1
|
Rueda-Orozco PE, Hidalgo-Balbuena AE, González-Pereyra P, Martinez-Montalvo MG, Báez-Cordero AS. The Interactions of Temporal and Sensory Representations in the Basal Ganglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:141-158. [PMID: 38918350 DOI: 10.1007/978-3-031-60183-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In rodents and primates, interval estimation has been associated with a complex network of cortical and subcortical structures where the dorsal striatum plays a paramount role. Diverse evidence ranging from individual neurons to population activity has demonstrated that this area hosts temporal-related neural representations that may be instrumental for the perception and production of time intervals. However, little is known about how temporal representations interact with other well-known striatal representations, such as kinematic parameters of movements or somatosensory representations. An attractive hypothesis suggests that somatosensory representations may serve as the scaffold for complex representations such as elapsed time. Alternatively, these representations may coexist as independent streams of information that could be integrated into downstream nuclei, such as the substantia nigra or the globus pallidus. In this review, we will revise the available information suggesting an instrumental role of sensory representations in the construction of temporal representations at population and single-neuron levels throughout the basal ganglia.
Collapse
Affiliation(s)
- Pavel E Rueda-Orozco
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico.
| | | | | | | | - Ana S Báez-Cordero
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico
| |
Collapse
|
2
|
Neuroprotection by Exendin-4 Is GLP-1 Receptor Specific but DA D3 Receptor Dependent, Causing Altered BrdU Incorporation in Subventricular Zone and Substantia Nigra. JOURNAL OF NEURODEGENERATIVE DISEASES 2013; 2013:407152. [PMID: 26316987 PMCID: PMC4437329 DOI: 10.1155/2013/407152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/28/2013] [Accepted: 07/07/2013] [Indexed: 11/17/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) activation by exendin-4 (EX-4) is effective in preclinical models of Parkinson's disease (PD) and appears to promote neurogenesis even in severely lesioned rats. In the present study, we determined the effects of EX-4 on cellular BrdU incorporation in the rat subventricular zone (SVZ) and substantia nigra (SN). We also determined the specificity of this effect with the GLP-1R antagonist EX-(9-39) as well as the potential role of dopamine (DA) D3 receptors. Rats were administered 6-OHDA and 1 week later given EX-4 alone, with EX-(9-39) or nafadotride (D3 antagonist) and BrdU. Seven days later, rats were challenged with apomorphine to evaluate circling. Extracellular DA was measured using striatal microdialysis and subsequently tissue DA measured. Tyrosine hydroxylase and BrdU were verified using immunohistochemistry. Apomorphine circling was reversed by EX-4 in lesioned rats, an effect reduced by EX-4, while both EX-(9-39) and NAF attenuated this. 6-OHDA decreased extracellular and tissue DA, both reversed by EX-4 but again attenuated by EX-(9-39) or NAF. Analysis of BrdU+ cells in the SVZ revealed increases in 6-OHDA-treated rats which were reversed by EX-4 and antagonised by either EX-(9-39) or NAF, while in the SN the opposite profile was seen.
Collapse
|
3
|
Systemic administration of 8-OH-DPAT and eticlopride, but not SCH23390, alters loss-chasing behavior in the rat. Neuropsychopharmacology 2013; 38:1094-104. [PMID: 23303072 PMCID: PMC3629409 DOI: 10.1038/npp.2013.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gambling to recover losses is a common gaming behavior. In a clinical context, however, this phenomenon mediates the relationship between diminished control over gambling and the adverse socioeconomic consequences of gambling problems. Modeling loss-chasing through analogous behaviors in rats could facilitate its pharmacological investigation as a potential therapeutic target. Here, rats were trained to make operant responses that produced both food rewards, and unpredictably, imminent time-out periods in which rewards would be unavailable. At these decision points, rats were offered choices between waiting for these time-out periods to elapse before resuming responding for rewards ('quit' responses), or selecting risky options with a 0.5 probability of avoiding the time-outs altogether and a 0.5 probability of time-out periods twice as long as signaled originally ('chase' responses). Chasing behavior, and the latencies to chase or quit, during sequences of unfavorable outcomes were tested following systemic administration of the 5-HT1A receptor agonist, 8-OH-DPAT, the D2 receptor antagonist, eticlopride, and the D1 receptor antagonist, SCH23390. 8-OH-DPAT and eticlopride significantly reduced the proportion of chase responses, and the mean number of consecutive chase responses, in a dose-dependent manner. 8-OH-DPAT also increased latencies to chase. Increasing doses of eticlopride first speeded, then slowed, latencies to quit while SCH23390 had no significant effects on any measure. Research is needed to identify the precise cognitive mechanisms mediating these kinds of risky choices in rats. However, our data provide the first experimental demonstration that 5-HT1A and D2, but not D1, receptor activity influence a behavioral analog of loss-chasing in rats.
Collapse
|
4
|
Pharmacological studies of performance on the free-operant psychophysical procedure. Behav Processes 2013; 95:71-89. [PMID: 23428704 DOI: 10.1016/j.beproc.2013.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 02/10/2013] [Accepted: 02/11/2013] [Indexed: 12/30/2022]
Abstract
In the free-operant psychophysical procedure (FOPP), reinforcement is provided intermittently for responding on lever A in the first half and lever B in the second half of a trial. Temporal differentiation is measured from the psychometric function (percent responding on B, %B, versus time from trial onset, t), the index of timing being T50, the value of t at %B=50. T50 is reduced by acute treatment with 5-hydroxytryptamine (5-HT1A, 5-HT2A) and dopamine (D1-like, D2-like) receptor agonists. The effects of the agonists can be reversed by the respective antagonists of these receptors. Evidence is reviewed suggesting that the effect of endogenous 5-HT is mediated by 5-HT2A receptors and the effect of endogenous dopamine by D1-like receptors. Data are presented on the effects of lesions of the prefrontal cortex and corpus striatum on the sensitivity of performance on the FOPP to D1-like and D2-like receptor agonists. Lesions of the nucleus accumbens, but not the dorsal striatum or prefrontal cortex, attenuated the effects of a D1-like receptor agonist, 6-chloro-2,3,4,5-tetrahydro-1-phenyl-1H-3-benzazepine [SKF-81297], but not a D2-like receptor agonist, quinpirole, on T50. The results indicate that a population of D1-like receptors in the ventral striatum may contribute to the control of timing performance on the FOPP.
Collapse
|
5
|
Valencia-Torres L, Olarte-Sánchez CM, Body S, Cheung THC, Fone KCF, Bradshaw CM, Szabadi E. Fos expression in the prefrontal cortex and ventral striatum after exposure to a free-operant timing schedule. Behav Brain Res 2012; 235:273-9. [PMID: 22917527 PMCID: PMC3657143 DOI: 10.1016/j.bbr.2012.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 12/01/2022]
Abstract
It has been proposed that cortico-striato-thalamo-cortical circuits that incorporate the prefrontal cortex and corpus striatum regulate interval timing behaviour. In the present experiment regional Fos expression was compared between rats trained under an immediate timing schedule, the free-operant psychophysical procedure (FOPP), which entails temporally regulated switching between two operanda, and a yoked variable-interval (VI) schedule matched to the timing task for food deprivation level, reinforcement rate and overall response rate. The density of Fos-positive neurones (counts mm−2) in the orbital prefrontal cortex (OPFC) and the shell of the nucleus accumbens (AcbS) was greater in rats exposed to the FOPP than in rats exposed to the VI schedule, suggesting a greater activation of these areas during the performance of the former task. The enhancement of Fos expression in the OPFC is consistent with previous findings with both immediate and retrospective timing schedules. Enhanced Fos expression in the AcbS was previously found in retrospective timing schedules based on conditional discrimination tasks, but not in a single-operandum immediate timing schedule, the fixed-interval peak procedure. It is suggested that the ventral striatum may be engaged during performance on timing schedules that entail operant choice, irrespective of whether they belong to the immediate or retrospective categories.
Collapse
Affiliation(s)
- L Valencia-Torres
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, UK.
| | | | | | | | | | | | | |
Collapse
|
6
|
Valencia-Torres L, Olarte-Sánchez C, Body S, Fone K, Bradshaw C, Szabadi E. Fos expression in the orbital prefrontal cortex after exposure to the fixed-interval peak procedure. Behav Brain Res 2012; 229:372-7. [PMID: 22301352 PMCID: PMC3657145 DOI: 10.1016/j.bbr.2012.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 12/26/2022]
Abstract
It has been proposed that cortico-striato-thalamo-cortical circuits that incorporate the prefrontal cortex and dorsal striatum regulate interval timing behaviour. The present experiment examined whether performance on the fixed-interval peak procedure (FIPP), an immediate timing schedule, would induce neuronal activity in cortical and striatal areas, as revealed by enhanced expression of the Fos protein, a marker for neuronal activation. Regional Fos expression was compared between rats trained on the FIPP and rats trained on a variable-interval (VI) schedule matched to the FIPP for overall response rate and reinforcer delivery. Response rate in the peak trials of the FIPP conformed to a temporally differentiated pattern, which was well described by a modified Gaussian function; in agreement with previous findings, the peak time occurred close to the time at which the reinforcer was delivered in the fixed-interval trials, and the Weber fraction was within the range of values reported previously. The density of Fos-positive neurones (counts mm−2) in the orbital prefrontal cortex (OPFC) was greater in rats exposed to the FIPP than in rats exposed to the VI schedule, suggesting a greater activation of this area during the performance of the former task. This is consistent with the results of previous studies that have implicated the OPFC in interval timing behaviour. However, there was no significant difference between the levels of Fos expression in the dorsal or ventral striatum of the rats trained under the two schedules.
Collapse
Affiliation(s)
- L. Valencia-Torres
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Room B109, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - C.M. Olarte-Sánchez
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Room B109, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - S. Body
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Room B109, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - K.C.F. Fone
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Room B109, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
- School of Biomedical Sciences, University of Nottingham, Room E20, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - C.M. Bradshaw
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Room B109, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
- Corresponding author. Tel.: +44 0115 823 0219; fax: +44 0115 823 0220.
| | - E. Szabadi
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Room B109, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
7
|
Quinpirole-induced sensitization to noisy/sparse periodic input: temporal synchronization as a component of obsessive-compulsive disorder. Neuroscience 2011; 179:143-50. [DOI: 10.1016/j.neuroscience.2011.01.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/19/2011] [Accepted: 01/22/2011] [Indexed: 11/22/2022]
|
8
|
Attenuation of the effects of d-amphetamine on interval timing behavior by central 5-hydroxytryptamine depletion. Psychopharmacology (Berl) 2009; 203:547-59. [PMID: 19018519 PMCID: PMC2761547 DOI: 10.1007/s00213-008-1400-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 10/28/2008] [Indexed: 12/28/2022]
Abstract
RATIONALE Interval timing in the free-operant psychophysical procedure is sensitive to the monoamine-releasing agent d-amphetamine, the D(2)-like dopamine receptor agonist quinpirole, and the D(1)-like agonist 6-chloro-2,3,4,5-tetrahydro-1-phenyl-1H-3-benzepine (SKF-81297). The effect of d-amphetamine can be antagonized by selective D(1)-like and 5-HT(2A) receptor antagonists. It is not known whether d-amphetamine's effect requires an intact 5-hydroxytryptamine (5-HT) pathway. OBJECTIVE The objective of this study was to examine the effects of d-amphetamine, quinpirole, and SKF-81297 on timing in intact rats and rats whose 5-hydroxytryptaminergic (5-HTergic) pathways had been ablated. MATERIALS AND METHODS Rats were trained under the free-operant psychophysical procedure to press levers A and B in 50-s trials in which reinforcement was provided intermittently for responding on A in the first half, and B in the second half of the trial. Percent responding on B (%B) was recorded in successive 5-s epochs of the trials; logistic functions were fitted to the data for derivation of timing indices (T(50), time corresponding to %B = 50%; Weber fraction). The effects of d-amphetamine (0.4 mg kg(-1) i.p.), quinpirole (0.08 mg kg(-1) i.p.), and SKF-81297 (0.4 mg kg(-1) s.c.) were compared between intact rats and rats whose 5-HTergic pathways had been destroyed by intra-raphe injection of 5,7-dihydroxytryptamine. RESULTS Quinpirole and SKF-81297 reduced T(50) in both groups; d-amphetamine reduced T(50) only in the sham-lesioned group. The lesion reduced 5-HT levels by 80%; catecholamine levels were not affected. CONCLUSIONS d-Amphetamine's effect on performance in the free-operant psychophysical procedure requires an intact 5-HTergic system. 5-HT, possibly acting at 5-HT(2A) receptors, may play a 'permissive' role in dopamine release.
Collapse
|
9
|
Meck WH. Acute ethanol potentiates the clock-speed enhancing effects of nicotine on timing and temporal memory. Alcohol Clin Exp Res 2008; 31:2106-13. [PMID: 18034700 DOI: 10.1111/j.1530-0277.2007.00540.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Acute ethanol administration potentiates some of the behavioral effects of nicotine, although the extent of this effect is unknown. The present investigation assessed the ability of ethanol to potentiate nicotine's effect on the overestimation of multisecond durations as a result of an increase in the speed of an internal clock. METHODS Adult male rats were exposed to the acute effects of ethanol (0.0, 0.5, 1.5, and 3.0 g/kg; IG) which was given 10 minutes prior to the administration of nicotine (0.0, 0.3, 0.6, and 1.0 mg/kg; IP). The effects of these combined treatments on timing and temporal memory were assessed using 18- and 36-second peak-interval procedures with separate visual/spatial cues for responding. RESULTS When administered alone, ethanol had no consistent effect on peak time, but decreased peak rate, and increased peak spread as a function of dose. In contrast, nicotine alone shifted the peak times of the response distributions leftward in a proportional manner as a function of dose. When administered after pretreatment with ethanol, nicotine's effect on the horizontal placement of the peak functions was potentiated. CONCLUSIONS The observation that ethanol pretreatment potentiates the clock-speed enhancing effects of subsequently administered nicotine is discussed in terms of the role of alpha7-nicotinic acetylcholine receptors and dopamine-glutamate interactions in cortico-striatal circuits thought to subserve interval timing.
Collapse
Affiliation(s)
- Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27708, USA.
| |
Collapse
|
10
|
Cheung THC, Bezzina G, Hampson CL, Body S, Fone KCF, Bradshaw CM, Szabadi E. Evidence for the sensitivity of operant timing behaviour to stimulation of D1 dopamine receptors. Psychopharmacology (Berl) 2007; 195:213-22. [PMID: 17668188 DOI: 10.1007/s00213-007-0892-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 07/05/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE Temporal differentiation of operant behaviour is sensitive to dopaminergic manipulations. Previous studies using the fixed-interval peak procedure implicated D(2)-like dopamine receptors in these effects. However, recent findings suggest that d-amphetamine alters timing performance on the free-operant psychophysical procedure via D(1)-like receptors. It is not known whether this effect of d-amphetamine is mimicked by direct D(1)-like receptor stimulation. OBJECTIVE The effects of a D(1)-like receptor agonist 6-chloro-2,3,4,5-tetrahydro-1-phenyl-1H-3-benzazepine (SKF-81297) on performance on the free-operant psychophysical procedure and the interaction between SKF-81297 and a D(1)-like receptor antagonist 8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol (SKF-83566) and a D(2)-like receptor antagonist haloperidol, were examined. MATERIALS AND METHODS Rats were trained to respond on two levers (A and B) under a free-operant psychophysical schedule, in which sucrose reinforcement was provided intermittently for responding on A during the first half and on B during the second half of 50-s trials. Logistic psychometric functions were fitted to the relative response rate data (percent responding on B [%B] vs time from trial onset [t]) under each treatment condition, and quantitative indices of timing (T(50) [value of t corresponding to %B = 50] and the Weber fraction [(T(75)-T(25))/2T(50); T(25) and T(75) are values of t corresponding to %B = 25 and %B = 75] were compared among treatments. RESULTS SKF-81297 (0.8 mg kg(-1)) reduced T(50); this effect was antagonized by SKF-83566 (0.03 mg kg(-1)) but not by haloperidol (0.05, 0.1 mg kg(-1)). CONCLUSIONS Stimulation of D(1)-like dopamine receptors affects performance in the free-operant psychophysical procedure.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Behavior, Animal/drug effects
- Benzazepines/pharmacology
- Conditioning, Operant/drug effects
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Dopamine D2 Receptor Antagonists
- Dose-Response Relationship, Drug
- Female
- Haloperidol/pharmacology
- Psychometrics
- Rats
- Rats, Wistar
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/physiology
- Time Perception/drug effects
Collapse
Affiliation(s)
- T H C Cheung
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Room B109, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | |
Collapse
|