1
|
Chen L, Lu Y, Hua X, Zhang H, Sun S, Han C. Three methods of behavioural testing to measure anxiety - A review. Behav Processes 2024; 215:104997. [PMID: 38278425 DOI: 10.1016/j.beproc.2024.104997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Behavioural test is very useful to assess the anxiety activity, screen new anxiolytic drugs, explore the pathogenesis of anxiety disorders. Methods of behavioural testing that reflects different aspects of anxiety emotionality simultaneously have always been a critical issue for academics. In this paper, we reviewed previous methods to use behavioural test to evaluate the anxiety activity. A single test was used to measure only one aspect of anxiety emotionality. A battery of behavioural tests could get a comprehensive information of anxiety profile. In one single trial, open field test, elevated plus maze and light/dark box are integrated to assess different types of emotional behaviours. This new paradigm is useful for evaluating multiple dimensions of behaviours simultaneously, minimizing general concerns about previous test experience and inter-test intervals between tests. It is proposed as a promising alternative to using test battery.
Collapse
Affiliation(s)
- Lijing Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Yi Lu
- The People's Hospital of Huaiyin, Jinan 250000, PR China
| | - Xiaokai Hua
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Hongyan Zhang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Shiguang Sun
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China.
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China.
| |
Collapse
|
2
|
Albernaz-Mariano KA, Souza RR, Canto-de-Souza A. Blockade of the mineralocorticoid receptors in the medial prefrontal cortex prevents the acquisition of one-trial tolerance in mice. Behav Brain Res 2022; 431:113938. [PMID: 35618080 DOI: 10.1016/j.bbr.2022.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
One-trial tolerance (OTT) is characterized by the lack of anxiolytic-like effects of benzodiazepines in animals submitted to a trial 2 in the elevated plus-maze (EPM) and is described to be influenced by learning mechanisms. Mineralocorticoid receptors (MR) in the infralimbic subregion (IL) of the medial prefrontal cortex (mPFC) are important modulators of emotional learning, but the MR involvement in the establishment of OTT remains unclear. We investigated the effects of intra-IL infusions of RU 28318 (an MR antagonist) on the OTT to the anxiolytic effects of midazolam (MDZ, GABAA-benzodiazepine agonist) in mice exposed to a two-trial protocol in the EPM. First, mice were treated with saline or MDZ (2mgkg-1, i.p.) 30minutes before trial 1 or 2 in the EPM, to characterize the OTT. To investigate the role of MR in the OTT, independent groups of mice received intra-IL infusions of vehicle or RU 28318 (5 or 10ng 0.1µL-1) immediately before or after first trial in the EPM. Twenty-four hours later, the same mice received injections of saline or MDZ and were re-tested in the EPM. The MDZ decreased anxiety-like behaviors in trial 1, but the same anxiolytic-like effect was not observed in MDZ-mice prior to the second EPM test, confirming the OTT. Blockade of MR in the IL before, but not after, trial 1 restored the anxiolytic effects if MDZ administered in trial 2. These findings indicate that the MR in the IL-mPFC contributing to the OTT by mediating the acquisition, but not the consolidation of emotional learning.
Collapse
Affiliation(s)
- Kairo Alan Albernaz-Mariano
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil.
| | - Rimenez Rodrigues Souza
- The University of Texas at Dallas, School of Behavior and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States.
| | - Azair Canto-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Graduate Program in Psychology UFSCar, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Singh P, Walia V. Anxiolytic like effect of L-Carnitine in mice: Evidences for the involvement of NO-sGC-cGMP signaling pathway. Behav Brain Res 2020; 391:112689. [PMID: 32417275 DOI: 10.1016/j.bbr.2020.112689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/26/2020] [Accepted: 05/02/2020] [Indexed: 12/20/2022]
Abstract
L-Carnitine (LC) is an endogenous compound synthesized from the essential amino acids lysine and methionine. LC act as an antioxidant and modulates the levels of neurochemicals such as glutamate, GABA, NO etc. implicated in the regulation of anxiety and related behavior. However its exact role in the anxiety is not known. The present study was designed to investigate the anxiolytic like effect of LC in mice. LC (2.5, 5.0 and 10 mg/kg, i.p.) was administered to the mice and the anxiety related behavior was determined using light and dark box (LDB) and elevated plus maze (EPM) tests. The whole brain nitrite level was also determined. The results obtained demonstrated that LC (10 mg/kg, i.p.) exerted anxiolytic like effect in mice, accompanied by the reduction of whole brain nitrite level significantly as compared to control. Further, the influence of NO and GABA modulators pretreatments on the effect of subtherapeutic dose of LC was also determined. The results obtained demonstrated that NO donor/cGMP modulator counteracted while NO inhibitor potentiated the effect confers by the subtherapeutic dose of LC mice. Pretreatment of diazepam (1 mg/kg, i.p.) further potentiated the effect of subtherapeutic dose of LC (5 mg/kg, i.p.) in EPM and LDB tests and further reduced the brain nitrite level significantly as compared to LC (5 mg/kg, i.p.) alone treatment. Thus, LC exerted anxiolytic like effect in mice and NO-sGC-cGMP signaling pathway influences the anxiolytic like effect of LC in mice.
Collapse
Affiliation(s)
- Poonam Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Vaibhav Walia
- Faculty of Pharmacy, DIT University, Dehradun, India.
| |
Collapse
|
4
|
Walia V, Garg C, Garg M. Amantadine exerts anxiolytic like effect in mice: Evidences for the involvement of nitrergic and GABAergic signaling pathways. Behav Brain Res 2019; 380:112432. [PMID: 31838141 DOI: 10.1016/j.bbr.2019.112432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023]
Abstract
Amantadine is a glutamatergic antagonist that works by inhibiting the NMDA receptor. Besides the inhibition of NMDA receptors amantadine also stabilizes the glutamatergic system and protects the neurons against the NMDA toxicity. Amantadine treatment also reduces the production of NO and metabolism of GABA. Therefore amantadine modulates glutamate, GABA and NO which are known to be implicated in the pathogenesis of anxiety and related behavior. The present study was designed to investigate the anxiolytic like effect of amantadine in mice. Nitrergic and GABAergic signaling influence in the anxiolytic like effect of amantadine was also studied. Amantadine (25, 50 and 75 mg/kg, i.p.) was administered and the anxiety related behavior was determined using light and dark box (LDB) and elevated plus maze (EPM) methods. Further, the effect of various treatments on the whole brain glutamate, nitrite and GABA levels were also determined. The results obtained demonstrated that the amantadine (50 mg/kg, i.p.) exerted anxiolytic like effect in mice and reduced the levels of glutamate, nitrite and GABA in the brain of mice as compared to control. Further, the influence of NO and GABA in the anxiolytic like effect of the amantadine was also determined. The results obtained demonstrated that NO donor counteracted while NO inhibitor potentiated the anxiolytic like effect of amantadine in mice. Also the combined treatment of amantadine (25 mg/kg, i.p.) and diazepam (1 mg/kg, i.p.) did not affect the anxiety related behavior, brain GABA and nitrite level of mice but reduced the levels the brain glutamate levels significantly as compared to amantadine (25 mg/kg, i.p.) and diazepam (1 mg/kg, i.p.) treated mice. Thus, amantadine exerted anxiolytic like effect in mice and the anxiolytic like effect of amantadine was modulated by nitrergic and GABAergic signaling pathway.
Collapse
Affiliation(s)
- Vaibhav Walia
- Faculty of Pharmacy, DIT University, Dehradun, India.
| | - Chanchal Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Munish Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
5
|
Attenuation Effects of Alpha-Pinene Inhalation on Mice with Dizocilpine-Induced Psychiatric-Like Behaviour. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2745453. [PMID: 31467573 PMCID: PMC6699265 DOI: 10.1155/2019/2745453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/11/2019] [Accepted: 07/04/2019] [Indexed: 12/26/2022]
Abstract
α-Pinene, an organic terpene compound found in coniferous trees, is used as a safe food additive and is contained in many essential oils. Moreover, some studies have shown that α-pinene suppresses neuronal activity. In this study, we investigated whether inhalation of α-pinene suppresses dizocilpine (MK-801-) induced schizophrenia-like behavioural abnormalities in mice. Mice inhaled α-pinene 1 h before the first MK-801 injection. Thirty minutes after MK-801 injection, the open field, spontaneous locomotor activity, elevated plus maze, Y-maze, tail suspension, hot plate, and grip strength tests were conducted as behavioural experiments. Inhalation of α-pinene suppressed the activity of mice in the spontaneous locomotor activity test and although it did not suppress the MK-801-induced increased locomotor activity in the open field test, it remarkably decreased the time that the mice remained in the central area. Inhalation of α-pinene suppressed the MK-801-induced increased total distance travelled in the Y-maze test, whereas it did not alter the MK-801-induced reduced threshold of antinociception in the hot plate test. In the tail suspension and grip strength tests, there was no effect on mouse behaviour by administration of MK-801 and inhalation of α-pinene. These results suggest that α-pinene acts to reduce MK-801-induced behavioural abnormalities resembling those seen in neuropsychiatric disorders. Therefore, both medicinal plants and essential oils containing α-pinene may have potential for therapeutic treatment of schizophrenia.
Collapse
|
6
|
Makino M, Takahashi-Ito K, Murasawa H, Pawlak A, Kashimoto Y, Kitano Y. Memantine ameliorates learning and memory disturbance and the behavioral and psychological symptoms of dementia in thiamine-deficient mice. Pharmacol Biochem Behav 2019; 183:6-13. [PMID: 31175916 DOI: 10.1016/j.pbb.2019.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 11/25/2022]
Abstract
Several studies have reported on the beneficial effects of memantine on behavioral and psychological symptoms of dementia (BPSD) in patients with Alzheimer's disease. However, the effects of memantine on BPSD-like behaviors in animals have not been well addressed. Here, the effects of memantine on memory disturbance and BPSD-like behaviors were evaluated in thiamine-deficient (TD) mice. Memantine (3 and 10 mg/kg, b.i.d.) was orally administered to ddY mice fed a TD diet for 22 days. During the treatment period, the forced swimming test, elevated plus-maze test, passive avoidance test, and locomotor activity test were performed. Neurotransmitter levels in the brain were analyzed after the treatment period. Daily oral administration of memantine ameliorated the memory disturbances, anxiety-like behavior, and depression-like behavior observed in TD mice. Memantine did not have a significant effect on monoamine levels, but increased glutamate levels in the hippocampus in TD mice. These results suggest that memantine prevents or suppresses the progression of BPSD-like behaviors that develop due to TD. This effect may be mediated in part by the enhancement of glutamatergic neuron activity in the hippocampus.
Collapse
Affiliation(s)
- Mitsuhiro Makino
- Specialty Medicine Research Laboratories II, R&D Division, Daiichi-Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Kaori Takahashi-Ito
- Specialty Medicine Research Laboratories I, R&D Division, Daiichi-Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hiroyasu Murasawa
- Department of Pharmacology, Nihon Bioresearch Inc., 6-104 Majima, Fukuju-cho, Hashima, Gifu 501-6251, Japan
| | - Akiko Pawlak
- Department of Pharmacology, Nihon Bioresearch Inc., 6-104 Majima, Fukuju-cho, Hashima, Gifu 501-6251, Japan
| | - Yoshinori Kashimoto
- Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yutaka Kitano
- Specialty Medicine Research Laboratories I, R&D Division, Daiichi-Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
7
|
Bourin M. The test retest model of anxiety: An appraisal of findings to explain benzodiazepine tolerance. Pharmacol Biochem Behav 2019; 178:39-41. [DOI: 10.1016/j.pbb.2017.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/06/2017] [Accepted: 12/31/2017] [Indexed: 11/29/2022]
|
8
|
Walia V, Garg C, Garg M. Nitrergic signaling modulation by ascorbic acid treatment is responsible for anxiolysis in mouse model of anxiety. Behav Brain Res 2019; 364:85-98. [PMID: 30738102 DOI: 10.1016/j.bbr.2019.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
The present study was designed to investigate the effect of ascorbic acid (AA) treatment on the anxiety related behavioral and neurochemical alterations. AA (50, 100 and 200 mg/kg, i.p.) was administered to the mice and anxiety related behavior and levels of glutamate and nitrite in the brain of mice were determined. The results obtained revealed that the administration of AA (100 mg/kg, i.p.) significantly reduced the anxiety related behavior and the levels of nitrite in the brain of mice. Nitrergic interactions were further determined by the pretreatment of mice with nitric oxide (NO) modulator and AA treatment followed by behavioral and neurochemical measurements. The results obtained suggested that NO inhibition potentiated the anxiolytic like activity of AA in mice. It was also observed that the glutamate and nitrite level in the brain of mice were significantly reduced by the NO inhibitor pretreatment. Thus, the present study demonstrated the possible nitrergic pathways modulation in the anxiolytic like activity of AA in mice.
Collapse
Affiliation(s)
- Vaibhav Walia
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| | - Chanchal Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| | - Munish Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| |
Collapse
|
9
|
Effects of Repeated Treatment with Midazolam in SHR and SLA16 Rat Strains in the Triple Test. Behav Genet 2018; 48:440-450. [PMID: 30232575 DOI: 10.1007/s10519-018-9922-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
We exposed male and female rats of SHR (Spontaneously Hypertensive Rats) and SLA16 (SHR.LEW-Anxrr16) strains, in a non-drugged state, for five consecutive days to the Triple Test (experiment 1); or after repeated treatment with midazolam (MDZ), for four consecutive days. The fifth day was performed without treatment (experiment 2). The first experiment showed that males did not avoid and females increased the exploration of the open arms over the days. In experiment 2, SLA16 from both sexes approached more the open arms than SHR rats. The MDZ anxiolytic-like effect was sustained in both strains and sexes over the days. On the fifth day, SLA16 still approached more the open arms than SHR rats. Data suggest an absence of repeated-trial tolerance to MDZ anxiolytic-like effects. Testing the SHR and SLA16 strains, especially females, could be necessary for the future search for the genes and molecular pathways underlying anxiety/emotionality.
Collapse
|
10
|
Ennaceur A, Chazot PL. Preclinical animal anxiety research - flaws and prejudices. Pharmacol Res Perspect 2016; 4:e00223. [PMID: 27069634 PMCID: PMC4804324 DOI: 10.1002/prp2.223] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022] Open
Abstract
The current tests of anxiety in mice and rats used in preclinical research include the elevated plus-maze (EPM) or zero-maze (EZM), the light/dark box (LDB), and the open-field (OF). They are currently very popular, and despite their poor achievements, they continue to exert considerable constraints on the development of novel approaches. Hence, a novel anxiety test needs to be compared with these traditional tests, and assessed against various factors that were identified as a source of their inconsistent and contradictory results. These constraints are very costly, and they are in most cases useless as they originate from flawed methodologies. In the present report, we argue that the EPM or EZM, LDB, and OF do not provide unequivocal measures of anxiety; that there is no evidence of motivation conflict involved in these tests. They can be considered at best, tests of natural preference for unlit and/or enclosed spaces. We also argued that pharmacological validation of a behavioral test is an inappropriate approach; it stems from the confusion of animal models of human behavior with animal models of pathophysiology. A behavioral test is developed to detect not to produce symptoms, and a drug is used to validate an identified physiological target. In order to overcome the major methodological flaws in animal anxiety studies, we proposed an open space anxiety test, a 3D maze, which is described here with highlights of its various advantages over to the traditional tests.
Collapse
Affiliation(s)
| | - Paul L. Chazot
- School of Biological and Biomedical SciencesDurham UniversityDurhamUK
| |
Collapse
|
11
|
Hoeller AA, Costa APR, Bicca MA, Matheus FC, Lach G, Spiga F, Lightman SL, Walz R, Collingridge GL, Bortolotto ZA, de Lima TCM. The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation. PLoS One 2016; 11:e0147293. [PMID: 26795565 PMCID: PMC4721870 DOI: 10.1371/journal.pone.0147293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/01/2016] [Indexed: 01/28/2023] Open
Abstract
Extensive evidence indicates the influence of the cholinergic system on emotional processing. Previous findings provided new insights into the underlying mechanisms of long-term anxiety, showing that rats injected with a single systemic dose of pilocarpine—a muscarinic receptor (mAChR) agonist—displayed persistent anxiogenic-like responses when evaluated in different behavioral tests and time-points (24 h up to 3 months later). Herein, we investigated whether the pilocarpine-induced long-term anxiogenesis modulates the HPA axis function and the putative involvement of NMDA receptors (NMDARs) following mAChRs activation. Accordingly, adult male Wistar rats presented anxiogenic-like behavior in the elevated plus-maze (EPM) after 24 h or 1 month of pilocarpine injection (150 mg/kg, i.p.). In these animals, mAChR activation disrupted HPA axis function inducing a long-term increase of corticosterone release associated with a reduced expression of hippocampal GRs, as well as consistently decreased NMDAR subunits expression. Furthermore, in another group of rats injected with memantine–an NMDARs antagonist (4 mg/kg, i.p.)–prior to pilocarpine, we found inhibition of anxiogenic-like behaviors in the EPM but no further alterations in the pilocarpine-induced NMDARs downregulation. Our data provide evidence that behavioral anxiogenesis induced by mAChR activation effectively yields short- and long-term alterations in hippocampal NMDARs expression associated with impairment of hippocampal inhibitory regulation of HPA axis activity. This is a novel mechanism associated with anxiety-like responses in rats, which comprise a putative target to future translational studies.
Collapse
Affiliation(s)
- Alexandre A. Hoeller
- Postgraduate Program in Medical Sciences, Center of Health Sciences, University Hospital, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Dorothy Hodgkin Building, Bristol, BS1 3NY, United Kingdom
- * E-mail: (AAH); (TCML)
| | - Ana Paula R. Costa
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
| | - Maíra A. Bicca
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
| | - Filipe C. Matheus
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
| | - Gilliard Lach
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
- Institute of Pharmacology, Innsbruck Medical University, Innsbruck, 6020, Austria
| | - Francesca Spiga
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS1 3NY, United Kingdom
| | - Stafford L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS1 3NY, United Kingdom
| | - Roger Walz
- Postgraduate Program in Medical Sciences, Center of Health Sciences, University Hospital, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
- Department of Clinical Medicine, Center of Health Sciences, University Hospital, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
| | - Graham L. Collingridge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Dorothy Hodgkin Building, Bristol, BS1 3NY, United Kingdom
| | - Zuner A. Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Dorothy Hodgkin Building, Bristol, BS1 3NY, United Kingdom
| | - Thereza C. M. de Lima
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
- * E-mail: (AAH); (TCML)
| |
Collapse
|
12
|
Papp M, Gruca P, Lason-Tyburkiewicz M, Willner P. Antidepressant, anxiolytic and procognitive effects of rivastigmine and donepezil in the chronic mild stress model in rats. Psychopharmacology (Berl) 2016; 233:1235-43. [PMID: 26769042 PMCID: PMC4801996 DOI: 10.1007/s00213-016-4206-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/04/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND The treatment of depression in old age is complicated by frequent co-morbidity with cognitive impairment. Anti-dementia drugs have some efficacy to improve cognitive performance and there is an inconsistent literature regarding the effect of such drugs on depressive symptoms. Here, we have investigated whether anti-dementia drugs would have antidepressant-like and pro-cognitive effects in a well-validated animal model of depression and cognitive impairment, chronic mild stress (CMS). METHODS Rats were subjected to CMS for a total of 8 weeks. After 2 weeks, subgroups of stressed and non-stressed animals were treated daily, for 5 weeks followed by 1 week of drug withdrawal, with vehicle, imipramine (10 mg/kg), rivastigmine (2 mg/kg), donepezil (0.3 mg/kg) or memantine (5 mg/kg). Sucrose intake was tested weekly, and animals were also tested in the elevated plus maze (at week 7) and in an object recognition task (at weeks 7 and 8). RESULTS CMS decreased sucrose intake, had an anxiogenic effect in the elevated plus maze, and impaired performance in the object recognition test. Imipramine, rivastigmine and donepezil normalized performance in all three tests. Memantine had anxiolytic and pro-cognitive effects, but did not reverse CMS-induced anhedonia. DISCUSSION The fact that all three anti-dementia drugs reversed CMS-induced cognitive impairment and that cholinesterase inhibitors, but not memantine, have antidepressant-like effects in this model suggest that different mechanisms may underlie CMS-induced anhedonia and cognitive impairment. We discuss the clinical implications of these findings.
Collapse
Affiliation(s)
- Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland.
| | - Piotr Gruca
- />Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | | | - Paul Willner
- />Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
13
|
Zhou H, Yu CL, Wang LP, Yang YX, Mao RR, Zhou QX, Xu L. NMDA and D1 receptors are involved in one-trial tolerance to the anxiolytic-like effects of diazepam in the elevated plus maze test in rats. Pharmacol Biochem Behav 2015; 135:40-5. [PMID: 26004015 DOI: 10.1016/j.pbb.2015.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 01/11/2023]
Abstract
The elevated plus maze (EPM) test is used to examine anxiety-like behaviors in rodents. One interesting phenomenon in the EPM test is one-trial tolerance (OTT), which refers to the reduction in the anxiolytic-like effects of benzodiazepines when rodents are re-exposed to the EPM. However, the underlying mechanism of OTT is still unclear. In this study, we reported that OTT occurred when re-exposure to the EPM (trial 2) only depended on the prior experience of the EPM (trial 1) rather than diazepam treatment. This process was memory-dependent, as it was prevented by the N-methyl-D-aspartate (NMDA) receptors antagonist MK-801 1.5h before trial 2. In addition, OTT was maintained for at least one week but was partially abolished after an interval of 28 days. Furthermore, the administration of the D1-like receptors agonist SKF38393 to the bilateral dorsal hippocampus largely prevented OTT, as demonstrated by the ability of the diazepam treatment to produce significant anxiolytic-like effects in trial 2 after a one-day interval. These findings suggest that OTT to the EPM test may occur via the activation of NMDA receptors and the inactivation of D1-like receptors in certain brain regions, including the hippocampus.
Collapse
Affiliation(s)
- Heng Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, CAS, Kunming 650223, China
| | - Cheng-Long Yu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, CAS, Kunming 650223, China
| | - Li-Ping Wang
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, CAS, Kunming 650223, China
| | - Yue-Xiong Yang
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, CAS, Kunming 650223, China
| | - Rong-Rong Mao
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, CAS, Kunming 650223, China
| | - Qi-Xin Zhou
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, CAS, Kunming 650223, China.
| | - Lin Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, CAS, Kunming 650223, China; CAS Center for Excellence in Brain Science, 320 Yue Yang Road, Shanghai 200031, China.
| |
Collapse
|
14
|
Hassan W, Silva CEB, Mohammadzai IU, da Rocha JBT, Landeira-Fernandez J. Association of oxidative stress to the genesis of anxiety: implications for possible therapeutic interventions. Curr Neuropharmacol 2014; 12:120-39. [PMID: 24669207 PMCID: PMC3964744 DOI: 10.2174/1570159x11666131120232135] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 06/16/2013] [Accepted: 11/02/2013] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress caused by reactive species, including reactive oxygen species, reactive nitrogen species, and unbound, adventitious metal ions (e.g., iron [Fe] and copper [Cu]), is an underlying cause of various neurodegenerative diseases. These reactive species are an inevitable by-product of cellular respiration or other metabolic processes that may cause the oxidation of lipids, nucleic acids, and proteins. Oxidative stress has recently been implicated in depression and anxiety-related disorders. Furthermore, the manifestation of anxiety in numerous psychiatric disorders, such as generalized anxiety disorder, depressive disorder, panic disorder, phobia, obsessive-compulsive disorder, and posttraumatic stress disorder, highlights the importance of studying the underlying biology of these disorders to gain a better understanding of the disease and to identify common biomarkers for these disorders. Most recently, the expression of glutathione reductase 1 and glyoxalase 1, which are genes involved in antioxidative metabolism, were reported to be correlated with anxiety-related phenotypes. This review focuses on direct and indirect evidence of the potential involvement of oxidative stress in the genesis of anxiety and discusses different opinions that exist in this field. Antioxidant therapeutic strategies are also discussed, highlighting the importance of oxidative stress in the etiology, incidence, progression, and prevention of psychiatric disorders.
Collapse
Affiliation(s)
- Waseem Hassan
- Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | - Imdad Ullah Mohammadzai
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Joao Batista Teixeira da Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
15
|
The influence of ionotropic and metabotropic glutamate receptor ligands on anxiety-like effect of amphetamine withdrawal in rats. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:242-9. [PMID: 23623810 DOI: 10.1016/j.pnpbp.2013.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 01/22/2023]
Abstract
Chronic amphetamine use results in anxiety-like states after drug cessation. The aim of the study was to determine a role of ionotropic and metabotropic glutamate receptor ligands in amphetamine-evoked withdrawal anxiety in the elevated plus-maze test in rats. In our study memantine (8 and 12 mg/kg), a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist did not reduce amphetamine withdrawal anxiety. Acamprosate (NMDA and metabotropic glutamate 5 receptor (mGluR5) antagonist) at the dose 200 and 400mg/kg showed anxiolytic-like effect, thus increasing the percent of time spent in open arms and a number of open arm entries. mGluR5 selective antagonist, MTEP (3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine hydrochloride) and mGluR2/3 agonist, LY354740 (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid), caused effects similar to acamprosate at doses 1.25-5mg/kg and 2.5-5mg/kg, respectively. None of the glutamate ligands influenced locomotor activity of rats when given to the saline-treated group. Taking into account the positive correlation between amphetamine withdrawal-induced anxiety and relapse to amphetamine taking, our results suggest that modulation of mGluRs may prevent relapse to amphetamine and might pose a new direction in amphetamine abuse therapy.
Collapse
|
16
|
Kocahan S, Akillioglu K. Effects of NMDA Receptor Blockade During the Early Development Period on the Retest Performance of Adult Wistar Rats in the Elevated Plus Maze. Neurochem Res 2013; 38:1496-500. [DOI: 10.1007/s11064-013-1051-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 04/08/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
|
17
|
Savio LEB, Vuaden FC, Piato AL, Bonan CD, Wyse ATS. Behavioral changes induced by long-term proline exposure are reversed by antipsychotics in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:258-63. [PMID: 22019856 DOI: 10.1016/j.pnpbp.2011.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/23/2011] [Accepted: 10/06/2011] [Indexed: 11/24/2022]
Abstract
Hyperprolinemia is an inherited disorder of proline metabolism and patients affected by this disease may present neurological manifestations, including seizures and cognitive dysfunctions. Moreover, an association between adulthood schizoaffective disorders and moderate hyperprolinemia has been reported. However, the mechanisms underlying these behavioral phenotypes still remain unclear. In the present study, we investigated the effect of proline treatments on behavioral parameters in zebrafish, such as locomotor activity, anxiety, and social interaction. Adult zebrafish (Danio rerio) were exposed to proline (1.5 and 3.0 mM) during 1h or 7 days (short- or long-term treatments, respectively). Short-term proline exposure did not promote significant changes on the behavioral parameters observed. Long-term exposure at 1.5 mM proline significantly increased the number of line crossing (47%), the total distance (29%), and the mean speed (33%) when compared to control group. A significant increase in the time spent in the upper portion of the test tank was also observed after this treatment (91%), which may be interpreted as an indicator of anxiolytic behavior. Proline at 1.5 mM also induced social interaction impairment (78%), when compared to the untreated group after long-term treatment. Moreover, these proline-induced behavioral changes in zebrafish were completely reversed by acute administration of an atypical antipsychotic drug (sulpiride), but not by a typical (haloperidol). These findings demonstrate that proline is able to induce schizophrenia-like symptoms in zebrafish, which reinforce the use of this species as a complementary vertebrate model for studying behavioral phenotypes associated with neurological dysfunctions characteristic of metabolic diseases.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
18
|
Riaza Bermudo-Soriano C, Perez-Rodriguez MM, Vaquero-Lorenzo C, Baca-Garcia E. New perspectives in glutamate and anxiety. Pharmacol Biochem Behav 2011; 100:752-74. [PMID: 21569789 DOI: 10.1016/j.pbb.2011.04.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/05/2011] [Accepted: 04/15/2011] [Indexed: 02/07/2023]
Abstract
Anxiety and stress-related disorders, namely posttraumatic stress disorder (PTSD), generalized anxiety disorder (GAD), obsessive-compulsive disorder (ODC), social and specific phobias, and panic disorder, are a major public health issue. A growing body of evidence suggests that glutamatergic neurotransmission may be involved in the biological mechanisms underlying stress response and anxiety-related disorders. The glutamatergic system mediates the acquisition and extinction of fear-conditioning. Thus, new drugs targeting glutamatergic neurotransmission may be promising candidates for new pharmacological treatments. In particular, N-methyl-d-aspartate receptors (NMDAR) antagonists (AP5, AP7, CGP37849, CGP39551, LY235959, NPC17742, and MK-801), NMDAR partial agonists (DCS, ACPC), α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs) antagonists (topiramate), and several allosteric modulators targeting metabotropic glutamate receptors (mGluRs) mGluR1, mGluR2/3, and mGluR5, have shown anxiolytic-like effects in several animal and human studies. Several studies have suggested that polyamines (agmatine, putrescine, spermidine, and spermine) may be involved in the neurobiological mechanisms underlying stress-response and anxiety-related disorders. This could mainly be attributed to their ability to modulate ionotropic glutamate receptors, especially NR2B subunits. The aim of this review is to establish that glutamate neurotransmission and polyaminergic system play a fundamental role in the onset of anxiety-related disorders. This may open the way for new drugs that may help to treat these conditions.
Collapse
|
19
|
Gazarini L, Stern CAJ, Bertoglio LJ. Protein synthesis in dorsal hippocampus supports the drug tolerance induced by prior elevated plus-maze experience. Neuroscience 2011; 179:179-87. [PMID: 21284953 DOI: 10.1016/j.neuroscience.2011.01.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/07/2011] [Accepted: 01/25/2011] [Indexed: 12/31/2022]
Affiliation(s)
- L Gazarini
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | | | | |
Collapse
|
20
|
Dubiela FP, Messias MF, Moreira KDM, Zanlorenci LHF, Grassl C, Filho RF, Nobrega JN, Tufik S, Hipólide DC. Reciprocal interactions between MK-801, sleep deprivation and recovery in modulating rat behaviour. Behav Brain Res 2011; 216:180-5. [DOI: 10.1016/j.bbr.2010.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 07/19/2010] [Accepted: 07/25/2010] [Indexed: 01/03/2023]
|
21
|
Antipsychotic drugs prevent the motor hyperactivity induced by psychotomimetic MK-801 in zebrafish (Danio rerio). Behav Brain Res 2010; 214:417-22. [DOI: 10.1016/j.bbr.2010.06.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 06/08/2010] [Accepted: 06/13/2010] [Indexed: 11/17/2022]
|
22
|
Anxioselective profile of glycineB receptor partial agonist, d-cycloserine, in plus-maze-naïve but not plus-maze-experienced mice. Eur J Pharmacol 2010; 646:31-7. [DOI: 10.1016/j.ejphar.2010.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/20/2010] [Accepted: 08/04/2010] [Indexed: 01/06/2023]
|
23
|
Activity in prelimbic cortex is required for adjusting the anxiety response level during the elevated plus-maze retest. Neuroscience 2010; 170:214-22. [DOI: 10.1016/j.neuroscience.2010.06.080] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/23/2010] [Accepted: 06/29/2010] [Indexed: 11/24/2022]
|
24
|
Rammes G, Danysz W, Parsons CG. Pharmacodynamics of memantine: an update. Curr Neuropharmacol 2010; 6:55-78. [PMID: 19305788 PMCID: PMC2645549 DOI: 10.2174/157015908783769671] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/10/2007] [Accepted: 11/05/2007] [Indexed: 01/12/2023] Open
Abstract
Memantine received marketing authorization from the European Agency for the Evaluation of Medicinal Products (EMEA) for the treatment of moderately severe to severe Alzheimer s disease (AD) in Europe on 17(th) May 2002 and shortly thereafter was also approved by the FDA for use in the same indication in the USA. Memantine is a moderate affinity, uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist with strong voltage-dependency and fast kinetics. Due to this mechanism of action (MOA), there is a wealth of other possible therapeutic indications for memantine and numerous preclinical data in animal models support this assumption. This review is intended to provide an update on preclinical studies on the pharmacodynamics of memantine, with an additional focus on animal models of diseases aside from the approved indication. For most studies prior to 1999, the reader is referred to a previous review [196].In general, since 1999, considerable additional preclinical evidence has accumulated supporting the use of memantine in AD (both symptomatic and neuroprotective). In addition, there has been further confirmation of the MOA of memantine as an uncompetitive NMDA receptor antagonist and essentially no data contradicting our understanding of the benign side effect profile of memantine.
Collapse
Affiliation(s)
- G Rammes
- Clinical Neuropharmacology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | | |
Collapse
|
25
|
Kincheski GC, Carobrez AP. The dorsal periaqueductal gray modulates the increased fear-like behavior exhibited by experienced rats in the elevated plus-maze. Behav Brain Res 2010; 206:120-6. [DOI: 10.1016/j.bbr.2009.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
26
|
Barkus C, McHugh SB, Sprengel R, Seeburg PH, Rawlins JNP, Bannerman DM. Hippocampal NMDA receptors and anxiety: at the interface between cognition and emotion. Eur J Pharmacol 2009; 626:49-56. [PMID: 19836379 PMCID: PMC2824088 DOI: 10.1016/j.ejphar.2009.10.014] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/15/2009] [Accepted: 10/06/2009] [Indexed: 11/29/2022]
Abstract
David De Wied had a fundamental interest in the brain and behaviour, with a particular interest in the interface between cognition and emotion, and how impairments at this interface could underlie human psychopathology. The NMDA subtype of glutamate receptor is an important mediator of synaptic plasticity and plays a central role in the neurobiological mechanisms of emotionality, as well as learning and memory. NMDA receptor antagonists affect various aspects of emotionality including fear, anxiety and depression, as well as impairing certain forms of learning and memory. The hippocampus is a key brain structure, implicated in both cognition and emotion. Lesion studies in animals have suggested that dorsal and ventral sub-regions of the hippocampus are differentially involved in dissociable aspects of hippocampus-dependent behaviour. Cytotoxic lesions of the dorsal hippocampus (septal pole) in rodents impair spatial learning but have no effect on anxiety, whereas ventral hippocampal lesions reduce anxiety but are without effect on spatial memory. This role for the ventral hippocampus in anxiety is distinct from the role of the amygdala in other aspects of emotional processing, such as fear conditioning. Recent studies with genetically modified mice have shown that NR1 NMDA receptor subunit deletion, specifically from the granule cells of the dentate gyrus, not only impairs short-term spatial memory but also reduces anxiety. This suggests that NMDA receptors in ventral hippocampus may be a key locus supporting the anxiolytic effects of NMDA receptor antagonists. These data support Gray's neuropsychological account of hippocampal function.
Collapse
Affiliation(s)
- Christopher Barkus
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Implication of the 5-HT2A and 5-HT2C (but not 5HT1A) receptors located within the periaqueductal gray in the elevated plus-maze test-retest paradigm in mice. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1261-9. [PMID: 19625008 DOI: 10.1016/j.pnpbp.2009.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 07/03/2009] [Accepted: 07/10/2009] [Indexed: 11/21/2022]
Abstract
A single exposure to the elevated plus-maze test (EPM) increases open arms avoidance and reduces or abolishes the anxiolytic-like effect of benzodiazepines assessed during a second trial, a phenomenon defined as "one-trial tolerance" (OTT). It has been emphasized that the dorsal portion of the midbrain periaqueductal gray (dPAG) plays a role on this enhanced aversion phenomenon in maze-experienced rodents. Given that intra-dPAG injections of a wide range of serotonergic 5-HT(1A), 5-HT(2A) and 5-HT(2C) receptor agonists produce anxiolytic-like effects in maze-naïve rodents, the present study examined the effects of the 5-HT(1A) receptor agonist 8-OH-DPAT (5.6 and 10.0nmol in 0.15microl) the preferential 5-HT(2A) receptor agonist DOI (2.0 and 8.0nmol in 0.1microl) and the preferential 5-HT(2C) receptor agonist MK-212 (21.2 and 63.6nmol in 0.1microl) microinjected into the dPAG prior to Trial 1 and Trial 2 on the behaviour of mice in the EPM. Test sessions were recorded and subsequently scored for anxiety-like behaviour (percentage of open arms entries and time) as well as general locomotor activity (closed arm entries). The results showed a lack of 8-OH-DPAT (5.6 and 10.0nmol) effect on the behaviour of maze-naïve and maze-experienced mice, while intra-dPAG microinfusions of DOI (8nmol) reduced anxiety-like behaviour only in maze-experienced mice that had received a similar treatment prior to Trial 1. Furthermore, intra-dPAG MK-212 (63.6nmol) showed an anxiolytic-like effect on both Trial 1 and Trial 2. Importantly, these effects were observed in the absence of any significant change in closed arm entries, the parameter considered to be a valid index of locomotor activity in the plus-maze. These results support the dPAG as a crucial structure involved in the neurobiology of the OTT phenomenon as well as accounting the role of the 5-HT(2A) and 5-HT(2C) receptors located within this midbrain structure on the emotional state induced by EPM test and retest paradigm mice.
Collapse
|
28
|
Baptista D, Bussadori K, Nunes-de-Souza RL, Canto-de-Souza A. Blockade of fear-induced antinociception with intra-amygdala infusion of midazolam: Influence of prior test experience. Brain Res 2009; 1294:29-37. [DOI: 10.1016/j.brainres.2009.07.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 11/25/2022]
|
29
|
Similar anxiolytic-like effects following intra-amygdala infusions of benzodiazepine receptor agonist and antagonist: evidence for the release of an endogenous benzodiazepine inverse agonist in mice exposed to elevated plus-maze test. Brain Res 2009; 1267:65-76. [PMID: 19268657 DOI: 10.1016/j.brainres.2009.02.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/17/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
Abstract
Previous studies have demonstrated that microinjections of midazolam, a benzodiazepine receptor agonist, into the amygdala produce anxiolytic-like effects in elevated plus-maze (EPM)-naïve rodents. However, systemic or intracerebral administration of benzodiazepines (BDZ) fails to alter anxiety in maze-experienced animals, a phenomenon defined as "one trial tolerance" (OTT). This study focused on the effects of intra-amygdala infusion of midazolam in maze-experienced mice. In addition, the effects of flumazenil in the amygdala of maze-naïve and experienced mice were also investigated. To investigate intrinsic effects of intra-amygdala flumazenil on anxiety, animals were systemically treated with the BDZ receptor inverse agonist, DMCM (4-ethyl-6,7-dimethoxy-9H-pyrido[3,4-b]indole-3-carboxylic acid methyl ester hydrochloride). Conventional measures of anxiety (% open arm entries and % open arm time), locomotor activity (frequency of closed arm entries) and a range of ethological measures related to risk assessment were recorded. Intra-amygdala midazolam (3.0 and 30 nmol) attenuated anxiety in maze-experienced mice. A similar behavioral profile was produced by intra-amygdala flumazenil in maze-naïve (4.0 and 16 nmol) and maze-experienced (16 nmol) mice. Intra-amygdala flumazenil (at 2.0 nmol, a dose devoid of any intrinsic effect on anxiety measures in the EPM) selectively and completely blocked the anxiogenic-like effects of systemic administration of DMCM (1.0 mg/kg, i.p.) in maze-naïve mice. Together, these results demonstrate that the GABA(A)-benzodiazepine receptor complex located within the amygdala does not play a role in the OTT phenomenon. Present results also suggest that the release of an endogenous BDZ receptor inverse agonist within the amygdala seems to be an important correlate of the emotional state induced by the plus-maze test.
Collapse
|
30
|
dos Reis LM, Canto-de-Souza A. Intra-periaqueductal gray matter injections of midazolam fail to alter anxiety in plus-maze experienced mice. Brain Res 2008; 1231:93-102. [DOI: 10.1016/j.brainres.2008.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/13/2008] [Accepted: 06/15/2008] [Indexed: 11/30/2022]
|
31
|
Nascimento Häckl LP, Carobrez AP. Distinct ventral and dorsal hippocampus AP5 anxiolytic effects revealed in the elevated plus-maze task in rats. Neurobiol Learn Mem 2007; 88:177-85. [PMID: 17540583 DOI: 10.1016/j.nlm.2007.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 04/11/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
The hippocampal formation (HPC) mediates processes associated with learning, memory, anxiety and fear. The glutamate N-methyl-d-aspartate (NMDA)-receptor subtype is involved in many HPC functional processes related to learning and memory. Although not tested for the HPC, NMDA-receptor antagonists reduced fear and anxiety related responses when applied to other brain regions mediating defensive behaviour. Consequently, this study evaluated the effects of ventral or dorsal HPC application of the NMDA-receptor antagonist, AP5, in rats submitted to the Trial 1/Trial 2 elevated plus-maze (EPM) task. Ventral, but not dorsal, infusions of AP5 (6 and 24 nmol) before EPM Trial 1 increased open arms exploration and reduced risk assessment behavior, suggesting an anxiolytic-like effect. Furthermore, no interference in the avoidance responses was detected during EPM Trial 2 after AP5 infusion into the ventral or dorsal HPC before Trial 1, post-trial 1, or before Trial 2. These data support the notion of differential involvement of ventral HPC, but not dorsal, in mechanisms associated with anxiety and suggest the participation of the glutamatergic transmission, through NMDA receptor, into the ventral HPC in the mediation of defensive behavior.
Collapse
|
32
|
Carobrez AP, Bertoglio LJ. Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 2005; 29:1193-205. [PMID: 16084592 DOI: 10.1016/j.neubiorev.2005.04.017] [Citation(s) in RCA: 695] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 04/19/2005] [Accepted: 04/19/2005] [Indexed: 12/16/2022]
Abstract
As well as being considered a reliable measurement instrument of animal anxiety-like behavior, the elevated plus-maze (EPM) is also used as a post-hoc test to evaluate emotionality in genetically modified rodents. The present review considers factors which may further improve the validity (predictive/face/construct) of the EPM model: (1) the importance of measuring defensive patterns of response such as risk assessment in addition to traditional measures such as open arm time; (2) other methodological refinements such as min-by-min scoring and use of a test/retest protocol; and (3) the identification and control of major sources of variability in this test. To estimate whether current use of the EPM by researchers takes the above factor into account, a survey of the recent literature was conducted. Results showed that the majority of studies have not yet assimilated these important considerations into their use of the EPM. For example, although risk assessment measures may be more sensitive to anxiety modulating drugs than traditional measures, only a quarter of studies have adopted them. It is hoped that this review can provide insights into the optimal use of the EPM, a simple task that can be very complex in terms of behavioral analysis.
Collapse
Affiliation(s)
- A P Carobrez
- Departamento de Farmacologia, CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, 88049-900, Brazil.
| | | |
Collapse
|
33
|
Bessa JM, Oliveira M, Cerqueira JJ, Almeida OFX, Sousa N. Age-related qualitative shift in emotional behaviour: Paradoxical findings after re-exposure of rats in the elevated-plus maze. Behav Brain Res 2005; 162:135-42. [PMID: 15922074 DOI: 10.1016/j.bbr.2005.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 03/10/2005] [Accepted: 03/13/2005] [Indexed: 10/25/2022]
Abstract
Several variables, including age, are known to influence anxiety. Previous exposure to the elevated-plus maze (EPM) is known to modify emotional behaviour as retesting in the EPM at a standard age of 3 months increases open-arm avoidance and attenuates the effects of anxiolytic drugs. This study analysed whether similar results are obtained when older animals are subjected to these experimental paradigms. Overall, increasing age was associated with more signs of anxiety. Additionally, we observed a paradoxical behaviour pattern in aged-subjects that were re-exposed to the EPM, with mid-aged and old rats failing to display open arm avoidance (OAA) in the second trial; this qualitative shift in emotional behaviour was not associated with decreased locomotion. An examination of how age influences responsiveness to anxiolytic drugs, with or without previous maze experience, was also conducted. Midazolam (0.5 and 1 mg/kg) proved anxiolytic in maize-naive young animals; in marked contrast, in older animals midazolam at 1 mg/kg resulted in sedation but not anxiolyis. One trial tolerance to midazolam was evident in animals of both ages that were subjected to a second EPM trial; the latter phenomenon was apparently accentuated in older animals as they do not show open arm avoidance upon re-exposure to the EPM. These data suggest that the age-associated 'resistance' to anxiolytic drugs might be related to a qualitative shift in emotional behaviour.
Collapse
Affiliation(s)
- J M Bessa
- Neuroscience Group, Life and Health Science Research Institute (ICVS), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | |
Collapse
|
34
|
Mirza NR, Bright JL, Stanhope KJ, Wyatt A, Harrington NR. Lamotrigine has an anxiolytic-like profile in the rat conditioned emotional response test of anxiety: a potential role for sodium channels? Psychopharmacology (Berl) 2005; 180:159-68. [PMID: 15682295 DOI: 10.1007/s00213-005-2146-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 12/06/2004] [Indexed: 11/30/2022]
Abstract
RATIONALE Many anticonvulsants are used in disorders other than epilepsy. For example, lamotrigine is reported to be effective in post-traumatic stress disorder and mania. OBJECTIVE We assessed the effects of the anticonvulsants lamotrigine, valproate and carbamazepine in an animal model of anxiety. We assessed a wide range of pharmacological tools to delineate the mechanism of lamotrigine's anxiolytic effect. METHODS We assessed these compounds in the rat conditioned emotional response (CER) test of anxiety. RESULTS Lamotrigine (30-80 mg/kg) dose-dependently and reproducibly engendered an anxiolytic response in this test, with similar efficacy to benzodiazepines. Carbamazepine (20-40 mg/kg) and riluzole (10 mg/kg), which block Na+ channels by a similar mechanism as lamotrigine, were also anxiolytic. By contrast, valproate (100-600 mg/kg) was inactive and appears to differ in its interaction with Na+ channels. The SSRI paroxetine, the GABA(A) receptor positive modulator propofol, the NMDA antagonists memantine and (+)MK-801, and the Ca2+ channel antagonist nifedipine were all inactive in the CER test, suggesting these mechanisms may not mediate the anxiolytic effect of lamotrigine. More directly, we showed that the anxiolytic effect of lamotrigine could be blocked by co-administering rats with the Na+ channel activator veratrine (0.1 mg/kg). By contrast, neither the Ca2+ channel agonist BAYK8644 (0.5 mg/kg) nor the 5-HT1A or 5-HT(1/2) antagonists WAY100635 (0.3 mg/kg) and metergoline (3 mg/kg), respectively, were able to block the effect. CONCLUSION Lamotrigine's anxiolytic effect in the CER test may be mediated via block of Na+ channels, and this may represent a target for the development of novel anxiolytics.
Collapse
Affiliation(s)
- N R Mirza
- Department of Neuropharmacology, Vernalis PLC, Oakdene Court, 613 Reading Road, Winnersh, Wokingham RG41 5UA, UK.
| | | | | | | | | |
Collapse
|
35
|
Bertoglio LJ, Anzini C, Lino-de-Oliveira C, Carobrez AP. Enhanced dorsolateral periaqueductal gray activity counteracts the anxiolytic response to midazolam on the elevated plus-maze Trial 2 in rats. Behav Brain Res 2005; 162:99-107. [PMID: 15922070 DOI: 10.1016/j.bbr.2005.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 03/04/2005] [Accepted: 03/07/2005] [Indexed: 10/25/2022]
Abstract
Rodents previously (Trial 1) experienced in the elevated plus-maze (EPM) apparatus no longer respond to anxiolytic-like drugs during retesting (Trial 2). In view of the fact that the dorsolateral periaqueductal gray (dlPAG) modulates fear/anxiety-like behavior, the present study sought to determine its role in this phenomenon. In order to address this issue, EPM-experienced rats that had received lidocaine, a drug which produces a reversible functional deactivation, intra-dlPAG pre-Trial 1, post-Trial 1 or pre-Trial 2, were systemically injected with the benzodiazepine midazolam and submitted to the EPM apparatus. According to the results, 0.25 mg/kg midazolam increased open arms exploration and reduced risk assessment behavior, suggesting an anxiolytic-like effect in EPM-naive rats, regardless of the intra-dlPAG treatment. EPM-experienced rats administered with midazolam only displayed a similar pattern of behavior when lidocaine was administered intra-dlPAG pre-Trial 2, but not pre- or post-Trial 1. These effects were observed in the absence of changes in enclosed arms entries, an EPM general exploratory activity index. The present results suggest that an increased activity of the dlPAG during Trial 2 would explain the lack of anxiolytic-like effect of drugs elicited by prior EPM test experience.
Collapse
Affiliation(s)
- Leandro José Bertoglio
- Departamento de Farmacologia, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | | | | | | |
Collapse
|
36
|
Izídio GS, Spricigo L, Ramos A. Genetic differences in the elevated plus-maze persist after first exposure of inbred rats to the test apparatus. Behav Processes 2005; 68:129-34. [PMID: 15686823 DOI: 10.1016/j.beproc.2004.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Accepted: 12/12/2004] [Indexed: 10/25/2022]
Abstract
The elevated plus-maze (EPM) is an anxiety model thought to assess different types of emotional states depending on whether or not the animals have been previously exposed to the test apparatus. Accordingly, benzodiazepine-treated rodents generally differ from controls in the first but not in the second EPM trial. Inbred Lewis and SHR rats of both sexes (N=10) were submitted twice (test and retest) to the EPM with a 24 h interval between trials. Overall strain differences (Lewis<SHR) were observed in both males and females concerning anxiety-related measures (time spent and percent of entries in the open arms) regardless of previous maze experience. Moreover, prior exposure to the test apparatus produced an overall decrease in the approach towards the open arms in both strains and sexes. The fact that genetic differences did not diminish or disappear in the second trial, suggests that test and retest in the EPM are likely to share some common emotional components and that differences between naïve LEW and SHR rats are not similar to those observed between control and benzodiazepine-treated animals.
Collapse
Affiliation(s)
- G S Izídio
- Laboratório de Genética do Comportamento, Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88.040-900 Florianópolis, SC, Brazil
| | | | | |
Collapse
|
37
|
Bertoglio LJ, Carobrez AP. Scopolamine given pre-Trial 1 prevents the one-trial tolerance phenomenon in the elevated plus-maze Trial 2. Behav Pharmacol 2004; 15:45-54. [PMID: 15075626 DOI: 10.1097/00008877-200402000-00006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A learned avoidance response has been one of the hypotheses proposed to explain the 'one-trial tolerance' (OTT) phenomenon, which represents a drug's loss of anxiolytic-like effect in the elevated plus-maze (EPM) test in experienced rodents. Based on these facts, if some kind of learning occurs throughout Trial 1, then an impairment of its acquisition would maintain the drug's anxiolytic-like effect on Trial 2. Using male Wistar rats, the present study examined whether scopolamine (SCO; 0.5-1.5 mg/kg), a drug that impairs learning acquisition, given 30 min prior to Trial 1, actually prevents the OTT phenomenon to either the midazolam (MDZ; 0.5 mg/kg) or the memantine (MEM; 8.0 mg/kg) anxiolytic-like effect on the EPM Trial 2 (48 h later). According to the results, both MDZ and MEM increased open-arm exploration (indicating anxiolysis) on Trial 2 only in rats that had been treated previously with 1.5 mg/kg SCO. These results were observed in the absence of change in general exploratory activity. The present findings suggest that SCO impaired the acquisition of the behavioral strategy to cope with the subsequent EPM exposure that supposedly underlies the OTT phenomenon, thereby revealing the anxiolytic-like effects of MDZ and MEM on Trial 2.
Collapse
Affiliation(s)
- L J Bertoglio
- Departamento de Farmacologia, CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | |
Collapse
|
38
|
Carobrez ADP. Transmissão pelo glutamato como alvo molecular na ansiedade. BRAZILIAN JOURNAL OF PSYCHIATRY 2003; 25 Suppl 2:52-8. [PMID: 14978588 DOI: 10.1590/s1516-44462003000600012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
O glutamato (GLU) é o principal neurotransmissor excitatório do cérebro de mamíferos. Os receptores do GLU são classificados em ionotrópicos ou metabotrópicos. A interferência do GLU no desenvolvimento neural, na plasticidade sináptica, no aprendizado e na memória, na epilepsia, na isquemia neural, na tolerância e na dependência a drogas, na dor neuropática, na ansiedade e na depressão tem limitado o uso de compostos que agem nos receptores de GLU, quando existe a necessidade de ações mais seletivas dessas drogas. Dados pré-clínicos em roedores e humanos têm mostrado que compostos que reduzem a ativação do GLU, pelo bloqueio dos seus receptores ou através da redução da sua liberação dos terminais, produzem um perfil ansiolítico em modelos de ansiedade. A aplicação desses compostos em áreas específicas do cérebro, envolvidas na mediação do comportamento defensivo, tal como a substância cinzenta periaquedutal dorsal, também reproduzem o mesmo perfil ansiolítico de ação. O conhecimento crescente acerca da neurotransmissão pelo GLU e o desenvolvimento de compostos mais seletivos atuantes nesta neurotransmissão, renovaram a atenção para esse sistema neurotransmissor como alvo molecular possível para uma nova classe de drogas no tratamento de condições neuropsiquiátricas. Embora incompleta, esta revisão tenta atrair a atenção para a importância de estudos colaborativos entre clínicos e pesquisadores de ciências básicas na geração de idéias para alvos potenciais no desenvolvimento de novos compostos ansiolíticos. e desta maneira contribuir para a compreensão das bases biológicas da ansiedade.
Collapse
Affiliation(s)
- Antonio de Pádua Carobrez
- Departamento de Farmacologia/CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil.
| |
Collapse
|