids among patients identifies the heritable nature of minimal residual disease. Dev Cell 2025; 60:396-413.e6. [PMID: 39504967 DOI: 10.1016/j.devcel.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/13/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
The relapse of tongue cancer (TC) after chemotherapy is caused by minimal residual disease (MRD), which is a few remaining cancer cells after chemotherapy. To understand the mechanism of MRD in TC, we created a library of TC organoids (TCOs) from 28 untreated TC patients at diverse ages and cancer stages. These TCOs reproduced the primary TC tissues both in vitro and in a xenograft model, and several TCO lines survived after cisplatin treatment (chemo-resistant TCOs). Of note, the chemo-resistant TCOs showed "heritable" embryonic diapause-like features before treatment and activation of the autophagy and cholesterol biosynthetic pathways. Importantly, inhibiting these pathways with specific inhibitors converted the chemo-resistant TCOs into chemo-sensitive TCOs. Conversely, autophagy activation with mTOR inhibitors conferred chemo-resistance on the chemo-sensitive TCOs. This unique model provides insights into the mechanism of MRD formation in TCs, leading to effective therapeutic approaches to reduce the recurrence of TC.
Collapse
Affiliation(s)
- Miwako Sase
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan; Department of Dentistry, Oral, and Maxillofacial Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Taku Sato
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan; Department of Biochemistry and Molecular Biology, Nippon Medical School Graduate School of Medicine, Tokyo 113-8603, Japan
| | - Hajime Sato
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan; Department of Dentistry, Oral, and Maxillofacial Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Center for Medical Genetics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shicheng Zhang
- Research Institute for Biomedical Science, Tokyo University of Science, Chiba 278-0022, Japan
| | - Hiroshi Haeno
- Research Institute for Biomedical Science, Tokyo University of Science, Chiba 278-0022, Japan
| | - Mihoko Kajita
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan
| | - Tadahide Noguchi
- Department of Dentistry, Oral, and Maxillofacial Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral, and Maxillofacial Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan.
| |
Collapse
|
5
|
Abdelrady YA, Thabet HS, Sayed AM. The future of metronomic chemotherapy: experimental and computational approaches of drug repurposing. Pharmacol Rep 2025; 77:1-20. [PMID: 39432183 DOI: 10.1007/s43440-024-00662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Metronomic chemotherapy (MC), long-term continuous administration of anticancer drugs, is gaining attention as an alternative to the traditional maximum tolerated dose (MTD) chemotherapy. By combining MC with other treatments, the therapeutic efficacy is enhanced while minimizing toxicity. MC employs multiple mechanisms, making it a versatile approach against various cancers. However, drug resistance limits the long-term effectiveness of MC, necessitating ongoing development of anticancer drugs. Traditional drug discovery is lengthy and costly due to processes like target protein identification, virtual screening, lead optimization, and safety and efficacy evaluations. Drug repurposing (DR), which screens FDA-approved drugs for new uses, is emerging as a cost-effective alternative. Both experimental and computational methods, such as protein binding assays, in vitro cytotoxicity tests, structure-based screening, and several types of association analyses (Similarity-Based, Network-Based, and Target Gene), along with retrospective clinical analyses, are employed for virtual screening. This review covers the mechanisms of MC, its application in various cancers, DR strategies, examples of repurposed drugs, and the associated challenges and future directions.
Collapse
Affiliation(s)
- Yousef A Abdelrady
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Hayam S Thabet
- Microbiology Department, Faculty of Veterinary Medicine, Assiut University, Asyut, 71526, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Asyut, 71516, Egypt
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Piastra V, Ganci F, Sacconi A, Pranteda A, Allegretti M, Bernardini R, Serra M, Lupo B, Dell'Aquila E, Ferretti G, Pescarmona E, Bartolazzi A, Blandino G, Trusolino L, Bossi G. Repurposed AT9283 triggers anti-tumoral effects by targeting MKK3 oncogenic functions in Colorectal Cancer. J Exp Clin Cancer Res 2024; 43:234. [PMID: 39164711 PMCID: PMC11334304 DOI: 10.1186/s13046-024-03150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/04/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common type of cancer and the second leading cause of cancer-related deaths worldwide, with a survival rate near to 10% when diagnosed at an advanced stage. Hence, the identification of new molecular targets to design more selective and efficient therapies is urgently required. The Mitogen activated protein kinase kinase 3 (MKK3) is a dual-specificity threonine/tyrosine protein kinase that, activated in response to cellular stress and inflammatory stimuli, regulates a plethora of biological processes. Previous studies revealed novel MKK3 roles in supporting tumor malignancy, as its depletion induces autophagy and cell death in cancer lines of different tumor types, including CRC. Therefore, MKK3 may represent an interesting new therapeutic target in advanced CRC, however selective MKK3 inhibitors are currently not available. METHODS The study involved transcriptomic based drug repurposing approach and confirmatory assays with CRC lines, primary colonocytes and a subset of CRC patient-derived organoids (PDO). Investigations in vitro and in vivo were addressed. RESULTS The repurposing approach identified the multitargeted kinase inhibitor AT9283 as a putative compound with MKK3 depletion-mimicking activities. Indeed, AT9283 drops phospho- and total-MKK3 protein levels in tested CRC models. Likely the MKK3 silencing, AT9283 treatment: i) inhibited cell proliferation promoting autophagy and cell death in tested CRC lines and PDOs; ii) resulted well-tolerated by CCD-18Co colonocytes; iii) reduced cancer cell motility inhibiting CRC cell migration and invasion; iv) inhibited COLO205 xenograft tumor growth. Mechanistically, AT9283 abrogated MKK3 protein levels mainly through the inhibition of aurora kinase A (AURKA), impacting on MKK3/AURKA protein-protein interaction and protein stability therefore uncovering the relevance of MKK3/AURKA crosstalk in sustaining CRC malignancy in vitro and in vivo. CONCLUSION Overall, we demonstrated that the anti-tumoral effects triggered by AT9283 treatment recapitulated the MKK3 depletion effects in all tested CRC models in vitro and in vivo, suggesting that AT9283 is a repurposed drug. According to its good tolerance when tested with primary colonocytes (CCD-18CO), AT9283 is a promising drug for the development of novel therapeutic strategies to target MKK3 oncogenic functions in late-stage and metastatic CRC patients.
Collapse
Affiliation(s)
- Valentina Piastra
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, Rome, 53 - 00144, Italy
- Department of Science, University Roma Tre, Rome, Italy
| | - Federica Ganci
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, Rome, 53 - 00144, Italy
| | - Andrea Sacconi
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, Rome, 53 - 00144, Italy
| | - Angelina Pranteda
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, Rome, 53 - 00144, Italy
- Department of Science, University Roma Tre, Rome, Italy
| | - Matteo Allegretti
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, Rome, 53 - 00144, Italy
| | - Roberta Bernardini
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome Tor Vergata, Rome, Italy
| | - Martina Serra
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, Rome, 53 - 00144, Italy
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome Tor Vergata, Rome, Italy
| | - Barbara Lupo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Candiolo, Turin, Italy
| | - Emanuela Dell'Aquila
- Second Division of Medical Oncology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Gianluigi Ferretti
- First Division of Medical Oncology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Edoardo Pescarmona
- Department of Pathology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Armando Bartolazzi
- Pathology Research Laboratory, St Andrea University Hospital, Rome, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, Rome, 53 - 00144, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Candiolo, Turin, Italy
| | - Gianluca Bossi
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, Rome, 53 - 00144, Italy.
| |
Collapse
|
7
|
Xu H, Ye Z, Gao X, Dai Y, Luo Y, Han Z, Gu Y. Repurposing GnRH-A as a Near-Infrared Fluorescent Probe for Diagnosis and Surgical Navigation of Breast Cancer Tumors and Metastases. J Med Chem 2024; 67:12386-12398. [PMID: 38995618 DOI: 10.1021/acs.jmedchem.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Breast cancer, globally the most common cancer in women, presents significant challenges in treatment. Breast-conserving surgery (BCS), a less traumatic and painful alternative to radical mastectomy, not only preserves the breast's appearance but also supports postsurgical functional recovery. However, accurately identifying tumors, precisely delineating margins, and thoroughly removing metastases remain complex surgical challenges, exacerbated by the limitations of current imaging techniques, including poor tumor uptake and low signal contrast. Addressing these challenges, our study developed a series of GnRHR-targeted probes (YQGN-n) for fluorescence imaging and surgical navigation of breast cancer through a drug repositioning strategy. Notably, YQGN-7, with its high cellular affinity (Kd of 217.8 nM), demonstrates exceptional selectivity and specificity for breast cancer tumors, surpassing traditional imaging agents like ICG in tumor uptake and pharmacokinetic properties. Furthermore, YQGN-7's effectiveness in surgical navigation, both for primary breast tumors and metastases, highlights its potential as a revolutionary tool in BCS.
Collapse
Affiliation(s)
- Haoran Xu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zhuoyi Ye
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xin Gao
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yue Dai
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yang Luo
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zhihao Han
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
8
|
Tükel EY, Ateş O, Kiraz Y. In Silico Drug Repurposing Against PSMB8 as a Potential Target for Acute Myeloid Leukemia Treatment. Mol Biotechnol 2024:10.1007/s12033-024-01224-4. [PMID: 38954355 DOI: 10.1007/s12033-024-01224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
PSMB8 emerges as a prominent gene associated with cancer survival, yet its potential therapeutic role in acute myeloid leukemia (AML) remains unexplored within the existing literature. The principal aim of this study is to systematically screen an expansive library of molecular entities, curated from various databases to identify the prospective inhibitory agents with an affinity for PSMB8. A comprehensive assortment of molecular compounds obtained from the ZINC15 database was subjected to molecular docking simulations with PSMB8 by using the AutoDock tool in PyRx (version 0.9.9) to elucidate binding affinities. Following the docking simulations, a select subset of molecules underwent further investigation through comprehensive ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis employing AdmetSar and SwissADME tools. Finally, RMSD, RMSF, Rg, and H bond analyses were conducted via GROMACS to determine the best conformationally dynamic molecule that represents the candidate agent for the study. Following rigorous evaluation, Adozelesin, Fiduxosin, and Rimegepant have been singled out based on considerations encompassing bioavailability scores, compliance with filter criteria, and acute oral toxicity levels. Additionally, ligand interaction analysis indicates that Adozelesin and Fiduxosin exhibit an augmented propensity for hydrogen bond formation, a factor recognized for its facilitative role in protein-ligand interactions. After final analyses, we report that Fiduxosin may offer a treatment possibility by reversing the low survival rates caused by PSMB8 high activation in AML. This study represents a strategic attempt to repurpose readily available pharmaceutical agents, potentially obviating the need for de novo drug development, and thereby offering promising avenues for therapeutic intervention in specific diseases.
Collapse
Affiliation(s)
- Ezgi Yağmur Tükel
- Department of Genetics and Bioengineering, Faculty of Engineering, İzmir University of Economics, Sakarya st. No:156, 35330, Balçova, İzmir, Turkey
| | - Onur Ateş
- Department of Genetics and Bioengineering, Faculty of Engineering, İzmir University of Economics, Sakarya st. No:156, 35330, Balçova, İzmir, Turkey
| | - Yağmur Kiraz
- Department of Genetics and Bioengineering, Faculty of Engineering, İzmir University of Economics, Sakarya st. No:156, 35330, Balçova, İzmir, Turkey.
| |
Collapse
|
9
|
Cai Y, Zhang X, Zhang K, Liang J, Wang P, Cong J, Xu X, Li M, Liu K, Wei B. The global patent landscape of emerging infectious disease monkeypox. BMC Infect Dis 2024; 24:403. [PMID: 38622539 PMCID: PMC11017537 DOI: 10.1186/s12879-024-09252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/24/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Monkeypox is an emerging infectious disease with confirmed cases and deaths in several parts of the world. In light of this crisis, this study aims to analyze the global knowledge pattern of monkeypox-related patents and explore current trends and future technical directions in the medical development of monkeypox to inform research and policy. METHODS A comprehensive study of 1,791 monkeypox-related patents worldwide was conducted using the Derwent patent database by descriptive statistics, social network method and linear regression analysis. RESULTS Since the 21st century, the number of monkeypox-related patents has increased rapidly, accompanied by increases in collaboration between commercial and academic patentees. Enterprises contributed the most in patent quantity, whereas the initial milestone patent was filed by academia. The core developments of technology related to the monkeypox include biological and chemical medicine. The innovations of vaccines and virus testing lack sufficient patent support in portfolios. CONCLUSIONS Monkeypox-related therapeutic innovation is geographically limited with strong international intellectual property right barriers though it has increased rapidly in recent years. The transparent licensing of patent knowledge is driven by the merger and acquisition model, and the venture capital, intellectual property and contract research organization model. Currently, the patent thicket phenomenon in the monkeypox field may slow the progress of efforts to combat monkeypox. Enterprises should pay more attention to the sharing of technical knowledge, make full use of drug repurposing strategies, and promote innovation of monkeypox-related technology in hotspots of antivirals (such as tecovirimat, cidofovir, brincidofovir), vaccines (JYNNEOS, ACAM2000), herbal medicine and gene therapy.
Collapse
Affiliation(s)
- Yuanqi Cai
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, 266112, Qingdao, China
| | - Xiaoming Zhang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, 266000, Qingdao, China
| | - Kuixing Zhang
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, 266112, Qingdao, China
| | - Jingbo Liang
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Pingping Wang
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, 266112, Qingdao, China
| | - Jinyu Cong
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, 266112, Qingdao, China
| | - Xin Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Mengyao Li
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, 266112, Qingdao, China
| | - Kunmeng Liu
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, 266112, Qingdao, China.
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, 266112, Qingdao, China.
| |
Collapse
|
10
|
Aliabadi A, Haghshenas MR, Kiani R, Koohi-Hosseinabadi O, Purkhosrow A, Pirsalami F, Panjehshahin MR, Erfani N. In vitro and in vivo anticancer activity of mebendazole in colon cancer: a promising drug repositioning. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2379-2388. [PMID: 37837472 DOI: 10.1007/s00210-023-02722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/13/2023] [Indexed: 10/16/2023]
Abstract
Colon cancer is one of the most common cancers and one of the main causes of death worldwide. Therefore, new treatment methods with better efficiency and fewer risks are very necessary. Mebendazole (MBZ), a drug commonly used for helminthic infections, has recently received attention as a suitable candidate for the treatment of various cancers. This study aimed to investigate, in vitro and in vivo, anticancer activity and selectivity Index of MBZ on colon cancer. HT-29 (human colorectal adenocarcinoma) and MCF-10 (non-tumorigenic epithelial) cell lines were treated with MBZ and Doxorubicin (DOX; positive control drug). IC50 values were estimated using methyl thiazole diphenyl-tetrazolium bromide (MTT) assay. We employed flow cytometry using annexin V-FITC and propidium iodide dyes. For the animal study, colon cancer was subcutaneously induced by CT26 cells (mouse colon cancer) in Bulb/C mice. The mice were treated with 0.05 of LD50, intraperitoneal, every other day for 35 days. Finally, the survival rate, tumor volume, and tumor weight were calculated. Our results demonstrated that IC50 values after 72 h for HT29 and MCF-10 cell lines were 0.29 ± 0.04 µM and 0.80 ± 0.02 µM, respectively. MBZ was more selective than DOX in inhibiting the proliferation of cancer cells compared to normal cells (2. 75 vs. 2.45). Annexin V/PI staining demonstrated that MBZ treatment at IC50 concentrations induced (78 ± 12%) apoptosis in the HT29 cancer cell line after 48 h (P ≤ 0.0001). Also, in mice bearing colon cancer, MBZ significantly reduced the tumor volume (1177 ± 1109 mm3; P ≤ 0.001) and tumor weight (2.30 ± 1.97 g; P ≤ 0.0001) compared to the negative control group (weight 12.45 ± 2.0 g; volume 7346 ± 1077). Also, MBZ increases mean survival time (MST) and increase life span (ILS) percentage in the animal study (51.2 ± 37% vs 93%, respectively). This study suggests that mebendazole strongly and selectively inhibits proliferation and induces apoptosis in colon cancer cells. It may be, accordingly, a promising drug for clinical research and application.
Collapse
Affiliation(s)
- Amin Aliabadi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razie Kiani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Azar Purkhosrow
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatema Pirsalami
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Panjehshahin
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nasrollah Erfani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Morris R, Ali R, Cheng F. Drug Repurposing Using FDA Adverse Event Reporting System (FAERS) Database. Curr Drug Targets 2024; 25:454-464. [PMID: 38566381 DOI: 10.2174/0113894501290296240327081624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Drug repurposing is an emerging approach to reassigning existing pre-approved therapies for new indications. The FDA Adverse Event Reporting System (FAERS) is a large database of over 28 million adverse event reports submitted by medical providers, patients, and drug manufacturers and provides extensive drug safety signal data. In this review, four common drug repurposing strategies using FAERS are described, including inverse signal detection for a single disease, drug-drug interactions that mitigate a target ADE, identifying drug-ADE pairs with opposing gene perturbation signatures and identifying drug-drug pairs with congruent gene perturbation signatures. The purpose of this review is to provide an overview of these different approaches using existing successful applications in the literature. With the fast expansion of adverse drug event reports, FAERS-based drug repurposing represents a promising strategy for discovering new uses for existing therapies.
Collapse
Affiliation(s)
- Robert Morris
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL33612, USA
- Department of Biostatistics and Epidemiology, College of Public Health, University of South Florida, Tampa, FL33612, USA
| | - Rahinatu Ali
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL33612, USA
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL33612, USA
- Department of Biostatistics and Epidemiology, College of Public Health, University of South Florida, Tampa, FL33612, USA
| |
Collapse
|
12
|
Li XJ, Nie P, Herdewijn P, Sun JG. Unlocking the synthetic approaches and clinical application of approved small-molecule drugs for gastrointestinal cancer treatment: A comprehensive exploration. Eur J Med Chem 2023; 262:115928. [PMID: 37944387 DOI: 10.1016/j.ejmech.2023.115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Gastrointestinal (GI) cancers encompass a group of malignancies affecting the digestive system, including the stomach, esophagus, liver, colon, rectum and pancreas. These cancers represent a significant global health burden, necessitating effective treatment strategies. Small-molecule drugs have emerged as crucial therapeutic options in the fight against GI cancers due to their oral bioavailability, targeted mechanisms of action, and well-established safety profiles. The review then elucidates the clinical applications and synthetic methods of clinically approved small-molecule drugs for the treatment of GI cancer, shedding light on their mechanisms of action and their potential in mitigating GI cancer progression. The review also discusses future prospects and the evolving landscape of small-molecule drug development in GI oncology, highlighting the potential for personalized medicine. In summary, this review provides valuable insights into cutting-edge strategies for harnessing clinically approved small-molecule drugs to combat GI cancer effectively.
Collapse
Affiliation(s)
- Xiao-Jing Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Peng Nie
- Medicinal Chemistry, Rega Institute of Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute of Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Jian-Gang Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
13
|
Rao M, McDuffie E, Sachs C. Artificial Intelligence/Machine Learning-Driven Small Molecule Repurposing via Off-Target Prediction and Transcriptomics. TOXICS 2023; 11:875. [PMID: 37888725 PMCID: PMC10611213 DOI: 10.3390/toxics11100875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
The process of discovering small molecule drugs involves screening numerous compounds and optimizing the most promising ones, both in vitro and in vivo. However, approximately 90% of these optimized candidates fail during trials due to unexpected toxicity or insufficient efficacy. Current concepts with respect to drug-protein interactions suggest that each small molecule interacts with an average of 6-11 targets. This implies that approved drugs and even discontinued compounds could be repurposed by leveraging their interactions with unintended targets. Therefore, we developed a computational repurposing framework for small molecules, which combines artificial intelligence/machine learning (AI/ML)-based and chemical similarity-based target prediction methods with cross-species transcriptomics information. This repurposing methodology incorporates eight distinct target prediction methods, including three machine learning methods. By using multiple orthogonal methods for a "dataset" composed of 2766 FDA-approved drugs targeting multiple therapeutic target classes, we identified 27,371 off-target interactions involving 2013 protein targets (i.e., an average of around 10 interactions per drug). Relative to the drugs in the dataset, we identified 150,620 structurally similar compounds. The highest number of predicted interactions were for drugs targeting G protein-coupled receptors (GPCRs), enzymes, and kinases with 10,648, 4081, and 3678 interactions, respectively. Notably, 17,283 (63%) of the off-target interactions have been confirmed in vitro. Approximately 4000 interactions had an IC50 of <100 nM for 1105 FDA-approved drugs and 1661 interactions had an IC50 of <10 nM for 696 FDA-approved drugs. Together, the confirmation of numerous predicted interactions and the exploration of tissue-specific expression patterns in human and animal tissues offer insights into potential drug repurposing for new therapeutic applications.
Collapse
Affiliation(s)
- Mohan Rao
- Neurocrine Biosciences, Inc., Nonclinical Toxicology, San Diego, CA 92130, USA; (E.M.); (C.S.)
| | | | | |
Collapse
|
14
|
Mai Y, Su J, Yang C, Xia C, Fu L. The strategies to cure cancer patients by eradicating cancer stem-like cells. Mol Cancer 2023; 22:171. [PMID: 37853413 PMCID: PMC10583358 DOI: 10.1186/s12943-023-01867-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem-like cells (CSCs), a subpopulation of cancer cells, possess remarkable capability in proliferation, self-renewal, and differentiation. Their presence is recognized as a crucial factor contributing to tumor progression and metastasis. CSCs have garnered significant attention as a therapeutic focus and an etiologic root of treatment-resistant cells. Increasing evidence indicated that specific biomarkers, aberrant activated pathways, immunosuppressive tumor microenvironment (TME), and immunoevasion are considered the culprits in the occurrence of CSCs and the maintenance of CSCs properties including multi-directional differentiation. Targeting CSC biomarkers, stemness-associated pathways, TME, immunoevasion and inducing CSCs differentiation improve CSCs eradication and, therefore, cancer treatment. This review comprehensively summarized these targeted therapies, along with their current status in clinical trials. By exploring and implementing strategies aimed at eradicating CSCs, researchers aim to improve cancer treatment outcomes and overcome the challenges posed by CSC-mediated therapy resistance.
Collapse
Affiliation(s)
- Yansui Mai
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiyan Su
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
15
|
Bąk U, Krupa A. Challenges and Opportunities for Celecoxib Repurposing. Pharm Res 2023; 40:2329-2345. [PMID: 37552383 PMCID: PMC10661717 DOI: 10.1007/s11095-023-03571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Drug repositioning, also known as drug repurposing, reprofiling, or rediscovery, is considered to be one of the most promising strategies to accelerate the development of new original drug products. Multiple examples of successful rediscovery or therapeutic switching of old molecules that did not show clinical benefits or safety in initial trials encourage the following of the discovery of new therapeutic pathways for them. This review summarizes the efforts that have been made, mostly over the last decade, to identify new therapeutic targets for celecoxib. To achieve this goal, records gathered in MEDLINE PubMed and Scopus databases along with the registry of clinical trials by the US National Library of Medicine at the U.S. National Institutes of Health were explored. Since celecoxib is a non-steroidal anti-inflammatory drug that represents the class of selective COX-2 inhibitors (coxibs), its clinical potential in metronomic cancer therapy, the treatment of mental disorders, or infectious diseases has been discussed. In the end, the perspective of a formulator, facing various challenges related to unfavorable physicochemical properties of celecoxib upon the development of new oral dosage forms, long-acting injectables, and topical formulations, including the latest trends in the pharmaceutical technology, such as the application of mesoporous carriers, biodegradable microparticles, lipid-based nanosystems, or spanlastics, was presented.
Collapse
Affiliation(s)
- Urszula Bąk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland.
| |
Collapse
|
16
|
Hsu CM, Chang KC, Chuang TM, Chu ML, Lin PW, Liu HS, Kao SY, Liu YC, Huang CT, Wang MH, Yeh TJ, Gau YC, Du JS, Wang HC, Cho SF, Hsiao CE, Tsai Y, Hsiao SY, Hung LC, Yen CH, Hsiao HH. High G9a Expression in DLBCL and Its Inhibition by Niclosamide to Induce Autophagy as a Therapeutic Approach. Cancers (Basel) 2023; 15:4150. [PMID: 37627178 PMCID: PMC10452841 DOI: 10.3390/cancers15164150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a malignant lymphoid tumor disease that is characterized by heterogeneity, but current treatment does not benefit all patients, which highlights the need to identify oncogenic genes and appropriate drugs. G9a is a histone methyltransferase that catalyzes histone H3 lysine 9 (H3K9) methylation to regulate gene function and expression in various cancers. METHODS TCGA and GTEx data were analyzed using the GEPIA2 platform. Cell viability under drug treatment was assessed using Alamar Blue reagent; the interaction between G9a and niclosamide was assessed using molecular docking analysis; mRNA and protein expression were quantified in DLBCL cell lines. Finally, G9a expression was quantified in 39 DLBCL patient samples. RESULTS The TCGA database analysis revealed higher G9a mRNA expression in DLBCL compared to normal tissues. Niclosamide inhibited DLBCL cell line proliferation in a time- and dose-dependent manner, reducing G9a expression and increasing p62, BECN1, and LC3 gene expression by autophagy pathway regulation. There was a correlation between G9a expression in DLBCL samples and clinical data, showing that advanced cancer stages exhibited a higher proportion of G9a-expressing cells. CONCLUSION G9a overexpression is associated with tumor progression in DLBCL. Niclosamide effectively inhibits DLBCL growth by reducing G9a expression via the cellular autophagy pathway; therefore, G9a is a potential molecular target for the development of therapeutic strategies for DLBCL.
Collapse
Affiliation(s)
- Chin-Mu Hsu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
| | - Kung-Chao Chang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Tzer-Ming Chuang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
| | - Man-Ling Chu
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.C.); (P.-W.L.); (H.-S.L.)
| | - Pei-Wen Lin
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.C.); (P.-W.L.); (H.-S.L.)
| | - Hsiao-Sheng Liu
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.C.); (P.-W.L.); (H.-S.L.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shih-Yu Kao
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Yi-Chang Liu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Tzu Huang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Min-Hong Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tsung-Jang Yeh
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
| | - Yuh-Ching Gau
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jeng-Shiun Du
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Ching Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Feng Cho
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chi-En Hsiao
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA;
| | - Yuhsin Tsai
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Samuel Yien Hsiao
- Department of Biology, University of Rutgers-Camden, Camden, NJ 08102, USA;
| | - Li-Chuan Hung
- Long-Term Care and Health Management Department, Cheng Shiu University, Kaohsiung 833, Taiwan;
| | - Chia-Hung Yen
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Hua Hsiao
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
17
|
Kumbhar N, Nimal S, Patil D, Kaiser VF, Haupt J, Gacche RN. Repurposing of neprilysin inhibitor 'sacubitrilat' as an anti-cancer drug by modulating epigenetic and apoptotic regulators. Sci Rep 2023; 13:9952. [PMID: 37336927 DOI: 10.1038/s41598-023-36872-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
Modifications in the epigenetic landscape have been considered a hallmark of cancer. Histone deacetylation is one of the crucial epigenetic modulations associated with the aggressive progression of various cancer subtypes. Herein, we have repurposed the neprilysin inhibitor sacubitrilat as a potent anticancer agent using in-silico protein-ligand interaction profiler (PLIP) analysis, molecular docking, and in vitro studies. The screening of PLIP profiles between vorinostat/panobinostat and HDACs/LTA4H followed by molecular docking resulted in five (Sacubitrilat, B65, BDS, BIR, and NPV) FDA-approved, experimental and investigational drugs. Sacubitrilat has demonstrated promising anticancer activity against colorectal cancer (SW-480) and triple-negative breast cancer (MDA-MB-231) cells, with IC50 values of 14.07 μg/mL and 23.02 μg/mL, respectively. FACS analysis revealed that sacubitrilat arrests the cell cycle at the G0/G1 phase and induces apoptotic-mediated cell death in SW-480 cells. In addition, sacubitrilat inhibited HDAC isoforms at the transcriptomic level by 0.7-0.9 fold and at the proteomic level by 0.5-0.6 fold as compared to the control. Sacubitrilat increased the protein expression of tumor-suppressor (p53) and pro-apoptotic makers (Bax and Bid) by 0.2-2.5 fold while decreasing the expression of anti-apoptotic Bcl2 and Nrf2 proteins by 0.2-0.5 fold with respect to control. The observed cleaved PARP product indicates that sacubitrilat induces apoptotic-mediated cell death. This study may pave the way to identify the anticancer potential of sacubitrilat and can be explored in human clinical trials.
Collapse
Affiliation(s)
- Navanath Kumbhar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra (MS), 411007, India
| | - Snehal Nimal
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra (MS), 411007, India
| | - Deeksha Patil
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra (MS), 411007, India
| | | | | | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra (MS), 411007, India.
| |
Collapse
|
18
|
Wang Y, Sharma A, Ge F, Chen P, Yang Y, Liu H, Liu H, Zhao C, Mittal L, Asthana S, Schmidt-Wolf IGH. Non-oncology drug (meticrane) shows anti-cancer ability in synergy with epigenetic inhibitors and appears to be involved passively in targeting cancer cells. Front Oncol 2023; 13:1157366. [PMID: 37274234 PMCID: PMC10235775 DOI: 10.3389/fonc.2023.1157366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023] Open
Abstract
Emerging evidence suggests that chemotherapeutic agents and targeted anticancer drugs have serious side effects on the healthy cells/tissues of the patient. To overcome this, the use of non-oncology drugs as potential cancer therapies has been gaining momentum. Herein, we investigated one non-oncology drug named meticrane (a thiazide diuretic used to treat essential hypertension), which has been reported to indescribably improve the therapeutic efficacy of anti-CTLA4 in mice with AB1 HA tumors. In our hypothesis-driven study, we tested anti-cancer potential meticrane in hematological malignance (leukemia and multiple myeloma) and liver cancer cell lines. Our analysis showed that: 1) Meticrane induced alteration in the cell viability and proliferation in leukemia cells (Jurkat and K562 cells) and liver cancer (SK-hep-1), however, no evidence of apoptosis was detectable. 2) Meticrane showed additive/synergistic effects with epigenetic inhibitors (DNMT1/5AC, HDACs/CUDC-101 and HDAC6/ACY1215). 3) A genome-wide transcriptional analysis showed that meticrane treatment induces changes in the expression of genes associated with non-cancer associated pathways. Of importance, differentially expressed genes showed favorable correlation with the survival-related genes in the cancer genome. 4) We also performed molecular docking analysis and found considerable binding affinity scores of meticrane against PD-L1, TIM-3, CD73, and HDACs. Additionally, we tested its suitability for immunotherapy against cancers, but meticrane showed no response to the cytotoxicity of cytokine-induced killer (CIK) cells. To our knowledge, our study is the first attempt to identify and experimentally confirm the anti-cancer potential of meticrane, being also the first to test the suitability of any non-oncology drug in CIK cell therapy. Beyond that, we have expressed some concerns confronted during testing meticrane that also apply to other non-oncology drugs when considered for future clinical or preclinical purposes. Taken together, meticrane is involved in some anticancer pathways that are passively targeting cancer cells and may be considered as compatible with epigenetic inhibitors.
Collapse
Affiliation(s)
- Yulu Wang
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Fangfang Ge
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Yu Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hongjia Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chunxia Zhao
- School of Nursing, Nanchang University, Nanchang, China
| | - Lovika Mittal
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| |
Collapse
|