1
|
Yamauchi T, Takahashi K, Yoshioka T, Yamada D, Nakano Y, Kasai S, Iriyama S, Yoshizawa K, Nishino S, Miyazaki S, Saitoh A. Inaudible airborne ultrasound affects emotional states in the olfactory bulbectomized rat depression model. Sci Rep 2025; 15:3199. [PMID: 39863793 PMCID: PMC11762311 DOI: 10.1038/s41598-025-87036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality. Here, we investigated the impact of US exposure on the emotional state of OBX rats. In naive rats, exposure to 100 kHz US for 1 h did not increase the number of c-Fos-positive cells in auditory-related cortical areas, and US, as a tone cue, did not elicit a conditioned fear response in the auditory fear conditioning test. These results indicate that the frequency of 100 kHz is hard to hear for rats. However, US improved hyperemotionality (HE) scores and decreased plasma corticosterone levels in OBX rats, suggesting ameliorative effects on depression-like symptoms and stress. In contrast to HE scores, US exposure did not influence anxiety-like behaviors in the elevated plus maze. In conclusion, we demonstrated that exposure to airborne US can alleviate depressive-like symptoms in the OBX rat depression model. This is the first study to show that exposure to airborne US alone produces changes in emotional states in an animal model.
Collapse
Affiliation(s)
- Tsugumi Yamauchi
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kou Takahashi
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Kochi, Japan
| | - Toshinori Yoshioka
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yoshio Nakano
- Laboratory of Bioinformatics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Satoka Kasai
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Satoshi Iriyama
- Laboratory of Quantum information dynamics, Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kazumi Yoshizawa
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | | | - Satoru Miyazaki
- Laboratory of Bioinformatics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.
| |
Collapse
|
2
|
Heesbeen EJ, van Kampen T, Verdouw PM, van Lissa C, Bijlsma EY, Groenink L. The effect of SSRIs on unconditioned anxiety: a systematic review and meta-analysis of animal studies. Psychopharmacology (Berl) 2024; 241:1731-1755. [PMID: 38980348 PMCID: PMC11339141 DOI: 10.1007/s00213-024-06645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs) are the first choice of treatment for anxiety-like disorders. However, which aspects of anxiety are affected by SSRIs is not yet fully understood. OBJECTIVE We aimed to systematically review the effect of six clinically effective SSRIs on four aspects of unconditioned anxiety: approach-avoidance behaviour (elevated plus maze), repetitive behaviour (marble burying), distress behaviour (ultrasonic vocalization), and activation of the autonomous nervous system (stress-induced hyperthermia). METHODS We identified publications by searching Medline and Embase databases and assessed the risk of bias. A random effects meta-analysis was performed and moderator effects were analysed with Bayesian penalized meta-regression. RESULTS Our search yielded 105 elevated plus maze, 63 marble burying, 11 ultrasonic vocalization, and 7 stress-induced hyperthermia articles. Meta-analysis suggested that SSRIs reduce anxiety-like behaviour in the elevated plus maze, marble burying and ultrasonic vocalization test and that effects are moderated by pre-existing stress conditions (elevated plus maze) and dose dependency (marble burying) but not by duration of treatment or type of SSRI. The reporting quality was low, publication bias was likely, and heterogeneity was high. CONCLUSION SSRIs seem to reduce a broad range of unconditioned anxiety-associated behaviours. These results should be interpreted with caution due to a high risk of bias, likely occurrence of publication bias, substantial heterogeneity and limited moderator data availability. Our review demonstrates the importance of including bias assessments when interpreting meta-analysis results. We further recommend improving the reporting quality, the conduct of animal research, and the publication of all results regardless of significance.
Collapse
Affiliation(s)
- Elise J Heesbeen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tatum van Kampen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - P Monika Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Caspar van Lissa
- Department of Methodology, Tilburg University, Tilburg, The Netherlands
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Ikeda N, Kawasaki M, Baba K, Nishimura H, Fujitani T, Suzuki H, Matsuura T, Ohnishi H, Shimizu M, Sanada K, Nishimura K, Yoshimura M, Maruyama T, Conway-Campbell BL, Onaka T, Teranishi H, Hanada R, Ueta Y, Sakai A. Chemogenetic Activation of Oxytocin Neurons Improves Pain in a Reserpine-induced Fibromyalgia Rat Model. Neuroscience 2023; 528:37-53. [PMID: 37532013 DOI: 10.1016/j.neuroscience.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Fibromyalgia (FM) is a syndrome characterized by chronic pain with depression as a frequent comorbidity. However, efficient management of the pain and depressive symptoms of FM is lacking. Given that endogenous oxytocin (OXT) contributes to the regulation of pain and depressive disorders, herein, we investigated the role of OXT in an experimental reserpine-induced FM model. In FM model, OXT-monomeric red fluorescent protein 1 (OXT-mRFP1) transgenic rats exhibited increased depressive behavior and sensitivity in a mechanical nociceptive test, suggesting reduced pain tolerance. Additionally, the development of the FM-like phenotype in OXT-mRFP1 FM model rats was accompanied by a significant reduction in OXT mRNA expression in the magnocellular neurons of the paraventricular nucleus. OXT-mRFP1 FM model rats also had significantly fewer tryptophan hydroxylase (TPH)- and tyrosine hydroxylase (TH)-immunoreactive (ir) neurons as well as reduced serotonin and norepinephrine levels in the dorsal raphe and locus coeruleus. To investigate the effects of stimulating the endogenous OXT pathway, rats expressing OXT-human muscarinic acetylcholine receptor (hM3Dq)-mCherry designer receptors exclusively activated by designer drugs (DREADDs) were also assessed in the FM model. Treatment of these rats with clozapine-N-oxide (CNO), an hM3Dq-activating drug, significantly improved characteristic FM model-induced pathophysiological pain, but did not alter depressive-like behavior. The chemogenetically induced effects were reversed by pre-treatment with an OXT receptor antagonist, confirming the specificity of action via the OXT pathway. These results indicate that endogenous OXT may have analgesic effects in FM, and could be a potential target for effective pain management strategies for this disorder.
Collapse
Affiliation(s)
- Naofumi Ikeda
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Kazuhiko Baba
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Haruki Nishimura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Teruaki Fujitani
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takanori Matsuura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideo Ohnishi
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makiko Shimizu
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
4
|
Yamauchi T, Yoshioka T, Yamada D, Hamano T, Ikeda M, Kamei M, Otsuki T, Sato Y, Nii K, Suzuki M, Iriyama S, Yoshizawa K, Nishino S, Ichikawa H, Miyazaki S, Saitoh A. High-frequency ultrasound exposure improves depressive-like behavior in an olfactory bulbectomized rat model of depression. Neuroreport 2022; 33:445-449. [PMID: 35703736 PMCID: PMC9154295 DOI: 10.1097/wnr.0000000000001804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVES According to previous studies, ultrasound exposure appears to be a noninvasive method for modulating brain activity related to cognition and consciousness; however, its effects on emotional states remain unclear. Therefore, an animal model is required in which the effects and effect mechanisms of ultrasound exposure can be investigated. Thus, we used olfactory bulbectomized rats as an animal model of depression and investigated their emotional state following ultrasound exposure. METHODS In male Wistar/ST olfactory bulbectomized rats, hyperemotionality was evaluated according to hyperemotionality scoring and the scores before and after 24-h ultrasound exposure were compared. Elevated plus maze (EPM) tests were also conducted after 24-h ultrasound exposure, and blood samples were collected in which plasma corticosterone concentrations were measured. RESULTS Following exposure to high-frequency (~50 kHz) ultrasound vocalizations (USVs) associated with the pleasant emotions of rats, the hyperemotionality scores of olfactory bulbectomized rats were significantly reduced. Additionally, the latency of the first entry into the open arm of the EPM was significantly decreased in USV-exposed olfactory bulbectomized rats, as were their plasma corticosterone levels. Furthermore, artificial ultrasound (50 kHz) at a similar frequency to that of USV also significantly decreased the hyperemotionality score of olfactory bulbectomized rats. CONCLUSIONS Ultrasound exposure improved depressive-like behavior in olfactory bulbectomized rats and reduced their plasma corticosterone levels. Thus, we recommend the use of olfactory bulbectomized rats as an animal model for investigating the effects and effect mechanisms of ultrasound exposure.
Collapse
Affiliation(s)
- Tsugumi Yamauchi
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Laboratory of Psychology, Noda Division, Institute of Arts and Sciences, Tokyo University of Science
| | - Toshinori Yoshioka
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Daisuke Yamada
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Takumi Hamano
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | | | | | | | | | | | - Satoshi Iriyama
- Laboratory of Quantum information dynamics, Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science
| | - Kazumi Yoshizawa
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | - Hiroko Ichikawa
- Laboratory of Psychology, Noda Division, Institute of Arts and Sciences, Tokyo University of Science
| | - Satoru Miyazaki
- Laboratory of Bioinformatics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
5
|
mTOR Knockdown in the Infralimbic Cortex Evokes A Depressive-like State in Mouse. Int J Mol Sci 2021; 22:ijms22168671. [PMID: 34445375 PMCID: PMC8395521 DOI: 10.3390/ijms22168671] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
Fast and sustained antidepressant effects of ketamine identified the mammalian target of rapamycin (mTOR) signaling pathway as the main modulator of its antidepressive effects. Thus, mTOR signaling has become integral for the preclinical evaluation of novel compounds to treat depression. However, causality between mTOR and depression has yet to be determined. To address this, we knocked down mTOR expression in mice using an acute intracerebral infusion of small interfering RNAs (siRNA) in the infralimbic (IL) or prelimbic (PrL) cortices of the medial prefrontal cortex (mPFC), and evaluated depressive- and anxious-like behaviors. mTOR knockdown in IL, but not PrL, cortex produced a robust depressive-like phenotype in mice, as assessed in the forced swimming test (FST) and the tail suspension test (TST). This phenotype was associated with significant reductions of mTOR mRNA and protein levels 48 h post-infusion. In parallel, decreased brain-derived neurotrophic factor (BDNF) expression was found bilaterally in both IL and PrL cortices along with a dysregulation of serotonin (5-HT) and glutamate (Glu) release in the dorsal raphe nucleus (DRN). Overall, our results demonstrate causality between mTOR expression in the IL cortex and depressive-like behaviors, but not in anxiety.
Collapse
|
6
|
Nakagawasai O, Lin JR, Odaira T, Takahashi K, Nemoto W, Moriguchi S, Yabuki Y, Kobayakawa Y, Fukunaga K, Nakada M, Tan-No K. Scabronine G Methyl Ester Improves Memory-Related Behavior and Enhances Hippocampal Cell Proliferation and Long-Term Potentiation via the BDNF-CREB Pathway in Olfactory Bulbectomized Mice. Front Pharmacol 2020; 11:583291. [PMID: 33281604 PMCID: PMC7689418 DOI: 10.3389/fphar.2020.583291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022] Open
Abstract
A previous study reported that scabronine G methyl ester (SG-ME) potentially enhances the in vitro secretion of neurotrophic factors such as nerve growth factor via the protein kinase C (PKC)-ζ pathway. However, it remains unknown whether SG-ME can improve cognitive dysfunctions in olfactory bulbectomized (OBX) mice. To address this question, we evaluated SG-ME-treated and untreated OBX mice in a passive avoidance test. We also investigated potential effects of SG-ME on several parameters: cell proliferation and cAMP response element-binding protein (CREB) phosphorylation in the hippocampal dentate gyrus by immunohistochemistry, brain-derived neurotrophic factor (BDNF) levels in the hippocampus by Western blotting, p-CREB levels in the hippocampus by MapAnalyzer, and long-term potentiation (LTP) by electrophysiology. On the 14th day after surgery OBX mice showed altered passive avoidance and decreases in both cell proliferation and long-term potentiation in the hippocampus, while these changes were reversed by SG-ME (20 μg/mouse) 24 h after the treatment. The improvement in memory deficits was prevented when SG-ME was co-administeredwith either zeta inhibitory peptide (PKC-ζ inhibitor), anti-BDNF antibody, ANA-12 (TrkB antagonist), U0126 (MEK inhibitor), H-89 (PKA inhibitor), LY294002 (PI3K inhibitor) or KN-93 (CaMKII inhibitor). We found that SG-ME enhanced brain-derived neurotrophic factor and p-CREB levels in the hippocampus while p-CREB was localized in neurons, but not in astrocytes nor microglial cells. These findings revealed the potential of SG-ME in improving memory impairments by enhancing cell proliferation and LTP via activation of the BDNF/CREB signaling pathway in neurons.
Collapse
Affiliation(s)
- Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jia-Rong Lin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takayo Odaira
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kohei Takahashi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Ohtawara, Japan
| | - Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shigeki Moriguchi
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.,Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.,Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yu Kobayakawa
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masahisa Nakada
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
7
|
Antidementia effects of Enterococcus faecalis 2001 are associated with enhancement of hippocampal neurogenesis via the ERK-CREB-BDNF pathway in olfactory bulbectomized mice. Physiol Behav 2020; 223:112997. [DOI: 10.1016/j.physbeh.2020.112997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 01/23/2023]
|
8
|
Garro-Martínez E, Vidal R, Adell A, Díaz Á, Castro E, Amigó J, Gutiérrez-Lanza R, Florensa-Zanuy E, Gómez-Acero L, Taketo MM, Pazos Á, Pilar-Cuéllar F. β-Catenin Role in the Vulnerability/Resilience to Stress-Related Disorders Is Associated to Changes in the Serotonergic System. Mol Neurobiol 2019; 57:1704-1715. [DOI: 10.1007/s12035-019-01841-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/22/2019] [Indexed: 01/02/2023]
|
9
|
Nagase H, Saitoh A. Research and development of κ opioid receptor agonists and δ opioid receptor agonists. Pharmacol Ther 2019; 205:107427. [PMID: 31654658 DOI: 10.1016/j.pharmthera.2019.107427] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022]
Abstract
Delta opioid delta receptor (DOP) agonists were expected to be analgesics and many researchers tried to develop the SNC80 derivatives. However, the derivatives were dropped at the stage of early clinical trials because of undesirable side effects and weak analgesia. On the other hand, DOP agonists have been proposed as attractive candidates for the novel psychotropic drugs. We recently succeeded in synthesizing a novel selective DOP agonist KNT-127. KNT-127 produced neither catalepsy nor convulsive effects. We have demonstrated that KNT-127 has potent anxiolytic-like effect in rat models of innate anxiety. This anxiolytic-like effect was independent from known adverse effect of benzodiazepine, such as memory impairment, motor coordination deficits, and ethanol interactions. We have also demonstrated that KNT-127 showed potent and rapid antidepressant-like effects in rat models of depression. This antidepressant-like effect was independent from known adverse effect of selective serotonin reuptake inhibitor (SSRI), such as digestive symptoms. Therefore, we propose that DOP should be considered as an attractive target for the development of novel psychotropic drugs, without producing the adverse effects associated with benzodiazepine anxiolytics and SSRI antidepressants. Very recently, we developed another delta agonist NC-2800 with a different structure. NC-2800 is now in the preclinical stage using the CiCLE fund supported by AMED (Japanese Agency for Medical Research and Development).
Collapse
Affiliation(s)
- Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, 278-8510, Japan
| |
Collapse
|
10
|
Zhou YF, Feng L, Liu XM, Tao X, Wang LS, Zhang MD, Wang Z, Chen SG, Chang Q. Urinary metabolic disturbance in the olfactory bulbectomized rats and the modulatory effects of fluoxetine. Life Sci 2019; 234:116751. [DOI: 10.1016/j.lfs.2019.116751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/02/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022]
|
11
|
Tashev R, Ivanova M. Involvement of hippocampal angiotensin 1 receptors in anxiety-like behaviour of olfactory bulbectomized rats. Pharmacol Rep 2018; 70:847-852. [DOI: 10.1016/j.pharep.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
|
12
|
Rajkumar R, Dawe GS. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression. J Chem Neuroanat 2018; 91:63-100. [DOI: 10.1016/j.jchemneu.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
|
13
|
Takahashi K, Nakagawasai O, Nemoto W, Kadota S, Isono J, Odaira T, Sakuma W, Arai Y, Tadano T, Tan-No K. Memantine ameliorates depressive-like behaviors by regulating hippocampal cell proliferation and neuroprotection in olfactory bulbectomized mice. Neuropharmacology 2018; 137:141-155. [DOI: 10.1016/j.neuropharm.2018.04.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
|
14
|
Gotoh L, Saitoh A, Yamada M, Fujii H, Nagase H, Yamada M. Effects of repeated treatment with a delta opioid receptor agonist KNT-127 on hyperemotionality in olfactory-bulbectomized rats. Behav Brain Res 2016; 323:11-14. [PMID: 27916688 DOI: 10.1016/j.bbr.2016.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
Abstract
We previously demonstrated that a single treatment of a non-peptidic delta opioid receptor agonist, KNT-127, has an antidepressant-like effect in rodents in the forced swim test. Here we evaluated the effect of repeated administration of the potential antidepressant KNT-127 in an olfactory-bulbectomized (OBX) rat model. Male Wistar rats (8-12 weeks old) underwent olfactory bulbectomy. From 14days after surgery each was weighed and administered either KNT-127 (3mgkg-1/day), the selective serotonin reuptake inhibitor (SSRI) fluoxetine (10mgkg-1/day), or vehicle, daily for 14 days. Hyperemotionality was measured on days 3, 5, 7, 10, and 14. Repeated administration of KNT-127 significantly decreased total and individual hyperemotionality scores (attack, startle, struggle and fight) over the entire period. Conversely, fluoxetine did not show any significant effect on days 3, 5, 7, or 14 but significantly reduced the total score on day 10. The inhibitory effects of KNT-127 were greater than those of fluoxetine. The KNT-127 and control groups both gained weight, while the fluoxetine group lost weight. Our results suggest that KNT-127 is a potential lead compound for antidepressant therapy, with high efficacy, a relatively rapid onset of therapeutic effect, and without the possible adverse effects of weight loss caused by SSRIs.
Collapse
Affiliation(s)
- Leo Gotoh
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| | - Akiyoshi Saitoh
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan.
| | - Misa Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| |
Collapse
|
15
|
Jiménez-Sánchez L, Linge R, Campa L, Valdizán EM, Pazos Á, Díaz Á, Adell A. Behavioral, neurochemical and molecular changes after acute deep brain stimulation of the infralimbic prefrontal cortex. Neuropharmacology 2016; 108:91-102. [PMID: 27108934 DOI: 10.1016/j.neuropharm.2016.04.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 01/14/2023]
Abstract
Deep brain stimulation (DBS) is a treatment that has shown some efficacy in treatment-resistant depression. In particular, DBS of the subcallosal cingulate gyrus (Brodmann's area 25, Cg25) has been successfully applied to treat refractory depression. In the rat, we have demonstrated that DBS applied to infralimbic (IL) cortex elevates the levels of glutamate and monoamines in the prefrontal cortex, and requires the stimulation of cortical α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors for its antidepressant-like effects. However, the molecular targets of IL DBS are not fully known. To gain insight into these pathways, we have investigated whether IL DBS is able to reverse the behavioral, biochemical and molecular changes exhibited by the olfactory bulbectomized (OBX) rat. Our results revealed that 1 h IL DBS diminished hyperlocomotion, hyperemotionality and anhedonia, and increased social interaction shown by the OBX rats. Further, IL DBS increased prefrontal efflux of glutamate and serotonin in both sham-operated and OBX rats. With regard to molecular targets, IL DBS increases the synthesis of brain-derived neurotrophic factor (BDNF) and the GluA1 AMPA receptor subunit, and stimulates the Akt/mammalian target of rapamycin (mTOR) as well as the AMPA receptor/c-AMP response element binding (CREB) pathways. Temsirolimus, a known in vivo mTOR blocker, suppressed the antidepressant-like effect of IL DBS in naïve rats in the forced swim test, thus demonstrating for the first time that mTOR signaling is required for the antidepressant-like effects of IL DBS, which is in line with the antidepressant response of other rapid-acting antidepressant drugs.
Collapse
Affiliation(s)
- Laura Jiménez-Sánchez
- Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona (CSIC, IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Raquel Linge
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| | - Leticia Campa
- Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona (CSIC, IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Elsa M Valdizán
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| | - Ángel Pazos
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| | - Álvaro Díaz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| | - Albert Adell
- Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona (CSIC, IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain.
| |
Collapse
|
16
|
Linge R, Jiménez-Sánchez L, Campa L, Pilar-Cuéllar F, Vidal R, Pazos A, Adell A, Díaz Á. Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission: role of 5-HT1A receptors. Neuropharmacology 2015; 103:16-26. [PMID: 26711860 DOI: 10.1016/j.neuropharm.2015.12.017] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/08/2023]
Abstract
Cannabidiol (CBD), the main non-psychotomimetic component of marihuana, exhibits anxiolytic-like properties in many behavioural tests, although its potential for treating major depression has been poorly explored. Moreover, the mechanism of action of CBD remains unclear. Herein, we have evaluated the effects of CBD following acute and chronic administration in the olfactory bulbectomy mouse model of depression (OBX), and investigated the underlying mechanism. For this purpose, we conducted behavioural (open field and sucrose preference tests) and neurochemical (microdialysis and autoradiography of 5-HT1A receptor functionality) studies following treatment with CBD. We also assayed the pharmacological antagonism of the effects of CBD to dissect out the mechanism of action. Our results demonstrate that CBD exerts fast and maintained antidepressant-like effects as evidenced by the reversal of the OBX-induced hyperactivity and anhedonia. In vivo microdialysis revealed that the administration of CBD significantly enhanced serotonin and glutamate levels in vmPFCx in a different manner depending on the emotional state and the duration of the treatment. The potentiating effect upon neurotransmitters levels occurring immediately after the first injection of CBD might underlie the fast antidepressant-like actions in OBX mice. Both antidepressant-like effect and enhanced cortical 5-HT/glutamate neurotransmission induced by CBD were prevented by 5-HT1A receptor blockade. Moreover, adaptive changes in pre- and post-synaptic 5-HT1A receptor functionality were also found after chronic CBD. In conclusion, our findings indicate that CBD could represent a novel fast antidepressant drug, via enhancing both serotonergic and glutamate cortical signalling through a 5-HT1A receptor-dependent mechanism.
Collapse
Affiliation(s)
- Raquel Linge
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Laura Jiménez-Sánchez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain; Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Leticia Campa
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain; Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Fuencisla Pilar-Cuéllar
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Rebeca Vidal
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Angel Pazos
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Albert Adell
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain; Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Álvaro Díaz
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
17
|
Behavior and the cholinergic parameters in olfactory bulbectomized female rodents: Difference between rats and mice. Behav Brain Res 2015; 297:5-14. [PMID: 26431763 DOI: 10.1016/j.bbr.2015.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/20/2022]
Abstract
Olfactory bulbectomy (OBX) in rodents induces a wide spectrum of functional disturbances, including behavioral, neurochemical, and neuromorphological alterations. We have examined the effects of OBX on behavior and the parameters of the cholinergic system in female rats and mice. In rats, OBX resulted in the appearance of some depressive-like behavioral marks, such as the decreased sucrose consumption, hyperactivity, impaired short-term memory and anxiety-like behavioral features, such as shortened presence in the center of the open field arena or open arms of the elevated plus-maze and an enhancement of avoidance behavior. These behavioral abnormalities could be associated with disturbances in hippocampal function, this suggestion being supported by the presence of cellular changes in this brain structure. No effect of OBX on the number of cholinergic neurons in the medial septum-diagonal band as well as on the acetylcholine content and acetylcholinesterase activity in the septum, hippocampus, and neocortex could be detected. In contrast, in mice, OBX impaired spontaneous alternation behavior and decreased the number of cholinergic neurons in the medial septum-diagonal band. These data demonstrate that rats and mice differently respond to OBX, in particular, OBX does not significantly affect the cholinergic system in rats.
Collapse
|
18
|
Antidepressant/anxiolytic potential and adverse effect liabilities of melanin-concentrating hormone receptor 1 antagonists in animal models. Pharmacol Biochem Behav 2015; 135:154-68. [PMID: 26044968 DOI: 10.1016/j.pbb.2015.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 01/17/2023]
Abstract
Melanin-concentrating hormone receptor 1 (MCH1 receptor) is known to be involved in the control of mood and stress, in addition to the regulation of feeding. Here, we report further evidence that the blockade of the MCH1 receptor exhibits antidepressant and anxiolytic-like effects in a variety of animal models using TASP0382650 and TASP0489838, newly synthesized MCH1 receptor antagonists, with different scaffolds. Both TASP0382650 and TASP0489838 exhibited high affinities for human MCH1 receptor with IC50 values of 7.13 and 3.80nM, respectively. Both compounds showed potent antagonist activities at the MCH1 receptor, as assessed using MCH-increased [(35)S]GTPγS binding to human MCH1 receptor and an MCH-induced [Ca(2+)]i assay in rat MCH1 receptor expressing cells. In contrast, neither TASP0382650 nor TASP0489838 showed an affinity for the MCH2 receptor, another MCH receptor subtype. The oral administration of TASP0382650 or TASP0489838 significantly reduced the immobility time during the forced swimming test in rats, and reduced hyperemotionality induced by an olfactory bulbectomy, both of which are indicative of an antidepressant-like potential. In the olfactory bulbectomy model, the antidepressant effect of TASP0382650 appeared following a single administration, suggesting a faster onset of action, compared with current medications. Moreover, both TASP0382650 and TASP0489838 exhibited anxiolytic effects in several animal models of anxiety. In contrast, both TASP0382650 and TASP0489838 did not affect spontaneous locomotor activity, motor function, spatial memory during the Morris water maze task, or the convulsion threshold to pentylenetetrazole. These findings provide additional evidence that the blockade of the MCH1 receptor exhibits antidepressant- and anxiolytic activities with no adverse effects in experimental animal models.
Collapse
|
19
|
Alterations of reward mechanisms in bulbectomised rats. Behav Brain Res 2015; 286:271-7. [DOI: 10.1016/j.bbr.2015.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/02/2015] [Accepted: 03/06/2015] [Indexed: 01/17/2023]
|
20
|
Aswar UM, Kalshetti PP, Shelke SM, Bhosale SH, Bodhankar SL. Effect of newly synthesized 1,2,4-triazino[5,6-b]indole-3-thione derivatives on olfactory bulbectomy induced depression in rats. Asian Pac J Trop Biomed 2015; 2:992-8. [PMID: 23593581 DOI: 10.1016/s2221-1691(13)60012-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/31/2012] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To study the derivatives of 1,2,4-triazino[5,6-b]indole-3-thione for antidepressant activity in olfactory bulbectomized (OBX) rats. Out of various derivatives tested for acute tail suspension test, the two derivatives showing prominent action were selected for bilateral olfactory bulbectomy model of chronic depression in rats. METHODS The sub acute effects of 14-day oral pretreatment of two derivatives labeled as 3a (70 mg/kg) and 3r (70 mg/kg), imipramine (20 mg/kg), fluoxetine (30 mg/kg) and moclobemide (15 mg/kg) were evaluated on bilateral bulbectomy induced rise in body weight, hyperphagia, hyperactivity, and on sexual dysfunction. The serum sodium concentration, body temperature, and heart rate were also recorded. RESULTS The derivatives 3a and 3r showed reversal of drop in body weight, reversed OBX induced hyperactivity, normalized body temperature, heart rate, and serum sodium concentration. In elevated maze test, moclobemide, 3a, 3r treatment significantly reduced time spent in open arm as compared to OBX rats. 3a and 3r also improved sexual behavior parameters. CONCLUSIONS The present study shows promising antidepressant action and provides a proof of concept for the chronic treatment of 3a, 3r to treat depression.
Collapse
Affiliation(s)
- Urmila M Aswar
- Department of Pharmacology, STES's Sinhgad Institute of Pharmacy, Narhe, Pune-411041,India
| | | | | | | | | |
Collapse
|
21
|
Kaur SP, Bansal S, Chopra K. 17α-Estradiol: a candidate neuroserm and non-feminizing estrogen for postmenopausal neuronal complications. Steroids 2015; 96:7-15. [PMID: 25595449 DOI: 10.1016/j.steroids.2015.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/02/2014] [Accepted: 01/06/2015] [Indexed: 02/09/2023]
Abstract
Extensive evidence suggests that decline in ovarian function with menopause is associated with neuronal dysfunction. Major cause of this is rise in oxidative stress and inflammatory cytokines because of estrogen deficiency. 17β-Estradiol (E2, hormone with potent antioxidant and anti-inflammatory activity) has profound protective actions on multiple organ systems, but feminizing side effects of β-estradiol limits its clinical efficacy. 17α-Estradiol (E2α), a non feminizing congener, gives a ray of hope to the scientific community as an alternative strategy to treat menopause associated neuronal pathologies. We assessed the protective actions of 17α-estradiol (5, 10μg/kg) against cognitive deficits, depression and motor coordination after 4weeks of ovariectomy in rats and compared its efficacy with E2 at same doses. After the behavioral assay animals were sacrificed and their brains were harvested for biochemical studies. Uterine weights were also assessed. E2 and E2α (5, 10μg/kg) were equally protective against attenuating cognitive deficits, depressive symptoms and motor incoordination in OVX rats. Both demonstrated significant antioxidant activity and E2, but not E2α, increased serum estradiol levels and proliferated uterine weights, markers of feminizing action. It can thus be concluded that E2α offers safe alternative to E2 in protecting against menopausal neuropathologies.
Collapse
Affiliation(s)
- Sukhneeraj Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Seema Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
22
|
El Mansari M, Manta S, Oosterhof C, El Iskandrani KS, Chenu F, Shim S, Blier P. Restoration of serotonin neuronal firing following long-term administration of bupropion but not paroxetine in olfactory bulbectomized rats. Int J Neuropsychopharmacol 2015; 18:pyu050. [PMID: 25522394 PMCID: PMC4360219 DOI: 10.1093/ijnp/pyu050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Olfactory bulbectomized rats generally manifest many of the neurochemical, physiological, and behavioral features of major depressive disorder in humans. Another interesting feature of this model is that it responds to chronic but not acute antidepressant treatments, including selective serotonin reuptake inhibitors. The purpose of the present study was first to characterize the firing activity of dorsal raphe serotonin neurons in olfactory bulbectomized rats and then examine the effects of 2 antidepressants, bupropion and paroxetine. METHODS Olfactory bulbectomy was performed by aspirating olfactory bulbs in anesthetized rats. Vehicle and drugs were delivered for 2 and 14 days via subcutaneously implanted minipumps. In vivo electrophysiological recordings were carried out in male anesthetized Sprague-Dawley rats. RESULTS Following ablation of olfactory bulbs, the firing rate of serotonin neurons was decreased by 36%, leaving those of norepinephrine and dopamine neurons unchanged. In olfactory bulbectomized rats, bupropion (30 mg/kg/d) restored the firing rate of serotonin neurons to the control level following 2- and 14-day administration and also induced an increase in the tonic activation of serotonin(1A) receptors; paroxetine (10 mg/kg/d) did not result in a return to normal of the attenuated firing of serotonin neurons in olfactory bulbectomized rats. In the hippocampus, although at a higher dose of WAY 100635 than that required in bupropion-treated animals, paroxetine administration also resulted in an increase in the tonic activation of serotonin(1A) receptors. CONCLUSIONS The present results indicate that unlike paroxetine, bupropion administration normalized serotonin neuronal activity and increased tonic activation of the serotonin(1A) receptors in hippocampus.
Collapse
Affiliation(s)
- Mostafa El Mansari
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada.
| | - Stella Manta
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Chris Oosterhof
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | | | - Franck Chenu
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Stacey Shim
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Pierre Blier
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
23
|
Olivier B. Serotonin: a never-ending story. Eur J Pharmacol 2014; 753:2-18. [PMID: 25446560 DOI: 10.1016/j.ejphar.2014.10.031] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/12/2014] [Accepted: 10/16/2014] [Indexed: 12/30/2022]
Abstract
The neurotransmitter serotonin is an evolutionary ancient molecule that has remarkable modulatory effects in almost all central nervous system integrative functions, such as mood, anxiety, stress, aggression, feeding, cognition and sexual behavior. After giving a short outline of the serotonergic system (anatomy, receptors, transporter) the author's contributions over the last 40 years in the role of serotonin in depression, aggression, anxiety, stress and sexual behavior is outlined. Each area delineates the work performed on animal model development, drug discovery and development. Most of the research work described has started from an industrial perspective, aimed at developing animals models for psychiatric diseases and leading to putative new innovative psychotropic drugs, like in the cases of the SSRI fluvoxamine, the serenic eltoprazine and the anxiolytic flesinoxan. Later this research work mainly focused on developing translational animal models for psychiatric diseases and implicating them in the search for mechanisms involved in normal and diseased brains and finding new concepts for appropriate drugs.
Collapse
Affiliation(s)
- Berend Olivier
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences & Brain Center Rudolf Magnus, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands; Department of Psychiatry, Yale University School of Medicine, New Haven, USA
| |
Collapse
|
24
|
Yamada M, Tsukagoshi M, Hashimoto T, Oka JI, Saitoh A, Yamada M. Lysophosphatidic acid induces anxiety-like behavior via its receptors in mice. J Neural Transm (Vienna) 2014; 122:487-94. [PMID: 25119538 DOI: 10.1007/s00702-014-1289-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/02/2014] [Indexed: 12/22/2022]
Abstract
Lysophosphatidic acid (LPA) is a potent bioactive lipid mediator with diverse biological properties. We previously found altered expression of the LPA-related genes in rodents after treatment with sertraline, which is widely used to treat anxiety disorders and depression. However, little is known about the behavioral effects of LPA. In the present study, we investigated the behavioral effects of intracerebroventricular injection of LPA in adult mice. LPA did not significantly affect spontaneous locomotor activity, suggesting that LPA does not induce hyperactivity, ataxia, or sedation. We next investigated the emotional effects of LPA via the hole-board test. LPA significantly increased the number of head-dips in a dose- and time-related manner. A significant induction of head-dip counts occurred 15 and 30 min after LPA administration. To clarify the involvement of LPA receptors, we examined the effect of the non-selective LPA1-4 receptor antagonist, 1-bromo-3(S)-hydroxy-4-(palmitoyloxy)butyl-phosphonate (BrP-LPA) co-administered with LPA. BrP-LPA dose-dependently inhibited LPA-induced head-dip counts. We next investigated anxiety-like behavior via the elevated plus-maze test. LPA significantly reduced the percentage of time spent in the open arms and BrP-LPA dose-dependently inhibited this anxiety-like behavior. In conclusion, LPA induced anxiety-like behavior in mice via LPA receptors. Our results suggest that LPA signaling plays an important role in regulating anxiety in mice.
Collapse
Affiliation(s)
- Misa Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo, 187-8553, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res 2013; 354:309-30. [DOI: 10.1007/s00441-013-1692-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022]
|
26
|
Saitoh A, Yamada M. Antidepressant-like Effects of δ Opioid Receptor Agonists in Animal Models. Curr Neuropharmacol 2013; 10:231-8. [PMID: 23449756 PMCID: PMC3468877 DOI: 10.2174/157015912803217314] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/09/2012] [Accepted: 04/05/2012] [Indexed: 12/28/2022] Open
Abstract
Recently, δ opioid receptor agonists have been proposed to be attractive targets for the development of novel antidepressants. Several studies revealed that single treatment of δ opioid receptor agonists produce antidepressant-like effects in the forced swimming test, which is one of the most popular animal models for screening antidepressants. In addition, subchronic treatment with δ opioid receptor agonists has been shown to completely attenuate the hyperemotional responses found in olfactory bulbectomized rats. This animal model exhibits hyperemotional behavior that may mimic the anxiety, aggression, and irritability found in depressed patients, suggesting that δ opioid receptor agonists could be effective in the treatment of these symptoms in depression. On the other hand, prototype δ opioid receptor agonists produce convulsive effects, which limit their therapeutic potential and clinical development. In this review, we presented the current knowledge regarding the antidepressant-like effects of δ opioid receptor agonists, which include some recently developed drugs lacking convulsive effects.
Collapse
Affiliation(s)
- Akiyoshi Saitoh
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| | | |
Collapse
|
27
|
Oba A, Nakagawasai O, Onogi H, Nemoto W, Yaoita F, Arai Y, Tan-No K, Tadano T. Chronic fluvoxamine treatment changes 5-HT(2A/2C) receptor-mediated behavior in olfactory bulbectomized mice. Life Sci 2012; 92:119-24. [PMID: 23159642 DOI: 10.1016/j.lfs.2012.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 10/18/2012] [Accepted: 11/05/2012] [Indexed: 11/25/2022]
Abstract
AIMS Olfactory bulbectomy (OBX) in rodents represents a valuable experimental model of depression. This study was designed to shed further light on the impact of putative serotonergic neuronal degeneration in OBX mice and to assess the effect of a widely used antidepressant on serotonergic related behavioral changes induced by OBX. MAIN METHODS Adult male ddY mice were subject to bilateral OBX or sham surgery. The serotonin (5-HT)(2A/2C) receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) enhanced a head-twitch response (HTR) in OBX mice. Effects of 5-HT(2A), 5-HT(2C) antagonists and fluvoxamine were observed in OBX mice following DOI administration. KEY FINDINGS The HTR elicited by the administration of DOI (0.5 mg/kg and 1 mg/kg, i.p.) was increased about twofold in OBX mice when compared with controls on the 14th day after the surgery. The injection of ketanserin (0.025 mg/kg, i.p.), a 5-HT(2A) receptor antagonist, inhibited the enhancement of the DOI-induced HTR after OBX. Likewise, the administration of SB 242084 (1 mg/kg, s.c.), a 5-HT(2C) receptor antagonist, also inhibited the DOI-induced HTR in OBX mice. Chronic but not acute treatment with the antidepressant fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), suppressed the enhancement of DOI-induced HTR after OBX. SIGNIFICANCE These findings indicate that OBX, and the subsequent degeneration of neurons projecting from the olfactory bulb, caused a supersensitivity of 5-HT(2A/2C) receptors which may be involved in symptoms of depression.
Collapse
Affiliation(s)
- Akira Oba
- Department of Pharmacology, Tohoku Pharmaceutical University, Sendai 981-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Choi MR, Hwang S, Park GM, Jung KH, Kim SH, Das ND, Chai YG. Effect of fluoxetine on the expression of tryptophan hydroxylase and 14-3-3 protein in the dorsal raphe nucleus and hippocampus of rat. J Chem Neuroanat 2012; 43:96-102. [DOI: 10.1016/j.jchemneu.2012.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 12/20/2022]
|
29
|
Neurokinin-1 receptor deletion modulates behavioural and neurochemical alterations in an animal model of depression. Behav Brain Res 2011; 228:91-8. [PMID: 22155476 DOI: 10.1016/j.bbr.2011.11.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/21/2011] [Accepted: 11/26/2011] [Indexed: 12/28/2022]
Abstract
The substance P/NK1 receptor system plays an important role in the regulation of stress and emotional responding and as such had been implicated in the pathophysiology of anxiety and depression. The present study investigated whether alterations in the substance P/NK1 receptor system in brain areas which regulate emotional responding accompany the depressive behavioural phenotype observed in the olfactory bulbectomised (OB) mouse. The effect of NK1 receptor deletion on behavioural responding and monoamine levels in discrete brain regions of the OB model, were also examined. Substance P levels in the frontal cortex and NK1 receptor expression in the amygdala and hippocampus were enhanced following olfactory bulbectomy. Although NK1 receptor knockout (NK1-/-) mice did not exhibit altered behavioural responding in the open field test, noradrenaline levels were enhanced in the frontal cortex, amygdala and hippocampus, as were serotonin levels in the frontal cortex. Locomotor activity and exploratory behaviour were enhanced in wild type OB mice, indicative of a depressive-like phenotype, an effect attenuated in NK1-/- mice. Bulbectomy induced a decrease in noradrenaline and 5-HIAA in the frontal cortex and an increase in serotonin in the amygdala, effects attenuated in OB NK1-/- mice. The present studies indicate that alterations in substance P/NK1 receptor system underlie, at least in part, the behavioural and monoaminergic changes in this animal model of depression.
Collapse
|
30
|
Riluzole rapidly attenuates hyperemotional responses in olfactory bulbectomized rats, an animal model of depression. Behav Brain Res 2010; 216:46-52. [PMID: 20620171 DOI: 10.1016/j.bbr.2010.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/23/2010] [Accepted: 07/02/2010] [Indexed: 11/21/2022]
Abstract
Growing evidence indicates that the glutamatergic neurotransmitter system is central to the neurobiology and treatment of depression. Riluzole, a drug currently used to slow the progression of amyotrophic lateral sclerosis (ALS), directly affects the glutamatergic system. In this study, we investigated the effects of riluzole in olfactory bulbectomy (OBX) rats, an animal model of depression. The olfactory bulbs in rats were removed by suction. The emotionality of rats was measured by scoring their responses to given stimuli, i.e., attack, startle, struggle, and fight responses. The OBX rats chronically treated with vehicle for 7 days at 14 days following surgery showed significant increases in emotionality responses. Single (1st day administration) and subchronic (7th day administration) riluzole treatment (1-10 mg/kg, po) significantly and dose-dependently reduced hyperemotional responses in OBX rats. Both single and subchronic riluzole treatment (10 mg/kg, po) had no significant effects on the emotional responses in sham operated rats. In addition, we demonstrated that single riluzole treatment (10 mg/kg, po) significantly decreased extracellular glutamate levels in medial prefrontal cortex of OBX rats by in vivo microdialysis. We provide the first experimental evidence that riluzole rapidly attenuated hyperemotional responses in OBX rats, an animal model of depression.
Collapse
|
31
|
Olfactory bulbectomy induces rapid and stable changes in basal and stress-induced locomotor activity, heart rate and body temperature responses in the home cage. Neuroscience 2008; 159:39-46. [PMID: 19136045 DOI: 10.1016/j.neuroscience.2008.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/30/2008] [Accepted: 12/05/2008] [Indexed: 11/20/2022]
Abstract
BACKGROUND Olfactory bulbectomy (OBX) in rats causes several behavioral and neurochemical changes. However, the extent and onset of physiological and behavioral changes induced after bulbectomy have been little examined. METHODS Male Sprague-Dawley rats received telemetric implants. Before and immediately after OBX surgery, basal and stress-induced heart rate, body temperature, and locomotor activity were measured in the home cage in sham (n=9) and OBX animals (n=11). Stress was induced using novel cage stress or witness stress. RESULTS Bulbectomized animals differed physiologically and behaviorally from shams. Nocturnally, OBX animals were significantly more active compared with shams, had a higher core body temperature and displayed a decreased heart rate variability. During the light period, OBX animals had a significantly lower basal heart rate and a reduced heart rate variability. These effects became apparent 2-3 days after OBX surgery, and were stable over time. After witness stress, OBX animals showed smaller autonomic (body temperature and heart rate) responses compared with shams, but showed no difference in locomotor responses. In contrast, novel cage stress led to increased locomotor responses in OBX rats compared with sham rats, while no differences were found in autonomic responses. CONCLUSION Removal of the olfactory bulbs results in rapid, stable and persistent changes in basal locomotor activity, body temperature, heart rate and heart rate variability. Although the sleep-wake cycle of these parameters is not altered, increases in circadian amplitude are apparent within 3 days after surgery. This indicates that physiological changes in the OBX rat are the immediate result of olfactory bulb removal. Further, stress responsivity in OBX rats depends on stressor intensity. Bulbectomized rats display smaller temperature and heart rate responses to less intense witness stress compared with sham rats. Increased locomotor responses to more intense novel cage stress are present in the home cage as well as the open field. The present study shows that olfactory bulbectomy has rapid and persistent influence on basal and stress-induced physiological parameters.
Collapse
|
32
|
Saitoh A, Yamada M, Yamada M, Takahashi K, Yamaguchi K, Murasawa H, Nakatani A, Tatsumi Y, Hirose N, Kamei J. Antidepressant-like effects of the delta-opioid receptor agonist SNC80 ([(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)methyl]-N,N-diethylbenzamide) in an olfactory bulbectomized rat model. Brain Res 2008; 1208:160-9. [DOI: 10.1016/j.brainres.2007.07.095] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 07/04/2007] [Accepted: 07/05/2007] [Indexed: 10/22/2022]
|
33
|
Takahashi K, Saitoh A, Yamada M, Maruyama Y, Hirose N, Kamei J, Yamada M. Gene Expression Profiling Reveals Complex Changes in the Olfactory Bulbectomy Model of Depression After Chronic Treatment With Antidepressants. J Pharmacol Sci 2008; 108:320-34. [DOI: 10.1254/jphs.08149fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
34
|
Yamaguchi K, Murasawa H, Nakatani A, Matsuzawa K, Matsuda T, Tatsumi Y, Tatsumi M, Tatsumi H. [Is it possible to reproduce rat models for violence-prone brain and depression-prone brain (serotonin scarcity brain) in humans?]. Nihon Yakurigaku Zasshi 2007; 130:175-83. [PMID: 17878612 DOI: 10.1254/fpj.130.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|