1
|
Hwang EK, Wunsch AM, Wolf ME. Retinoic acid-mediated homeostatic plasticity drives cell type-specific CP-AMPAR accumulation in nucleus accumbens core and incubation of cocaine craving. Mol Psychiatry 2025:10.1038/s41380-025-03026-9. [PMID: 40316677 DOI: 10.1038/s41380-025-03026-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 03/06/2025] [Accepted: 04/08/2025] [Indexed: 05/04/2025]
Abstract
Incubation of cocaine craving, a translationally relevant model for the persistence of drug craving during abstinence, ultimately depends on strengthening of nucleus accumbens core (NAcc) synapses through synaptic insertion of homomeric GluA1 Ca2+-permeable AMPA receptors (CP-AMPARs). Here we tested the hypothesis that CP-AMPAR upregulation results from a form of homeostatic plasticity, previously characterized in vitro and in other brain regions, that depends on retinoic acid (RA) signaling in dendrites. Under normal conditions, ongoing synaptic transmission maintains intracellular Ca2+ at levels sufficient to suppress RA synthesis. Prolonged blockade of neuronal activity results in disinhibition of RA synthesis, leading to increased GluA1 translation and synaptic insertion of homomeric GluA1 CP-AMPARs. Using slice recordings, we found that increasing RA signaling in NAcc medium spiny neurons (MSN) from drug-naïve rats rapidly upregulates CP-AMPARs. This is observed only in MSN expressing the D1 dopamine receptor. In MSN recorded from rats that have undergone incubation of craving, we observe CP-AMPAR upregulation in D1 MSN (but not D2 MSN) and the effect of exogenous RA application is occluded in these D1 MSN. Instead, interruption of RA signaling in the slice normalizes the incubation-associated elevation of synaptic CP-AMPARs. Paralleling this in vitro finding, interruption of RA signaling in the NAcc of 'incubated rats' normalizes elevated cue-induced cocaine seeking back to non-incubated levels. These results suggest that RA signaling becomes tonically active in the NAcc during cocaine withdrawal and, by maintaining elevated CP-AMPAR levels, contributes to the incubation of cocaine craving.
Collapse
Affiliation(s)
- Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- National Center for Wellness and Recovery, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA.
| |
Collapse
|
2
|
Wunsch AM, Hwang EK, Funke JR, Baker R, Moutier A, Milovanovic M, Green TA, Wolf ME. Retinoic acid-mediated homeostatic plasticity in the nucleus accumbens core contributes to incubation of cocaine craving. Psychopharmacology (Berl) 2024; 241:1983-2001. [PMID: 38935096 DOI: 10.1007/s00213-024-06612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 06/28/2024]
Abstract
RATIONALE Incubation of cocaine craving refers to the progressive intensification of cue-induced craving during abstinence from cocaine self-administration. We showed previously that homomeric GluA1 Ca2+-permeable AMPARs (CP-AMPAR) accumulate in excitatory synapses of nucleus accumbens core (NAcc) medium spiny neurons (MSN) after ∼1 month of abstinence and thereafter their activation is required for expression of incubation. Therefore, it is important to understand mechanisms underlying CP-AMPAR plasticity. OBJECTIVES We hypothesize that CP-AMPAR upregulation represents a retinoic acid (RA)-dependent form of homeostatic plasticity, previously described in other brain regions, in which a reduction in neuronal activity disinhibits RA synthesis, leading to GluA1 translation and CP-AMPAR synaptic insertion. We tested this using viral vectors to bidirectionally manipulate RA signaling in NAcc during abstinence following extended-access cocaine self-administration. RESULTS We used shRNA targeted to the RA degradative enzyme Cyp26b1 to increase RA signaling. This treatment accelerated incubation; rats expressed incubation on abstinence day (AD) 15, when it is not yet detected in control rats. It also accelerated CP-AMPAR synaptic insertion measured with slice physiology. CP-AMPARs were detected in Cyp26b1 shRNA-expressing MSN, but not control MSN, on AD15-18. Next, we used shRNA targeted to the major RA synthetic enzyme Aldh1a1 to reduce RA signaling. In MSN expressing Aldh1a1 shRNA, synaptic CP-AMPARs were reduced in late withdrawal (AD42-60) compared to controls. However, we did not detect an effect of this manipulation on incubated cocaine seeking (AD40). CONCLUSIONS These findings support the hypothesis that increased RA signaling during abstinence contributes to CP-AMPAR accumulation and incubation of cocaine craving.
Collapse
Affiliation(s)
- Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
| | - Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Raines Baker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Alana Moutier
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Yecuris Corporation, Tualatin, OR, 97062, USA
| | - Mike Milovanovic
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA.
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
3
|
Hwang EK, Wunsch AM, Wolf ME. Retinoic acid-mediated homeostatic plasticity drives cell type-specific CP-AMPAR accumulation in nucleus accumbens core and incubation of cocaine craving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.611703. [PMID: 39314388 PMCID: PMC11419102 DOI: 10.1101/2024.09.12.611703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Incubation of cocaine craving, a translationally relevant model for the persistence of drug craving during abstinence, ultimately depends on strengthening of nucleus accumbens core (NAcc) synapses through synaptic insertion of homomeric GluA1 Ca2+-permeable AMPA receptors (CP-AMPARs). Here we tested the hypothesis that CP-AMPAR upregulation results from a form of homeostatic plasticity, previously characterized in vitro and in other brain regions, that depends on retinoic acid (RA) signaling in dendrites. Under normal conditions, ongoing synaptic transmission maintains intracellular Ca2+ at levels sufficient to suppress RA synthesis. Prolonged blockade of neuronal activity results in disinhibition of RA synthesis, leading to increased GluA1 translation and synaptic insertion of homomeric GluA1 CP-AMPARs. Using slice recordings, we found that increasing RA signaling in NAcc medium spiny neurons (MSN) from drug-naïve rats rapidly upregulates CP-AMPARs, and that this pathway is operative only in MSN expressing the D1 dopamine receptor. In MSN recorded from rats that have undergone incubation of craving, this effect of RA is occluded; instead, interruption of RA signaling in the slice normalizes the incubation-associated elevation of synaptic CP-AMPARs. Paralleling this in vitro finding, interruption of RA signaling in the NAcc of 'incubated rats' normalizes the incubation-associated elevation of cue-induced cocaine seeking. These results suggest that RA signaling becomes tonically active in the NAcc during cocaine withdrawal and, by maintaining elevated CP-AMPAR levels, contributes to the incubation of cocaine craving.
Collapse
Affiliation(s)
- Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| |
Collapse
|
4
|
Solinas M, Belujon P, Fernagut PO, Jaber M, Thiriet N. Dopamine and addiction: what have we learned from 40 years of research. J Neural Transm (Vienna) 2018; 126:481-516. [PMID: 30569209 DOI: 10.1007/s00702-018-1957-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
Among the neurotransmitters involved in addiction, dopamine (DA) is clearly the best known. The critical role of DA in addiction is supported by converging evidence that has been accumulated in the last 40 years. In the present review, first we describe the dopaminergic system in terms of connectivity, functioning and involvement in reward processes. Second, we describe the functional, structural, and molecular changes induced by drugs within the DA system in terms of neuronal activity, synaptic plasticity and transcriptional and molecular adaptations. Third, we describe how genetic mouse models have helped characterizing the role of DA in addiction. Fourth, we describe the involvement of the DA system in the vulnerability to addiction and the interesting case of addiction DA replacement therapy in Parkinson's disease. Finally, we describe how the DA system has been targeted to treat patients suffering from addiction and the result obtained in clinical settings and we discuss how these different lines of evidence have been instrumental in shaping our understanding of the physiopathology of drug addiction.
Collapse
Affiliation(s)
- Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pierre Olivier Fernagut
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Mohamed Jaber
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| |
Collapse
|
5
|
Loweth JA, Reimers JM, Caccamise A, Stefanik MT, Woo KKY, Chauhan NM, Werner CT, Wolf ME. mGlu1 tonically regulates levels of calcium-permeable AMPA receptors in cultured nucleus accumbens neurons through retinoic acid signaling and protein translation. Eur J Neurosci 2018; 50:2590-2601. [PMID: 30222904 DOI: 10.1111/ejn.14151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
Abstract
In several brain regions, ongoing metabotropic glutamate receptor 1 (mGlu1) transmission has been shown to tonically suppress synaptic levels of Ca2+ -permeable AMPA receptors (CP-AMPARs) while pharmacological activation of mGlu1 removes CP-AMPARs from these synapses. Consistent with this, we previously showed in nucleus accumbens (NAc) medium spiny neurons (MSNs) that reduced mGlu1 tone enables and mGlu1 positive allosteric modulation reverses the elevation of CP-AMPAR levels in the NAc that underlies enhanced cocaine craving in the "incubation of craving" rat model of addiction. To better understand mGlu1/CP-AMPAR interactions, we used a NAc/prefrontal cortex co-culture system in which NAc MSNs express high CP-AMPAR levels, providing an in vitro model for NAc MSNs after the incubation of cocaine craving. The non-specific group I orthosteric agonist dihydroxyphenylglycine (10 min) decreased cell surface GluA1 but not GluA2, indicating CP-AMPAR internalization. This was prevented by mGlu1 (LY367385) or mGlu5 (MTEP) blockade. However, a selective role for mGlu1 emerged in studies of long-term antagonist treatment. Thus, LY367385 (24 hr) increased surface GluA1 without affecting GluA2, whereas MTEP (24 hr) had no effect. In hippocampal neurons, scaling up of CP-AMPARs can occur through a mechanism requiring retinoic acid (RA) signaling and new GluA1 synthesis. Consistent with this, the LY367385-induced increase in surface GluA1 was blocked by anisomycin (translation inhibitor) or 4-(diethylamino)-benzaldehyde (RA synthesis inhibitor). Thus, mGlu1 transmission tonically suppresses cell surface CP-AMPAR levels, and decreasing mGlu1 tone increases surface CP-AMPARs via RA signaling and protein translation. These results identify a novel mechanism for homeostatic plasticity in NAc MSNs.
Collapse
Affiliation(s)
- Jessica A Loweth
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Jeremy M Reimers
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Aaron Caccamise
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Michael T Stefanik
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Kenneth Kin Yan Woo
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Nirav M Chauhan
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Craig T Werner
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
6
|
Functional Connectivity of Chronic Cocaine Use Reveals Progressive Neuroadaptations in Neocortical, Striatal, and Limbic Networks. eNeuro 2018; 5:eN-NWR-0081-18. [PMID: 30073194 PMCID: PMC6071197 DOI: 10.1523/eneuro.0081-18.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
Brain imaging studies indicate that chronic cocaine users display altered functional connectivity between prefrontal cortical, thalamic, striatal, and limbic regions; however, the use of cross-sectional designs in these studies precludes measuring baseline brain activity prior to cocaine use. Animal studies can circumvent this limitation by comparing functional connectivity between baseline and various time points after chronic cocaine use. In the present study, adult male Long–Evans rats were trained to self-administer cocaine intravenously for 6 h sessions daily over 14 consecutive days. Two additional groups serving as controls underwent sucrose self-administration or exposure to the test chambers alone. Functional magnetic resonance imaging was conducted before self-administration and after 1 and 14 d of abstinence (1d and 14d Abs). After 1d Abs from cocaine, there were increased clustering coefficients in brain areas involved in reward seeking, learning, memory, and autonomic and affective processing, including amygdala, hypothalamus, striatum, hippocampus, and thalamus. Similar changes in clustering coefficient after 1d Abs from sucrose were evident in predominantly thalamic brain regions. Notably, there were no changes in strength of functional connectivity at 1 or 14 d after either cocaine or sucrose self-administration. The results suggest that cocaine and sucrose can change the arrangement of functional connectivity of brain regions involved in cognition and emotion, but that these changes dissipate across the early stages of abstinence. The study also emphasizes the importance of including baseline measures in longitudinal functional neuroimaging designs seeking to assess functional connectivity in the context of substance use.
Collapse
|
7
|
Nicolas C, Tauber C, Lepelletier FX, Chalon S, Belujon P, Galineau L, Solinas M. Longitudinal Changes in Brain Metabolic Activity after Withdrawal from Escalation of Cocaine Self-Administration. Neuropsychopharmacology 2017; 42:1981-1990. [PMID: 28553833 PMCID: PMC5561337 DOI: 10.1038/npp.2017.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022]
Abstract
The chronic and relapsing nature of addiction suggests that drugs produce persistent adaptations in the brain that make individuals with drug addiction particularly sensitive to drug-related cues and stress and incapable of controlling drug-seeking and drug-taking behavior. In animal models, several long-lasting neuroadaptations have been described. However, few studies have used brain-imaging techniques to provide a complete picture of brain functioning in the course of withdrawal from cocaine. In this study, we allowed rats to self-administer cocaine under short-access (1-h/day) or long-access (6-h/day) conditions and used 2-deoxy-2-(18F)fluoro-d-glucose (18FDG) positron emission tomography scanning to investigate the longitudinal changes in metabolic activity 1 and 4 weeks after discontinuation of cocaine self-administration. We found that compared to naive rats, both long-access and short-access rats showed significant disruptions in basal brain metabolic activity. However, compared to short-access, long-access rats showed more intense, and long-lasting neuroadaptations in a network of brain areas. In particular, abstinence from extended access to cocaine was associated with decreased metabolic activity in the anterior cingulate cortex, the insular cortex, and the dorsolateral striatum, and increased metabolic activity in the mesencephalon, amygdala, and hippocampus. This pattern is strikingly similar to that described in humans that has led to the proposal of the Impaired Response Inhibition and Salience Attribution model of addiction. These results demonstrate that extended access to cocaine leads to persistent neuroadaptations in brain regions involved in motivation, salience attribution, memory, stress, and inhibitory control that may underlie increased risks of relapse.
Collapse
Affiliation(s)
- Céline Nicolas
- INSERM, U1084, Poitiers, France,Université de Poitiers, U1084, Poitiers, France
| | - Clovis Tauber
- UMR INSERM U930, Université François Rabelais de Tours, Tours, France
| | | | - Sylvie Chalon
- UMR INSERM U930, Université François Rabelais de Tours, Tours, France
| | - Pauline Belujon
- INSERM, U1084, Poitiers, France,Université de Poitiers, U1084, Poitiers, France
| | - Laurent Galineau
- UMR INSERM U930, Université François Rabelais de Tours, Tours, France
| | - Marcello Solinas
- INSERM, U1084, Poitiers, France,Université de Poitiers, U1084, Poitiers, France,Neurobiology and Neuropharmacology of Addiction Team, Laboratory of Experimental and Clinical Neurosciences, INSERM U1084, University of Poitiers, Bât. B36—Pôle Biologie Santé, 1, rue Georges Bonnet—BP 633, Poitiers 86022, France, Tel: +33 5 49 366343, Fax: +33 5 49 454014, E-mail:
| |
Collapse
|
8
|
Abstract
Although it is challenging for individuals with cocaine addiction to achieve abstinence, the greatest difficulty is avoiding relapse to drug taking, which is often triggered by cues associated with prior cocaine use. This vulnerability to relapse persists for long periods (months to years) after abstinence is achieved. Here, I discuss rodent studies of cue-induced cocaine craving during abstinence, with a focus on neuronal plasticity in the reward circuitry that maintains high levels of craving. Such work has the potential to identify new therapeutic targets and to further our understanding of experience-dependent plasticity in the adult brain under normal circumstances and in the context of addiction.
Collapse
Affiliation(s)
- Marina E Wolf
- The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| |
Collapse
|
9
|
Coffey KR, Barker DJ, Gayliard N, Kulik JM, Pawlak AP, Stamos JP, West MO. Electrophysiological evidence of alterations to the nucleus accumbens and dorsolateral striatum during chronic cocaine self-administration. Eur J Neurosci 2015; 41:1538-52. [PMID: 25952463 DOI: 10.1111/ejn.12904] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/25/2015] [Indexed: 02/06/2023]
Abstract
As drug use becomes chronic, aberrant striatal processing contributes to the development of perseverative drug-taking behaviors. Two particular portions of the striatum, the nucleus accumbens (NAc) and the dorsolateral striatum (DLS), are known to undergo neurobiological changes from acute to chronic drug use. However, little is known about the exact progression of changes in functional striatal processing as drug intake persists. We sampled single-unit activity in the NAc and DLS throughout 24 daily sessions of chronic long-access cocaine self-administration, and longitudinally tracked firing rates (FR) specifically during the operant response, an upward vertical head movement. A total of 103 neurons were held longitudinally and immunohistochemically localised to either NAc Medial Shell (n = 29), NAc Core (n = 30), or DLS (n = 54). We modeled changes representative of each category as a whole. Results demonstrated that FRs of DLS Head Movement neurons were significantly increased relative to baseline during all sessions, while FRs of DLS Uncategorised neurons were significantly reduced relative to baseline during all sessions. NAc Shell neurons' FRs were also significantly decreased relative to baseline during all sessions while FRs of NAc Core neurons were reduced relative to baseline only during training days 1-18 but were not significantly reduced on the remaining sessions (19-24). The data suggest that all striatal subregions show changes in FR during the operant response relative to baseline, but longitudinal changes in response firing patterns were observed only in the NAc Core, suggesting that this region is particularly susceptible to plastic changes induced by abused drugs.
Collapse
Affiliation(s)
- Kevin R Coffey
- Department of Psychology, Rutgers University, Piscataway, NJ, 08854, USA
| | - David J Barker
- Department of Psychology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Nick Gayliard
- Department of Psychology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Julianna M Kulik
- Department of Psychology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Anthony P Pawlak
- Department of Psychology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Joshua P Stamos
- Department of Psychology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Mark O West
- Department of Psychology, Rutgers University, Piscataway, NJ, 08854, USA
| |
Collapse
|
10
|
Siciliano CA, Calipari ES, Ferris MJ, Jones SR. Adaptations of presynaptic dopamine terminals induced by psychostimulant self-administration. ACS Chem Neurosci 2015; 6:27-36. [PMID: 25491345 PMCID: PMC4304501 DOI: 10.1021/cn5002705] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/04/2014] [Indexed: 12/27/2022] Open
Abstract
A great deal of research has focused on investigating neurobiological alterations induced by chronic psychostimulant use in an effort to describe, understand, and treat the pathology of psychostimulant addiction. It has been known for several decades that dopamine neurotransmission in the nucleus accumbens is integrally involved in the selection and execution of motivated and goal-directed behaviors, and that psychostimulants act on this system to exert many of their effects. As such, a large body of work has focused on defining the consequences of psychostimulant use on dopamine signaling in the striatum as it relates to addictive behaviors. Here, we review presynaptic dopamine terminal alterations observed following self-administration of cocaine and amphetamine, as well as possible mechanisms by which these alterations occur and their impact on the progression of addiction.
Collapse
Affiliation(s)
- Cody A. Siciliano
- Department
of Physiology and Pharmacology, Wake Forest
School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Erin S. Calipari
- Fishberg
Department of Neuroscience, Icahn School
of Medicine at Mount Sinai, New
York, New York 10029, United States
| | - Mark J. Ferris
- Department
of Physiology and Pharmacology, Wake Forest
School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Sara R. Jones
- Department
of Physiology and Pharmacology, Wake Forest
School of Medicine, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
11
|
Vélez-Hernández ME, Padilla E, Gonzalez-Lima F, Jiménez-Rivera CA. Cocaine reduces cytochrome oxidase activity in the prefrontal cortex and modifies its functional connectivity with brainstem nuclei. Brain Res 2014; 1542:56-69. [PMID: 24505625 DOI: 10.1016/j.brainres.2013.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cocaine-induced psychomotor stimulation may be mediated by metabolic hypofrontality and modification of brain functional connectivity. Functional connectivity refers to the pattern of relationships among brain regions, and one way to evaluate this pattern is using interactivity correlations of the metabolic marker cytochrome oxidase among different regions. This is the first study of how repeated cocaine modifies: (1) mean cytochrome oxidase activity in neural areas using quantitative enzyme histochemistry, and (2) functional connectivity among brain regions using inter-correlations of cytochrome oxidase activity. Rats were injected with 15 mg/kg i.p. cocaine or saline for 5 days, which lead to cocaine-enhanced total locomotion. Mean cytochrome oxidase activity was significantly decreased in cocaine-treated animals in the superficial dorsal and lateral frontal cortical association areas Fr2 and Fr3 when compared to saline-treated animals. Functional connectivity showed that the cytochrome oxidase activity of the noradrenergic locus coeruleus and the infralimbic cortex were positively inter-correlated in cocaine but not in control rats. Positive cytochrome oxidase activity inter-correlations were also observed between the dopaminergic substantia nigra compacta and Fr2 and Fr3 areas and the lateral orbital cortex in cocaine-treated animals. In contrast, cytochrome oxidase activity in the interpeduncular nucleus was negatively correlated with that of Fr2, anterior insular cortex, and lateral orbital cortex in saline but not in cocaine groups. After repeated cocaine specific prefrontal areas became hypometabolic and their functional connectivity changed in networks involving noradrenergic and dopaminergic brainstem nuclei. We suggest that this pattern of hypofrontality and altered functional connectivity may contribute to cocaine-induced psychomotor stimulation.
Collapse
|
12
|
Engi SA, Cruz FC, Leão RM, Spolidorio LC, Planeta CS, Crestani CC. Cardiovascular complications following chronic treatment with cocaine and testosterone in adolescent rats. PLoS One 2014; 9:e105172. [PMID: 25121974 PMCID: PMC4133373 DOI: 10.1371/journal.pone.0105172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/18/2014] [Indexed: 01/09/2023] Open
Abstract
Concomitant use of anabolic androgenic steroids and cocaine has increased in the last years. However, the effects of chronic exposure to these substances during adolescence on cardiovascular function are unknown. Here, we investigated the effects of treatment for 10 consecutive days with testosterone and cocaine alone or in combination on basal cardiovascular parameters, baroreflex activity, hemodynamic responses to vasoactive agents, and cardiac morphology in adolescent rats. Administration of testosterone alone increased arterial pressure, reduced heart rate (HR), and exacerbated the tachycardiac baroreflex response. Cocaine-treated animals showed resting bradycardia without changes in arterial pressure and baroreflex activity. Combined treatment with testosterone and cocaine did not affect baseline arterial pressure and HR, but reduced baroreflex-mediated tachycardia. None of the treatments affected arterial pressure response to either vasoconstrictor or vasodilator agents. Also, heart to body ratio and left and right ventricular wall thickness were not modified by drug treatments. However, histological analysis of left ventricular sections of animals subjected to treatment with testosterone and cocaine alone and combined showed a greater spacing between cardiac muscle fibers, dilated blood vessels, and fibrosis. These data show important cardiovascular changes following treatment with testosterone in adolescent rats. However, the results suggest that exposure to cocaine alone or combined with testosterone during adolescence minimally affect cardiovascular function.
Collapse
Affiliation(s)
- Sheila A. Engi
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, Univ. Estadual Paulista-UNESP, Araraquara, SP, Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Fábio C. Cruz
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, US National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, United States of America
| | - Rodrigo M. Leão
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, US National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, United States of America
| | - Luís C. Spolidorio
- Department of Physiology and Pathology, School of Dentistry of Araraquara, Univ. Estadual Paulista-UNESP, Araraquara, SP, Brazil
| | - Cleopatra S. Planeta
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, Univ. Estadual Paulista-UNESP, Araraquara, SP, Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C. Crestani
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, Univ. Estadual Paulista-UNESP, Araraquara, SP, Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
- * E-mail:
| |
Collapse
|
13
|
Zhou Z, Enoch MA, Goldman D. Gene expression in the addicted brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 116:251-73. [PMID: 25172478 DOI: 10.1016/b978-0-12-801105-8.00010-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Addiction is due to changes in the structure and function of the brain, including neuronal networks and the cells that comprise them. Within cells, gene expression changes can track and help explain their altered function. Transcriptional changes induced by addictive agents are dynamic and divergent and range from signal pathway-specific perturbations to widespread molecular and cellular dysregulation that can be measured by "omic" methods and that can be used to identify new pathways. The molecular effects of addiction depend on timing of exposure or withdrawal, the stage of adaptation, the brain region, and the behavioral model, there being many models of addiction. However, the molecular neural adaptations across different drug exposures, conditions, and regions are to some extent shared and can reflect common actions on pathways relevant to addiction. Epigenetic studies of DNA methylation and histone modifications and studies of regulatory RNA networks have been informative for elucidating the mechanisms of transcriptional change in the addicted brain.
Collapse
Affiliation(s)
- Zhifeng Zhou
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
| | - Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Cruz F, Alves F, Leão R, Planeta C, Crestani C. Role of the bed nucleus of the stria terminalis in cardiovascular changes following chronic treatment with cocaine and testosterone: A role beyond drug seeking in addiction? Neuroscience 2013; 253:29-39. [DOI: 10.1016/j.neuroscience.2013.08.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/13/2013] [Accepted: 08/20/2013] [Indexed: 01/01/2023]
|
15
|
Temporal pattern of cocaine intake determines tolerance vs sensitization of cocaine effects at the dopamine transporter. Neuropsychopharmacology 2013; 38:2385-92. [PMID: 23719505 PMCID: PMC3799057 DOI: 10.1038/npp.2013.136] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/10/2013] [Accepted: 05/11/2013] [Indexed: 01/07/2023]
Abstract
The dopamine transporter (DAT) is responsible for terminating dopamine (DA) signaling and is the primary site of cocaine's reinforcing actions. Cocaine self-administration has been shown previously to result in changes in cocaine potency at the DAT. To determine whether the DAT changes associated with self-administration are due to differences in intake levels or temporal patterns of cocaine-induced DAT inhibition, we manipulated cocaine access to produce either continuous or intermittent elevations in cocaine brain levels. Long-access (LgA, 6 h) and short-access (ShA, 2 h) continuous self-administration produced similar temporal profiles of cocaine intake that were sustained throughout the session; however, LgA had greater intake. ShA and intermittent-access (IntA, 6 h) produced the same intake, but different temporal profiles, with 'spiking' brain levels in IntA compared with constant levels in ShA. IntA consisted of 5-min access periods alternating with 25-min timeouts, which resulted in bursts of high responding followed by periods of no responding. DA release and uptake, as well as the potency of cocaine for DAT inhibition, were assessed by voltammetry in the nucleus accumbens slices following control, IntA, ShA, and LgA self-administration. Continuous-access protocols (LgA and ShA) did not change DA parameters, but the 'spiking' protocol (IntA) increased both release and uptake of DA. In addition, high continuous intake (LgA) produced tolerance to cocaine, while 'spiking' (IntA) produced sensitization, relative to ShA and naive controls. Thus, intake and pattern can both influence cocaine potency, and tolerance seems to be produced by high intake, while sensitization is produced by intermittent temporal patterns of intake.
Collapse
|
16
|
Calipari ES, Beveridge TJR, Jones SR, Porrino LJ. Withdrawal from extended-access cocaine self-administration results in dysregulated functional activity and altered locomotor activity in rats. Eur J Neurosci 2013; 38:3749-57. [PMID: 24118121 DOI: 10.1111/ejn.12381] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 08/23/2013] [Accepted: 09/04/2013] [Indexed: 02/02/2023]
Abstract
Much work has focused on determining the consequences of cocaine self-administration on specific neurotransmitter systems, thus neglecting the global changes that occur. Previous imaging studies have focused on the effects of cocaine self-administration in the presence of high blood levels of cocaine, but have not determined the functional effects of cocaine self-administration after cocaine has cleared. Extended-access cocaine self-administration, where animals administer cocaine for 6 h each day, results in escalation in the rate of cocaine intake and is believed to model the transition from recreational use to addiction in humans. We aimed to determine the functional changes following acute (48 h) withdrawal from an extended-access, defined-intake self-administration paradigm (5 days, 40 injections/day, 6 h/day), a time point when behavioral changes are present. Using the 2-[(14) C]deoxyglucose method to measure rates of local cerebral glucose metabolism, an indicator of functional activity, we found reductions in circuits related to learning and memory, attention, sleep, and reward processing, which have important clinical implications for cocaine addiction. Additionally, lower levels of functional activity were found in the dorsal raphe and locus coeruleus, suggesting that cocaine self-administration may have broader effects on brain function than previously noted. These widespread neurochemical reductions were concomitant with substantial behavioral differences in these animals, highlighted by increased vertical activity and decreased stereotypy. These data demonstrate that behavioral and neurochemical impairments following cocaine self-administration are present in the absence of drug and persist after cocaine has been cleared.
Collapse
Affiliation(s)
- Erin S Calipari
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, USA
| | | | | | | |
Collapse
|
17
|
Abstract
We examined the effects of cocaine withdrawal on EEG during 3 months of abstinence. Twenty physically healthy cocaine users (80% men, 80% African American, mean (SD) age, 34.8 (4.1) years, 9 (5.4) years of cocaine use, minimal recent use of other drugs) were subject to 1 to 3 EEG recordings during 3 months of monitored abstinence on a closed clinical research ward. Three-minute eyes closed EEG recordings used 8 or 16 leads located at standard International 10/20 scalp sites. First EEG was recorded 16.8 (13.6) days after last cocaine use. Beta1 absolute power in the left temporal region and delta power in the mid right hemisphere (temporal region) increased significantly over time. Eight subjects tested during the first 2 weeks of abstinence showed trends toward decreased absolute power in all bands except beta1 in the left frontal region, and toward decreased absolute delta power in the mid right hemisphere, compared with 8 nondrug-using controls. These results are not totally consistent with some previous studies, which may be the result of differences in subject characteristics and EEG recording procedures. The findings suggest that chronic cocaine use is associated with EEG changes that may reflect persisting brain electrophysiological abnormalities during cocaine abstinence.
Collapse
|
18
|
Pelloux Y, Murray JE, Everitt BJ. Differential roles of the prefrontal cortical subregions and basolateral amygdala in compulsive cocaine seeking and relapse after voluntary abstinence in rats. Eur J Neurosci 2013; 38:3018-26. [PMID: 23815783 PMCID: PMC3910160 DOI: 10.1111/ejn.12289] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 05/31/2013] [Indexed: 01/17/2023]
Abstract
Compulsive drug use and a persistent vulnerability to relapse are key features of addiction. Imaging studies have suggested that these features may result from deficits in prefrontal cortical structure and function, and thereby impaired top-down inhibitory control over limbic-striatal mechanisms of drug-seeking behaviour. We tested the hypothesis that selective damage to distinct subregions of the prefrontal cortex, or to the amygdala, after a short history of cocaine taking would: (i) result in compulsive cocaine seeking at a time when it would not usually be displayed; or (ii) facilitate relapse to drug seeking after abstinence. Rats with selective, bilateral excitotoxic lesions of the basolateral amygdala or anterior cingulate, prelimbic, infralimbic, orbitofrontal or anterior insular cortices were trained to self-administer cocaine under a seeking-taking chained schedule. Intermittent mild footshock punishment of the cocaine-seeking response was then introduced. No prefrontal cortical lesion affected the ability of rats to withhold their seeking responses. However, rats with lesions to the basolateral amygdala increased their cocaine-seeking responses under punishment and were impaired in their acquisition of conditioned fear. Following a 7-day abstinence period, rats were re-exposed to the drug-seeking environment for assessment of relapse in the absence of punishment or cocaine. Rats with prelimbic cortex lesions showed decreased seeking responses during relapse, whereas those with anterior insular cortex lesions showed an increase. Combined, these results show that acute impairment of prefrontal cortical function does not result in compulsive cocaine seeking after a short history of self-administering cocaine, but further implicates subregions of the prefrontal cortex in relapse.
Collapse
Affiliation(s)
- Yann Pelloux
- Institut de Neuroscience de la Timone, UMR 7289 CNRS, Université d'Aix-Marseille, 27 Bld Jean Moulin, 13385 Marseille, France.
| | - Jennifer E Murray
- Department of Psychology, University of Cambridge, Downing St, CB2 3EB, Cambridge, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, CB2 3EB, Cambridge, UK
| | - Barry J Everitt
- Department of Psychology, University of Cambridge, Downing St, CB2 3EB, Cambridge, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, CB2 3EB, Cambridge, UK
| |
Collapse
|
19
|
Adaptations in AMPA receptor transmission in the nucleus accumbens contributing to incubation of cocaine craving. Neuropharmacology 2013; 76 Pt B:287-300. [PMID: 23727437 DOI: 10.1016/j.neuropharm.2013.04.061] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 12/23/2022]
Abstract
Cue-induced cocaine craving in rodents intensifies or "incubates" during the first months of withdrawal from long access cocaine self-administration. This incubation phenomenon is relevant to human users who achieve abstinence but exhibit persistent vulnerability to cue-induced relapse. It is well established that incubation of cocaine craving involves complex neuronal circuits. Here we will focus on neuroadaptations in the nucleus accumbens (NAc), a region of convergence for pathways that control cocaine seeking. A key adaptation is a delayed (~3-4 weeks) accumulation of Ca(2+)-permeable AMPAR receptors (CP-AMPARs) in synapses on medium spiny neurons (MSN) of the NAc. These CP-AMPARs mediate the expression of incubation after prolonged withdrawal, although different mechanisms must be responsible during the first weeks of withdrawal, prior to CP-AMPAR accumulation. The cascade of events leading to CP-AMPAR accumulation is still unclear. However, several candidate mechanisms have been identified. First, mGluR1 has been shown to negatively regulate CP-AMPAR levels in NAc synapses, and it is possible that a withdrawal-dependent decrease in this effect may help explain CP-AMPAR accumulation during incubation. Second, an increase in phosphorylation of GluA1 subunits (at the protein kinase A site) within extrasynaptic homomeric GluA1 receptors (CP-AMPARs) may promote their synaptic insertion and oppose their removal. Finally, elevation of brain-derived neurotrophic factor (BDNF) levels in the NAc may contribute to maintenance of incubation after months of withdrawal, although incubation-related increases in BDNF accumulation do not account for CP-AMPAR accumulation. Receptors and pathways that negatively regulate incubation, such as mGluR1, are promising targets for the development of therapeutic strategies to help recovering addicts maintain abstinence. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
|
20
|
Zhou Z, Yuan Q, Mash DC, Goldman D. Substance-specific and shared transcription and epigenetic changes in the human hippocampus chronically exposed to cocaine and alcohol. Proc Natl Acad Sci U S A 2011; 108:6626-31. [PMID: 21464311 PMCID: PMC3081016 DOI: 10.1073/pnas.1018514108] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hippocampus is a key brain region involved in both short- and long-term memory processes and may play critical roles in drug-associated learning and addiction. Using whole genome sequencing of mRNA transcripts (RNA-Seq) and immunoprecipitation-enriched genomic DNA (ChIP-Seq) coupled with histone H3 lysine 4 trimethylation (H3K4me3), we found extensive hippocampal gene expression changes common to both cocaine-addicted and alcoholic individuals that may reflect neuronal adaptations common to both addictions. However, we also observed functional changes that were related only to long-term cocaine exposure, particularly the inhibition of mitochondrial inner membrane functions related to oxidative phosphorylation and energy metabolism, which has also been observed previously in neurodegenerative diseases. Cocaine- and alcohol-related histone H3K4me3 changes highly overlapped, but greater effects were detected under cocaine exposure. There was no direct correlation, however, between either cocaine- or alcohol-related histone H3k4me3 and gene expression changes at an individual gene level, indicating that transcriptional regulation as well as drug-related gene expression changes are outcomes of a complex gene-regulatory process that includes multifaceted histone modifications.
Collapse
Affiliation(s)
- Zhifeng Zhou
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20849; and
| | - Qiaoping Yuan
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20849; and
| | - Deborah C. Mash
- Department of Neurology, University of Miami School of Medicine, Miami, FL 33146
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20849; and
| |
Collapse
|
21
|
Zahm DS, Becker ML, Freiman AJ, Strauch S, Degarmo B, Geisler S, Meredith GE, Marinelli M. Fos after single and repeated self-administration of cocaine and saline in the rat: emphasis on the Basal forebrain and recalibration of expression. Neuropsychopharmacology 2010; 35:445-63. [PMID: 19794406 PMCID: PMC2795057 DOI: 10.1038/npp.2009.149] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/28/2009] [Accepted: 08/18/2009] [Indexed: 01/09/2023]
Abstract
The effects of addictive psychostimulant drugs on the brain change over repeated administrations. We evaluated a large sample of brain structures, particularly ones comprising basal forebrain macrosystems, and determined in which the immediate-early gene product, Fos, is expressed following a single and repeated self-administrations of cocaine. The caudate-putamen and accumbens, comprising the basal ganglia input structures, and the hypothalamic supraoptic and paraventricular nuclei, lateral and medial habenula, mesopontine rostromedial tegmental nucleus and anterior cingulate cortex exhibited Fos expression enhanced by acute self-administration of cocaine (SAC), but desensitized after repeated administrations. Fos expression was mainly enhanced by acutely self-administered cocaine in basal ganglia output and intrinsic structures and the intermediate nucleus of lateral septum, medial division of the central amygdaloid nucleus and zona incerta, but, in contrast, was sensitized in these structures after repeated administrations. Acute and repeated SAC left Fos expression unaffected or marginally enhanced in most extended amygdala structures, of which nearly all, however, exhibited robustly increased Fos expression after repeated saline self-administration, occasionally to levels exceeding those elicited by cocaine. Thus, self-administered cocaine mainly elicits Fos expression, which persists or increases with repeated administrations in some structures, but declines in others. In addition, Fos expression is sensitized in most extended amygdala structures merely by the act of repeated self-administering. Similar spatiotemporal patterns of cocaine- or saline-elicited Fos expression characterize functionally related clusters of structures, such as, eg, basal ganglia input structures, basal ganglia output structures, extended amygdala and structures in the brainstem to which forebrain macrosystems project.
Collapse
Affiliation(s)
- Daniel S Zahm
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, MO 63104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Root DH, Fabbricatore AT, Barker DJ, Ma S, Pawlak AP, West MO. Evidence for habitual and goal-directed behavior following devaluation of cocaine: a multifaceted interpretation of relapse. PLoS One 2009; 4:e7170. [PMID: 19779607 PMCID: PMC2744871 DOI: 10.1371/journal.pone.0007170] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/20/2009] [Indexed: 11/19/2022] Open
Abstract
Background Cocaine addiction is characterized as a chronically relapsing disorder. It is believed that cues present during self-administration become learned and increase the probability that relapse will occur when they are confronted during abstinence. However, the way in which relapse-inducing cues are interpreted by the user has remained elusive. Recent theories of addiction posit that relapse-inducing cues cause relapse habitually or automatically, bypassing processing information related to the consequences of relapse. Alternatively, other theories hypothesize that relapse-inducing cues produce an expectation of the drug's consequences, designated as goal-directed relapse. Discrete discriminative stimuli signaling the availability of cocaine produce robust cue-induced responding after thirty days of abstinence. However, it is not known whether cue-induced responding is a goal-directed action or habit. Methodology/Principal Findings We tested whether cue-induced responding is a goal-directed action or habit by explicitly pairing or unpairing cocaine with LiCl-induced sickness (n = 7/group), thereby decreasing or not altering the value of cocaine, respectively. Following thirty days of abstinence, no difference in responding between groups was found when animals were reintroduced to the self-administration environment alone, indicating habitual behavior. However, upon discriminative stimulus presentations, cocaine-sickness paired animals exhibited decreased cue-induced responding relative to unpaired controls, indicating goal-directed behavior. In spite of the difference between groups revealed during abstinent testing, no differences were found between groups when animals were under the influence of cocaine. Conclusions/Significance Unexpectedly, both habitual and goal-directed responding occurred during abstinent testing. Furthermore, habitual or goal-directed responding may have been induced by cues that differed in their correlation with the cocaine infusion. Non-discriminative stimulus cues were weak correlates of the infusion, which failed to evoke a representation of the value of cocaine and led to habitual behavior. However, the discriminative stimulus–nearly perfectly correlated with the infusion–likely evoked a representation of the value of the infusion and led to goal-directed behavior. These data indicate that abstinent cue-induced responding is multifaceted, dynamically engendering habitual or goal-directed behavior. Moreover, since goal-directed behavior terminated habitual behavior during testing, therapeutic approaches aimed at reducing the perceived value of cocaine in addicted individuals may reduce the capacity of cues to induce relapse.
Collapse
Affiliation(s)
- David H. Root
- Department of Psychology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Anthony T. Fabbricatore
- Department of Psychology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - David J. Barker
- Department of Psychology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Sisi Ma
- Department of Psychology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Anthony P. Pawlak
- Department of Psychology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Mark O. West
- Department of Psychology, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
23
|
Sun X, Wolf ME. Nucleus accumbens neurons exhibit synaptic scaling that is occluded by repeated dopamine pre-exposure. Eur J Neurosci 2009; 30:539-50. [PMID: 19674091 DOI: 10.1111/j.1460-9568.2009.06852.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synaptic scaling has been proposed as a form of plasticity that may contribute to drug addiction but it has not been previously demonstrated in the nucleus accumbens (NAc), a critical region for addiction. Here we demonstrate bidirectional synaptic scaling in postnatal rat NAc neurons that were co-cultured with prefrontal cortical neurons to restore excitatory input. Prolonged activity blockade (1-3 days) with an AMPA receptor antagonist increased cell surface (synaptic and extrasynaptic) glutamate receptor 1 (GluR1) and GluR2 but not GluR3, as well as GluR1/2 co-localization on the cell surface and total GluR1 and GluR2 protein levels. A prolonged increase in activity (bicuculline, 48 h) produced opposite effects. These results suggest that GluR1/2-containing AMPA receptors undergo synaptic scaling in NAc neurons. GluR1 and GluR2 surface expression was also increased by tetrodotoxin alone or in combination with an N-methyl-d-aspartate receptor or AMPA receptor antagonist but not by the l-type Ca(2+) channel antagonist nifedipine. A cobalt-quenching assay confirmed the immunocytochemical results indicating that synaptic scaling after activity blockade did not involve a change in abundance of GluR2-lacking AMPA receptors. Increased AMPA receptor surface expression after activity blockade required protein synthesis and was occluded by inhibition of the ubiquitin-proteasome system. Repeated dopamine (DA) treatment, which leads to upregulation of surface GluR1 and GluR2, occluded activity blockade-induced synaptic scaling. These latter results indicate an interaction between cellular mechanisms involved in synaptic scaling and adaptive mechanisms triggered by repeated DA receptor stimulation, suggesting that synaptic scaling may not function normally after exposure to DA-releasing drugs such as cocaine.
Collapse
Affiliation(s)
- Xiu Sun
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | |
Collapse
|
24
|
Nelson CL, Milovanovic M, Wetter JB, Ford KA, Wolf ME. Behavioral sensitization to amphetamine is not accompanied by changes in glutamate receptor surface expression in the rat nucleus accumbens. J Neurochem 2009; 109:35-51. [PMID: 19183251 PMCID: PMC2723058 DOI: 10.1111/j.1471-4159.2009.05911.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We examined whether behavioral sensitization to amphetamine is associated with redistribution of glutamate receptors (GluR) in the rat nucleus accumbens (NAc) or dorsolateral striatum (DLSTR). Following repeated amphetamine treatment and 21 days of withdrawal, surface and intracellular levels of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) or NMDA receptor subunits were determined using a protein cross-linking assay. In contrast to our previous results in cocaine-sensitized rats, we did not observe redistribution of GluR1 or GluR2 to the cell surface in the NAc after amphetamine withdrawal, although a small increase in total GluR1 was found in the shell subregion. Nor did we observe activation of signaling pathways associated with cocaine-induced AMPA receptor trafficking or changes in NMDA receptor subunits. No significant changes were observed in the DLSTR. We also investigated the effect of administering a challenge injection of amphetamine to amphetamine-sensitized rats 24 h prior to biochemical analysis based on prior studies showing that cocaine challenge decreases AMPA receptor surface expression in the NAc of cocaine-sensitized rats. GluR1 and GluR2 were not significantly altered in either NAc or DLSTR, although a modest effect on GluR3 cannot be ruled out. Our results suggest that glutamate transmission in the NAc is dramatically different in rats sensitized to amphetamine versus cocaine.
Collapse
Affiliation(s)
- Christopher L Nelson
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095, USA
| | | | | | | | | |
Collapse
|
25
|
Berglind WJ, Whitfield TW, LaLumiere RT, Kalivas PW, McGinty JF. A single intra-PFC infusion of BDNF prevents cocaine-induced alterations in extracellular glutamate within the nucleus accumbens. J Neurosci 2009; 29:3715-9. [PMID: 19321768 PMCID: PMC2683065 DOI: 10.1523/jneurosci.5457-08.2009] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/23/2009] [Accepted: 02/10/2009] [Indexed: 11/21/2022] Open
Abstract
The glutamatergic pathway arising in the dorsomedial prefrontal cortex (dmPFC) and projecting to the nucleus accumbens (NAc) core is a critical component of the reward circuitry that underlies reinstatement to cocaine-seeking behavior. Brain-derived neurotrophic factor (BDNF) is expressed by and modulates PFC-NAc neurons. BDNF infusion into the dmPFC attenuates reinstatement to cocaine-seeking behavior, as well as some cocaine-induced molecular adaptations within the NAc. In the present study, it is demonstrated that a single intra-dmPFC infusion of BDNF prevents cocaine self-administration-induced reduction in basal extracellular glutamate, as well as cocaine prime-induced increases in extracellular glutamate levels within the NAc. These data suggest that intra-PFC BDNF attenuates reinstatement to cocaine-seeking behavior by normalizing cocaine-induced neuroadaptations that alter glutamate neurotransmission within the NAc.
Collapse
Affiliation(s)
- William J. Berglind
- Department of Neurosciences and Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Timothy W. Whitfield
- Department of Neurosciences and Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Ryan T. LaLumiere
- Department of Neurosciences and Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Peter W. Kalivas
- Department of Neurosciences and Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jacqueline F. McGinty
- Department of Neurosciences and Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
26
|
Hearing MC, See RE, McGinty JF. Relapse to cocaine-seeking increases activity-regulated gene expression differentially in the striatum and cerebral cortex of rats following short or long periods of abstinence. Brain Struct Funct 2008; 213:215-27. [PMID: 18488248 PMCID: PMC5771260 DOI: 10.1007/s00429-008-0182-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/22/2008] [Indexed: 12/20/2022]
Abstract
One of the most insidious features of cocaine addiction is a high rate of relapse even after extended periods of abstinence. A wide variety of drug-associated stimuli, including the context in which a drug is taken, can gain incentive motivational properties that trigger drug desire and relapse to drug-seeking. Both animal and clinical studies suggest that extensive cocaine exposure may induce a transition from cortical to striatal control over decision-making as compulsive drug-seeking emerges. Using an animal model of relapse to cocaine-seeking, the present study investigated the expression patterns of three different activity-related genes (c-fos, zif/268, and arc) in cortical and striatal brain regions implicated in compulsive drug-seeking in order to determine the neuroadaptations that occur during context-induced relapse following brief or prolonged abstinence from cocaine self-administration. Re-exposure to the environment previously associated with cocaine self-administration following 22 h or 15 days of abstinence produced a significant increase in zif/268 and arc, but not c-fos mRNA, in the caudate-putamen and nucleus accumbens. With the exception of arc mRNA levels following 15 days of abstinence, all three genes were increased in the anterior cingulate cortex of animals with a cocaine history when they were re-exposed to the operant chamber. Additionally, c-fos, zif/268, and arc expression was differentially affected in the motor and sensory cortices at both timepoints. Together, these results support convergent evidence that drug-seeking induced by a cocaine-paired context changes the activity of corticostriatal circuits.
Collapse
Affiliation(s)
- M C Hearing
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue BSB 403, Charleston, SC 29425, USA
| | | | | |
Collapse
|
27
|
Lynch WJ, Girgenti MJ, Breslin FJ, Newton SS, Taylor JR. Gene profiling the response to repeated cocaine self-administration in dorsal striatum: a focus on circadian genes. Brain Res 2008; 1213:166-77. [PMID: 18452895 PMCID: PMC2494701 DOI: 10.1016/j.brainres.2008.02.106] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/27/2008] [Accepted: 02/29/2008] [Indexed: 01/09/2023]
Abstract
Alterations in gene expression in the dorsal striatum caused by chronic cocaine exposure have been implicated in the long-term behavioral changes associated with cocaine addiction. To gain further insight into the molecular alterations that occur as a result of cocaine self-administration, we conducted a microarray analysis of gene expression followed by bioinformatic gene network analysis that allowed us to identify adaptations at the level of gene expression as well as into interconnected networks. Changes in gene expression were examined in the dorsal striatum of rats 1 day after they had self-administered cocaine for 7 days under a 24-h access, discrete trial paradigm (averaging 98 mg/kg/day). Here we report the regulation of the circadian genes Clock, Bmal1, Cryptochrome1, Period2, as well as several genes that are regulated by/associated with the circadian system (i.e., early growth response 1, dynorphin). We also observed regulation of other relevant genes (i.e., Nur77, beta catenin). These changes were then linked to curated pathways and formulated networks which identified circadian rhythm processes as affected by cocaine self-administration. These data strongly suggest involvement of circadian-associated genes in the brain's response to cocaine and may contribute to an understanding of addictive behavior including disruptions in sleep and circadian rhythmicity.
Collapse
Affiliation(s)
- Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA.
| | | | | | | | | |
Collapse
|
28
|
Thanos PK, Michaelides M, Benveniste H, Wang GJ, Volkow ND. The effects of cocaine on regional brain glucose metabolism is attenuated in dopamine transporter knockout mice. Synapse 2008; 62:319-24. [PMID: 18286542 PMCID: PMC2681086 DOI: 10.1002/syn.20503] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cocaine's ability to block the dopamine transporter (DAT) is crucial for its reinforcing effects. However the brain functional consequences of DAT blockade by cocaine are less clear since they are confounded by its concomitant blockade of norepinephrineand serotonin transporters. To separate the dopaminergic from the non-dopaminergic effects of cocaine on brain function we compared the regional brain metabolic responses to cocaine between dopamine transporter deficient (DAT(-/-)) mice with that of their DAT(+/+) littermates. We measured regional brain metabolism (marker of brain function) with 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) and microPET (muPET) before and after acute cocaine administration (i.p. 10 mg/kg). Scans were conducted 2 weeks apart. At baseline DAT(-/-) mice had significantly greater metabolism in thalamus and cerebellum than DAT(+/+). Acute cocaine decreased whole brain metabolismand this effect was greater in DAT(+/+) (15%) than in DAT(-/-) mice (5%). DAT(+/+) mice showed regional decreases in the olfactory bulb, motor cortex, striatum, hippocampus, thalamus and cerebellum whereas DAT(-/-) mice showed decreases only in thalamus. The differential pattern of regional responses to cocaine in DAT(-/-) and DAT(+/+) suggests that most of the brain metabolic changes from acute cocaine are due to DAT blockade. Cocaine-induced decreases in metabolism in thalamus (region with dense noradrenergic innervation) in DAT(-/-) suggest that these were mediated by cocaine's blockade of norepinephrine transporters. The greater baseline metabolism in DAT(-/-) than DAT(+/+) mice in cerebellum (brain region mostly devoid of DAT) suggests that dopamine indirectly regulates activity of these brain regions.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Behavioral Neuropharmacology Lab, Medical Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA.
| | | | | | | | | |
Collapse
|
29
|
Thanos PK, Cavigelli SA, Michaelides M, Olvet DM, Patel U, Diep MN, Volkow ND. A non-invasive method for detecting the metabolic stress response in rodents: characterization and disruption of the circadian corticosterone rhythm. Physiol Res 2008; 58:219-228. [PMID: 18380537 PMCID: PMC2681077 DOI: 10.33549/physiolres.931434] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Plasma corticosterone (CORT) measures are a common procedure to detect stress responses in rodents. However, the procedure is invasive and can influence CORT levels, making it less than ideal for monitoring CORT circadian rhythms. In the current paper, we examined the applicability of a non-invasive fecal CORT metabolite measure to assess the circadian rhythm. We compared fecal CORT metabolite levels to circulating CORT levels, and analyzed change in the fecal circadian rhythm following an acute stressor (i.e. blood sampling by tail veil catheter). Fecal and blood samples were collected from male adolescent rats and analyzed for CORT metabolites and circulating CORT respectively. Fecal samples were collected hourly for 24 h before and after blood draw. On average, peak fecal CORT metabolite values occurred 7-9 h after the plasma CORT peak and time-matched fecal CORT values were well correlated with plasma CORT. As a result of the rapid blood draw, fecal production and CORT levels were altered the next day. These results indicate fecal CORT metabolite measures can be used to assess conditions that disrupt the circadian CORT rhythm, and provide a method to measure long-term changes in CORT production. This can benefit research that requires long-term glucocorticoid assessment (e.g. stress mechanisms underlying health).
Collapse
Affiliation(s)
- Panayotis K. Thanos
- Behavioral Neuropharmacology & Neuroimaging Lab, Dept. of Medicine, Brookhaven National Lab, SUNY Stony Brook
- Dept. of Psychology, SUNY Stony Brook
- Laboratory of Neuroimaging, NIAAA, NIH, Dept. of Health and Human Services, Bethesda, MD
| | - Sonia A. Cavigelli
- Dept. of Biobehavioral Health, Penn. State University, University Park, PA
| | - Michael Michaelides
- Behavioral Neuropharmacology & Neuroimaging Lab, Dept. of Medicine, Brookhaven National Lab, SUNY Stony Brook
- Dept. of Psychology, SUNY Stony Brook
- Laboratory of Neuroimaging, NIAAA, NIH, Dept. of Health and Human Services, Bethesda, MD
| | - Doreen M. Olvet
- Behavioral Neuropharmacology & Neuroimaging Lab, Dept. of Medicine, Brookhaven National Lab, SUNY Stony Brook
- Dept. of Psychology, SUNY Stony Brook
| | - Ujval Patel
- Behavioral Neuropharmacology & Neuroimaging Lab, Dept. of Medicine, Brookhaven National Lab, SUNY Stony Brook
- Laboratory of Neuroimaging, NIAAA, NIH, Dept. of Health and Human Services, Bethesda, MD
| | - Mai N. Diep
- Dept. of Biobehavioral Health, Penn. State University, University Park, PA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, NIAAA, NIH, Dept. of Health and Human Services, Bethesda, MD
| |
Collapse
|
30
|
Peoples LL, Kravitz AV, Lynch KG, Cavanaugh DJ. Accumbal neurons that are activated during cocaine self-administration are spared from inhibitory effects of repeated cocaine self-administration. Neuropsychopharmacology 2007; 32:1141-58. [PMID: 17019407 DOI: 10.1038/sj.npp.1301203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypoactivity of the accumbens is induced by repeated cocaine exposure and is hypothesized to play a role in cocaine addiction. However, it is difficult to understand how a general hypoactivity of the accumbens, which facilitates multiple types of motivated behaviors, could contribute to the selective increase in drug-directed behavior that defines addiction. Electrophysiological recordings, made during sessions in which rats self-administer cocaine, show that most accumbal neurons that encode events related to drug-directed behavior achieve and maintain higher firing rates during the period of cocaine exposure (Task-Activated neurons) than do other accumbal neurons (Task-Non-Activated neurons). We have hypothesized that this difference in activity makes the neurons that facilitate drug-directed behavior less susceptible than other neurons to the chronic inhibitory effects of cocaine. A sparing of neurons that facilitate drug-directed behavior from chronic hypoactivity might lead to a relative increase in the transmission of neuronal signals that facilitate drug-directed behavior through accumbal circuits and thereby contribute to changes in behavior that characterize addiction (ie differential inhibition hypothesis). A prediction of the hypothesis is that neurons that are activated in relation to task events during cocaine self-administration sessions will show less of a decrease in firing across repeated self-administration sessions than will other neurons. To test this prediction, rats were exposed to 30 daily (6 h/day) cocaine self-administration sessions. Chronic extracellular recordings of single accumbal neurons were made during the second to third session and the 30th session. Between-session comparisons showed that decreases in firing were exhibited by Task-Non-Activated, but not by Task-Activated, neurons. During the day 30 session, the magnitude of the difference in firing rate between the two groups of neurons was positively related to the propensity of animals to seek and take cocaine. The findings of the present study are consistent with a basic prediction of the differential inhibition hypothesis and may be relevant to understanding cocaine addiction.
Collapse
Affiliation(s)
- Laura L Peoples
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19106, USA.
| | | | | | | |
Collapse
|
31
|
Camp MC, Mayfield RD, McCracken M, McCracken L, Alcantara AA. Neuroadaptations of Cdk5 in cholinergic interneurons of the nucleus accumbens and prefrontal cortex of inbred alcohol-preferring rats following voluntary alcohol drinking. Alcohol Clin Exp Res 2006; 30:1322-35. [PMID: 16899035 DOI: 10.1111/j.1530-0277.2006.00160.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neurobiological studies have identified brain areas and related molecular mechanisms involved in alcohol abuse and dependence. Specific cell types in these brain areas and their role in alcohol-related behaviors, however, have not yet been identified. This study examined the involvement of cholinergic cells in inbred alcohol-preferring rats following 1 month of alcohol drinking. Cyclin-dependent kinase 5 (Cdk5) immunoreactivity (IR), a marker of neuronal plasticity, was examined in cholinergic neurons of the nucleus accumbens (NuAcc) and prefrontal cortex (PFC) and other brain areas implicated in alcohol drinking, using dual immunocytochemical (ICC) procedures. Single Cdk5 IR was also examined in several brain areas implicated in alcohol drinking. METHODS The experimental group self-administered alcohol using a 2-bottle-choice test paradigm with unlimited access to 10% (v/v) alcohol and water for 23 h/d for 1 month. An average of 6 g/kg alcohol was consumed daily. Control animals received identical treatment, except that both bottles contained water. Rats were perfused and brain sections were processed for ICC procedures. RESULTS Alcohol drinking resulted in a 51% increase in Cdk5 IR cholinergic interneurons in the shell NuAcc, while in the PFC there was a 51% decrease in the percent of Cdk5 IR cholinergic interneurons in the infralimbic region and a 46% decrease in Cdk5 IR cholinergic interneurons in the prelimbic region. Additionally, single Cdk5 IR revealed a 42% increase in the central nucleus of the amygdala (CNA). CONCLUSIONS This study identified Cdk5 neuroadaptation in cholinergic interneurons of the NuAcc and PFC and in other neurons of the CNA following 1 month of alcohol drinking. These findings contribute to our understanding of the cellular and molecular basis of alcohol drinking and toward the development of improved region and cell-specific pharmacotherapeutic and behavioral treatment programs for alcohol abuse and alcoholism.
Collapse
|
32
|
Beveridge TJR, Smith HR, Daunais JB, Nader MA, Porrino LJ. Chronic cocaine self-administration is associated with altered functional activity in the temporal lobes of non human primates. Eur J Neurosci 2006; 23:3109-18. [PMID: 16820001 DOI: 10.1111/j.1460-9568.2006.04788.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies utilizing a nonhuman primate model have shown that cocaine self-administration in its initial stages is accompanied by alterations in functional activity largely within the prefrontal cortex and ventral striatum. Continued cocaine exposure may considerably change this response. The purpose of the present investigation was to characterize the effects of reinforcing doses of cocaine on cerebral metabolism in a nonhuman primate model of cocaine self-administration, following an extended history of cocaine exposure, using the quantitative 2-[(14)C]deoxyglucose (2-DG) method. Rhesus monkeys were trained to self-administer 0.03 mg/kg/injection (n = 4) or 0.3 mg/kg/injection (n = 4) cocaine and compared to monkeys trained to respond under an identical schedule of food reinforcement (n = 6). Monkeys received 30 reinforcers per session for a total of 100 sessions. Metabolic mapping was conducted at the end of the final session. After this extended history, cocaine self-administration dose-dependently reduced glucose utilization throughout the striatum and prefrontal cortex similarly to the initial stages of self-administration. However, glucose utilization was also decreased in a dose-independent manner in large portions of the temporal lobe including the amygdala, hippocampus and surrounding neocortex. The recruitment of temporal structures indicates that the pattern of changes in functional activity has undergone significant expansion beyond limbic regions into association areas that mediate higher order cognitive and emotional processing. These data strongly contribute to converging evidence from human studies demonstrating structural and functional abnormalities in temporal and prefrontal areas of cocaine abusers, and suggest that substance abusers may undergo progressive cognitive decline with continued exposure to cocaine.
Collapse
Affiliation(s)
- Thomas J R Beveridge
- Department of Physiology and Pharmacology, Center for the Neurobiological Investigation of Drug Abuse, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA
| | | | | | | | | |
Collapse
|
33
|
Beveridge TJR, Smith HR, Nader MA, Porrino LJ. Functional effects of cocaine self-administration in primate brain regions regulating cardiovascular function. Neurosci Lett 2004; 370:201-5. [PMID: 15488323 DOI: 10.1016/j.neulet.2004.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/11/2004] [Accepted: 08/11/2004] [Indexed: 11/23/2022]
Abstract
Cocaine abuse is associated with autonomic dysregulation, such as altered blood pressure and heart rate. Both central and peripheral mechanisms have been implicated in mediating these changes, however, to date, no study has examined functional changes in activity within central autonomic-associated brain regions in response to cocaine in non-human primates. The aim of the present study was to measure local cerebral glucose utilization, in selected autonomic brain regions, in rhesus monkeys that had self-administered cocaine (0.3 mg/kg/infusion) for 5 days (initial) or 100 days (chronic). Measurements were compared with control monkeys, in which responding was maintained by food reinforcement. In general, decreased rates of glucose utilization were observed in targeted areas following both 5 and 100 days of cocaine self-administration compared to control values. However, after initial stages of cocaine exposure, significant reductions in the forebrain were restricted to the bed nucleus of stria terminalis and in the brainstem to the nucleus tractus solitarius and dorsomotor nucleus of the vagus nerve. The pattern of significantly altered functional activity induced by chronic 100-day cocaine self-administration extended within the forebrain to include the paraventricular hypothalamic nucleus, and in the brainstem to include additional autonomic-related nuclei, the nucleus ambiguus and locus coeruleus. These results suggest that even at the initial stages of cocaine self-administration, functional changes in activity occur in autonomic and reward-related brain regions. These alterations progress with prolonged cocaine exposure, and therefore may be involved in mediating changes in central autonomic control and the neuroadaptations reported to result from chronic drug abuse.
Collapse
Affiliation(s)
- Thomas J R Beveridge
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | | | | | | |
Collapse
|