1
|
Lord MN, Noble EE. Hypothalamic cannabinoid signaling: Consequences for eating behavior. Pharmacol Res Perspect 2024; 12:e1251. [PMID: 39155548 PMCID: PMC11331011 DOI: 10.1002/prp2.1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
In parallel to the legalization of cannabis for both medicinal and recreational purposes, cannabinoid use has steadily increased over the last decade in the United States. Cannabinoids, such as tetrahydrocannabinol and anandamide, bind to the central cannabinoid-1 (CB1) receptor to impact several physiological processes relevant for body weight regulation, including appetite and energy expenditure. The hypothalamus integrates peripheral signals related to energy balance, houses several nuclei that orchestrate eating, and expresses the CB1 receptor. Herein we review literature to date concerning cannabinergic action in the hypothalamus with a specific focus on eating behaviors. We highlight hypothalamic areas wherein researchers have focused their attention, including the lateral, arcuate, paraventricular, and ventromedial hypothalamic nuclei, and interactions with the hormone leptin. This review serves as a comprehensive analysis of what is known about cannabinoid signaling in the hypothalamus, highlights gaps in the literature, and suggests future directions.
Collapse
Affiliation(s)
- Magen N. Lord
- Department of Nutritional SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | - Emily E. Noble
- Department of Nutritional SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
2
|
AlKhelb D, Burke EL, Zvonok A, Iliopoulos-Tsoutsouvas C, Georgiadis MO, Jiang S, Ho TC, Nikas SP, Makriyannis A, Desai RI. Effects of cannabinoid agonists and antagonists in male rats discriminating the synthetic cannabinoid AM2201. Eur J Pharmacol 2023; 960:176168. [PMID: 38059442 PMCID: PMC10704044 DOI: 10.1016/j.ejphar.2023.176168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/30/2023] [Accepted: 10/26/2023] [Indexed: 12/08/2023]
Abstract
The synthetic forms of delta-9-tetrahydrocannabinol (Δ9-THC), dronabinol or nabilone, have been approved to treat several indications. However, due to safety concerns their clinical utility remains limited. Consequently, there is a need for developing cannabinoid (CB) ligands that display better behavioral pharmacological profiles than Δ9-THC. Here, we utilized drug discrimination methods to compare the interoceptive effects of CB ligands that vary in potency, efficacy, and selectivity at the CB receptors, including two ligands, AM411 and AM4089, that show CB1 partial agonist-like actions in vitro. Male rats were trained to discriminate 0.1 mg/kg AM2201 from saline under a fixed-ratio (FR) 10 response schedule of food reinforcement. After establishing AM2201's discriminative-stimulus effects, pretreatment tests with the CB1 antagonist/inverse agonist rimonabant blocked AM2201's effects, whereas the peripherally-restricted antagonist AM6545 had no effect. Next, the generalization profiles of AM411 and AM4089 with CB1 full agonists (JWH-018, CP-55,940, AM8936), partial agonist (Δ9-THC), and non-cannabinoids (fentanyl, atropine) were compared. The CBs either fully (AM2201, CP-55,940, JWH-018, AM8936, Δ9-THC) or partially (AM411, AM4089) substituted for AM2201, whereas fentanyl and atropine did not produce AM2201-like effects. All CB drugs were more potent than Δ9-THC and correlation analysis confirmed that the relative behavioral potencies of CBs corresponded strongly with their relative affinities at the CB1 but not CB2 receptors. Together, our results further demonstrate that AM411 and AM4089 exhibit better pharmacological profiles compared to Δ9-THC, in that they are more potent and display in vivo partial agonist-like actions that are centrally mediated via CB1 receptors.
Collapse
Affiliation(s)
- Dalal AlKhelb
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Emily L Burke
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alexander Zvonok
- MAK Scientific LLC, 151 South Bedford Street, Burlington, MA, 01803, USA
| | - Christos Iliopoulos-Tsoutsouvas
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Markos-Orestis Georgiadis
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Shan Jiang
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Thanh C Ho
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Spyros P Nikas
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA; MAK Scientific LLC, 151 South Bedford Street, Burlington, MA, 01803, USA.
| | - Rajeev I Desai
- Center for Drug Discovery, Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA; Department of Psychiatry, Behavioral Biology Program, Integrative Neurochemistry Laboratory, McLean Hospital - Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
3
|
Wilkerson JL, Alberti LB, Thakur GA, Makriyannis A, Milligan ED. Peripherally administered cannabinoid receptor 2 (CB 2R) agonists lose anti-allodynic effects in TRPV1 knockout mice, while intrathecal administration leads to anti-allodynia and reduced GFAP, CCL2 and TRPV1 expression in the dorsal spinal cord and DRG. Brain Res 2022; 1774:147721. [PMID: 34774500 PMCID: PMC10763621 DOI: 10.1016/j.brainres.2021.147721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022]
Abstract
The transient receptor potential (TRP) superfamily of cation channels, of which the TRP vanilloid type 1 (TRPV1) receptor plays a critical role in inflammatory and neuropathic pain, is expressed on nociceptors and spinal cord dorsal horn neurons. TRPV1 is also expressed on spinal astrocytes and dorsal root ganglia (DRG) satellite cells. Agonists of the cannabinoid type 2 receptor (CB2R) suppress allodynia, with some that can bind TRPV1. The neuroimmune C-C class chemokine-2 (CCL2) expressed on injured DRG nociceptor cell bodies, Schwann cells and spinal astrocytes, stimulates immune cell accumulation in DRG and spinal cord, a known critical element in chronic allodynia. The current report examined whether two CB2R agonists, AM1710 and AM1241, previously shown to reverse light touch mechanical allodynia in rodent models of sciatic neuropathy, require TRPV1 activation that leads to receptor insensitivity resulting in reversal of allodynia. Global TRPV1 knockout (KO) mice with sciatic neuropathy given intrathecal or intraperitoneal AM1710 were examined for anti-allodynia followed by immunofluorescent microscopy analysis of lumbar spinal cord and DRG of astrocyte and CCL2 markers. Additionally, immunofluorescent analysis following intrathecal AM1710 and AM1241 in rat was performed. Data reveal that intrathecal AM1710 resulted in mouse anti-allodynia, reduced spinal astrocyte activation and CCL2 expression independent of TRPV1 gene deletion. Conversely, peripheral AM1710 in TRPV1-KO mice failed to reverse allodynia. In rat, intrathecal AM1710 and AM1241 reduced spinal and DRG TRPV1 expression, with CCL2-astrocyte and -microglial co-expression. These data support that CB2R agonists can impact spinal and DRG TRPV1 expression critical for anti-allodynia.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Neurosciences, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA; Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Lauren B Alberti
- Department of Neurosciences, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ganesh A Thakur
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | - Erin D Milligan
- Department of Neurosciences, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
4
|
Zheng T, Zhang R, Zhang T, Zhang MN, Xu B, Song JJ, Li N, Tang HH, Wang P, Wang R, Fang Q. CB 1 cannabinoid receptor agonist mouse VD-hemopressin(α) produced supraspinal analgesic activity in the preclinical models of pain. Brain Res 2017; 1680:155-164. [PMID: 29274880 DOI: 10.1016/j.brainres.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 10/15/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022]
Abstract
Mouse VD-hemopressin(α) (VD-Hpα) is an undecapeptide that selectively activates CB1 cannabinoid receptor in in vitro functional tests, and exerts CB1-mediated central antinociception in the mouse tail-flick assay. The aim of the present study was to further investigate the analgesic properties of supraspinal mouse VD-Hpα in a range of preclinical pain models. Our results indicated that the classical cannabinoid agonist WIN 55,212-2 produced supraspinal analgesia in preclinical pain models, which was selectively antagonized by the CB1 antagonist/inverse agonist AM251, but not by the CB2 antagonist AM630. In contrast, in post-operative pain model and phase I of formalin test, intracerebroventricular administration of mouse VD-Hpα induced dose-related analgesia in mice, which were markedly reduced by pretreatment with the CB1 neutral antagonist AM4113, but not AM251, AM630 and the selective antagonists of opioid and Transient Receptor Potential Vanilloid Type 1 (TRPV1) receptors. Furthermore, in the acetic acid-induced visceral pain model, supraspinal administration of mouse VD-Hpα dose-dependently produced analgesic activities and the effects were significantly antagonized by both AM4113 and the TRPV1 receptor antagonist SB366791, but not AM251, AM630 and naloxone. In addition, central injection of mouse VD-Hpα did not have significant effect in phase II of formalin test. Taken together, the present work suggests that the CB1 receptor peptidic agonist mouse VD-Hpα produces supraspinal analgesia in preclinical pain models via a novel CB1 receptor-mediated mechanism, in a manner pharmacologically dissociable from WIN 55,212-2. In addition, TRPV1 receptor might also be involved in mouse VD-Hpα-induced analgesia in a visceral pain model.
Collapse
Affiliation(s)
- Ting Zheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; Department of Clinical Medicine, Gansu Health Vocational College, 60 Donggang West Road, Lanzhou 730000, China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China; Department of Clinical Medicine, Gansu Health Vocational College, 60 Donggang West Road, Lanzhou 730000, China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Meng-Na Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Jing-Jing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Hong-Hai Tang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Pei Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China.
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China.
| |
Collapse
|
5
|
Kulkarni AR, Garai S, Janero DR, Thakur GA. Design and Synthesis of Cannabinoid 1 Receptor (CB1R) Allosteric Modulators: Drug Discovery Applications. Methods Enzymol 2017; 593:281-315. [PMID: 28750808 DOI: 10.1016/bs.mie.2017.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Also expressed in various peripheral tissues, the type-1 cannabinoid receptor (CB1R) is the predominant G protein-coupled receptor (GPCR) in brain, where it is responsible for retrograde control of neurotransmitter release. Cellular signaling mediated by CB1R is involved in numerous physiological processes, and pharmacological CB1R modulation is considered a tenable therapeutic approach for diseases ranging from substance-use disorders and glaucoma to metabolic syndrome. Despite the design and synthesis of a variety of bioactive small molecules targeted to the CB1R orthosteric ligand-binding site, the potential of CB1R as a therapeutic GPCR has been largely unrealized due to adverse events associated with typical orthosteric CB1R agonists and antagonists/inverse agonists. Modulation of CB1R-mediated signal transmission by targeting alternative allosteric ligand-binding site(s) on the receptor has garnered interest as a potentially safer and more effective therapeutic modality. This chapter highlights the design and synthesis of novel, pharmacologically active CB1R allosteric modulators and emphasizes how their molecular properties and the positive and negative allosteric control they exert can lead to improved CB1R-targeted pharmacotherapeutics, as well as designer covalent probes that can be used to map CB1R allosteric binding domains and inform structure-based drug design.
Collapse
Affiliation(s)
- Abhijit R Kulkarni
- School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Sumanta Garai
- School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States
| | - David R Janero
- School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States; Center for Drug Discovery, Northeastern University, Boston, MA, United States; College of Science, Northeastern University, Boston, MA, United States; Health Sciences Entrepreneurs, Northeastern University, Boston, MA, United States
| | - Ganesh A Thakur
- School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States.
| |
Collapse
|
6
|
Lau BK, Cota D, Cristino L, Borgland SL. Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits. Neuropharmacology 2017; 124:38-51. [PMID: 28579186 DOI: 10.1016/j.neuropharm.2017.05.033] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 02/03/2023]
Abstract
The endocannabinoid system has emerged as a key player in the control of eating. Endocannabinoids, including 2-arachidonoylglycerol (2-AG) and anandamide (AEA), modulate neuronal activity via cannabinoid 1 receptors (CB1Rs) in multiple nuclei of the hypothalamus to induce or inhibit food intake depending on nutritional and hormonal status, suggesting that endocannabinoids may act in the hypothalamus to integrate different types of signals informing about the animal's energy needs. In the mesocorticolimbic system, (endo)cannabinoids modulate synaptic transmission to promote dopamine release in response to palatable food. In addition, (endo)cannabinoids act within the nucleus accumbens to increase food's hedonic impact; although this effect depends on activation of CB1Rs at excitatory, but not inhibitory inputs in the nucleus accumbens. While hyperactivation of the endocannabinoid system is typically associated with overeating and obesity, much evidence has emerged in recent years suggesting a more complicated system than first thought - endocannabinoids promote or suppress feeding depending on cell and input type, or modulation by various neuronal or hormonal signals. This review presents our latest knowledge of the endocannabinoid system in non-homeostatic and homeostatic feeding circuits. In particular, we discuss the functional role and cellular mechanism of action by endocannabinoids within the hypothalamus and mesocorticolimbic system, and how these are modulated by neuropeptide signals related to feeding. In light of recent advances and complexity in the field, we review cannabinoid-based therapeutic strategies for the treatment of obesity and how peripheral restriction of CB1R antagonists may provide a different mechanism of weight loss without the central adverse effects. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Benjamin K Lau
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | - Daniela Cota
- INSERM U1215, Université de Bordeaux, NeuroCentre Magendie, 146, rue Léo Saignat, 33077 Bordeaux, France
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry of CNR, Viale Campi Flegrei, 34, 80078 Pozzuoli, Napoli, Italy
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
7
|
Gueye AB, Pryslawsky Y, Trigo JM, Poulia N, Delis F, Antoniou K, Loureiro M, Laviolette SR, Vemuri K, Makriyannis A, Le Foll B. The CB1 Neutral Antagonist AM4113 Retains the Therapeutic Efficacy of the Inverse Agonist Rimonabant for Nicotine Dependence and Weight Loss with Better Psychiatric Tolerability. Int J Neuropsychopharmacol 2016; 19:pyw068. [PMID: 27493155 PMCID: PMC5203757 DOI: 10.1093/ijnp/pyw068] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/31/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Multiple studies suggest a pivotal role of the endocannabinoid system in regulating the reinforcing effects of various substances of abuse. Rimonabant, a CB1 inverse agonist found to be effective for smoking cessation, was associated with an increased risk of anxiety and depression. Here we evaluated the effects of the CB1 neutral antagonist AM4113 on the abuse-related effects of nicotine and its effects on anxiety and depressive-like behavior in rats. METHODS Rats were trained to self-administer nicotine under a fixed-ratio 5 or progressive-ratio schedules of reinforcement. A control group was trained to self-administer food. The acute/chronic effects of AM4113 pretreatment were evaluated on nicotine taking, motivation for nicotine, and cue-, nicotine priming- and yohimbine-induced reinstatement of nicotine-seeking. The effects of AM4113 in the basal firing and bursting activity of midbrain dopamine neurons were evaluated in a separate group of animals treated with nicotine. Anxiety/depression-like effects of AM4113 and rimonabant were evaluated 24h after chronic (21 days) pretreatment (0, 1, 3, and 10mg/kg, 1/d). RESULTS AM4113 significantly attenuated nicotine taking, motivation for nicotine, as well as cue-, priming- and stress-induced reinstatement of nicotine-seeking behavior. These effects were accompanied by a decrease of the firing and burst rates in the ventral tegmental area dopamine neurons in response to nicotine. On the other hand, AM4113 pretreatment did not have effects on operant responding for food. Importantly, AM4113 did not have effects on anxiety and showed antidepressant-like effects. CONCLUSION Our results indicate that AM4113 could be a promising therapeutic option for the prevention of relapse to nicotine-seeking while lacking anxiety/depression-like side effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bernard Le Foll
- Translational Addiction Research Laboratory (Dr Gueye, Mr Pryslawsky, Dr Trigo, and Dr Le Foll), Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments (Dr Le Foll), and Campbell Family Mental Health Research Institute (Dr Le Foll), Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Family and Community Medicine, Department of Pharmacology, and Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON, Canada (Dr Le Foll); Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada (Dr Le Foll); Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece (Ms Poulia and Drs Delis and Antoniou); Department of Anatomy and Cell Biology, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada (Drs Loureiro and Laviolette); Center for Drug Discovery, Department of Pharmaceutical Sciences and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA (Drs Vemuri and Makriyannis).
| |
Collapse
|
8
|
Laprairie RB, Kulkarni AR, Kulkarni PM, Hurst DP, Lynch D, Reggio PH, Janero DR, Pertwee RG, Stevenson LA, Kelly MEM, Denovan-Wright EM, Thakur GA. Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe. ACS Chem Neurosci 2016; 7:776-98. [PMID: 27046127 DOI: 10.1021/acschemneuro.6b00041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
One of the most abundant G-protein coupled receptors (GPCRs) in brain, the cannabinoid 1 receptor (CB1R), is a tractable therapeutic target for treating diverse psychobehavioral and somatic disorders. Adverse on-target effects associated with small-molecule CB1R orthosteric agonists and inverse agonists/antagonists have plagued their translational potential. Allosteric CB1R modulators offer a potentially safer modality through which CB1R signaling may be directed for therapeutic benefit. Rational design of candidate, druglike CB1R allosteric modulators requires greater understanding of the architecture of the CB1R allosteric endodomain(s) and the capacity of CB1R allosteric ligands to tune the receptor's information output. We have recently reported the synthesis of a focused library of rationally designed, covalent analogues of Org27569 and PSNCBAM-1, two prototypic CB1R negative allosteric modulators (NAMs). Among the novel, pharmacologically active CB1R NAMs reported, the isothiocyanate GAT100 emerged as the lead by virtue of its exceptional potency in the [(35)S]GTPγS and β-arrestin signaling assays and its ability to label CB1R as a covalent allosteric probe with significantly reduced inverse agonism in the [(35)S]GTPγS assay as compared to Org27569. We report here a comprehensive functional profiling of GAT100 across an array of important downstream cell-signaling pathways and analysis of its potential orthosteric probe-dependence and signaling bias. The results demonstrate that GAT100 is a NAM of the orthosteric CB1R agonist CP55,940 and the endocannabinoids 2-arachidonoylglycerol and anandamide for β-arrestin1 recruitment, PLCβ3 and ERK1/2 phosphorylation, cAMP accumulation, and CB1R internalization in HEK293A cells overexpressing CB1R and in Neuro2a and STHdh(Q7/Q7) cells endogenously expressing CB1R. Distinctively, GAT100 was a more potent and efficacious CB1R NAM than Org27569 and PSNCBAM-1 in all signaling assays and did not exhibit the inverse agonism associated with Org27569 and PSNCBAM-1. Computational docking studies implicate C7.38(382) as a key feature of GAT100 ligand-binding motif. These data help inform the engineering of newer-generation, druggable CB1R allosteric modulators and demonstrate the utility of GAT100 as a covalent probe for mapping structure-function correlates characteristic of the druggable CB1R allosteric space.
Collapse
Affiliation(s)
| | | | | | - Dow P. Hurst
- Center
for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Diane Lynch
- Center
for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Patricia H. Reggio
- Center
for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | | | - Roger G. Pertwee
- School of
Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill,
Aberdeen AB25 2ZD, Scotland
| | - Lesley A. Stevenson
- School of
Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill,
Aberdeen AB25 2ZD, Scotland
| | | | | | | |
Collapse
|
9
|
Cannabinoid receptor type 1 antagonist, AM251, attenuates mechanical allodynia and thermal hyperalgesia after burn injury. Anesthesiology 2015; 121:1311-9. [PMID: 25188001 DOI: 10.1097/aln.0000000000000422] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Burn injury causes nociceptive behaviors, and inflammation-related pathologic pain can lead to glial cell activation. This study tested the hypothesis that burn injury activates glial cells, and cannabinoid receptor 1 (CB1R) antagonist, AM251, will decrease burn pain. METHODS Anesthetized rats received 0.75-cm third-degree burn on dorsal hind paw. Vehicle or AM251 30 μg intrathecally (older rats, n=6 per group) or, either vehicle, 0.1 or 1.0 mg/kg intraperitoneally (younger rats, n=6 per group), started immediate postburn, was administered for 7 days. Mechanical allodynia and thermal hyperalgesia were tested on ventral paw for 14 days. Microglial and astroglial activity was assessed by immunocytochemistry. RESULTS Allodynia, observed on burn side from day 1 to 14, was significantly (P<0.05) attenuated by intrathecal and intraperitoneal AM251 (1 mg/kg) starting from 3 to 14 days. Hyperalgesia, observed from day 3 to 12, was completely (P<0.05) reversed by intrathecal and intraperitoneal AM251 (1 mg/kg). AM251 0.1 mg/kg had no effect. Microglial activity (n=3 per time point) increased (P<0.05) 18.5±7.5 and 12.3±1.6 (mean±SD) fold at 7 and 14 days, respectively. Astroglial activity (n=4 per time point) increased 2.9±0.3 fold at day 7 only. Glial activities were unaltered by AM251. CONCLUSIONS AM251 inhibited nociceptive behaviors after burn even beyond 7-day period of administration. Although many studies have documented the utility of CB1R agonists, this study indicates that endogenous cannabinoids may have an unexpected pronociceptive effect during development of burn pain, explaining why CB1R antagonist, AM251, improves nociceptive behaviors. The decreased nociception with AM251 without altering glial activity indicates that AM251 acts further downstream of activated glial cells.
Collapse
|
10
|
Sudakov SK, Bogdanova NG, Kolpakov AA. Method for determining the level of food motivation in rats. Bull Exp Biol Med 2015; 158:401-3. [PMID: 25573375 DOI: 10.1007/s10517-015-2772-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Indexed: 11/27/2022]
Abstract
A new method for the quantitative evaluation of the level of food motivation was developed. This method takes into account not only the information, but also the energy component of operant feeding behavior of different intensity and effectiveness with a simultaneous study of metabolism by means of indirect calorimetry. Our experiments showed that an increase in the number of lever pressing episodes (from 1 to 8) to obtain one food granule during operant feeding behavior is accompanied by a progressive decrease in the level of food motivation. The level of food motivation remains practically unchanged with an increase in the ratio of pressing episodes to 16 and 32 (despite consumption of food).
Collapse
Affiliation(s)
- S K Sudakov
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia,
| | | | | |
Collapse
|
11
|
Le Foll B, Pushparaj A, Pryslawsky Y, Forget B, Vemuri K, Makriyannis A, Trigo JM. Translational strategies for therapeutic development in nicotine addiction: rethinking the conventional bench to bedside approach. Prog Neuropsychopharmacol Biol Psychiatry 2014; 52:86-93. [PMID: 24140878 PMCID: PMC4002666 DOI: 10.1016/j.pnpbp.2013.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 12/16/2022]
Abstract
Tobacco produces an impressive burden of disease resulting in premature death in half of users. Despite effective smoking cessation medications (nicotine replacement therapies, bupropion and varenicline), there is a very high rate of relapse following quit attempts. The use of efficient strategies for the development of novel treatments is a necessity. A 'bench to bedside strategy' was initially used to develop cannabinoid CB1 receptor antagonists for the treatment of nicotine addiction. Unfortunately, after being tested on experimental animals, what seemed to be an interesting approach for the treatment of nicotine addiction resulted in serious unwanted side effects when tested in humans. Current research is focusing again on pre-clinical models in an effort to eliminate unwanted side effects while preserving the initially observed efficacy. A 'bed side to bench strategy' was used to study the role of the insula (part of the frontal cortex) in nicotine addiction. This line of research started based on clinical observations that patients suffering stroke-induced lesions to the insula showed a greater likelihood to report immediate smoking cessation without craving or relapse. Subsequently, animal models of addiction are used to explore the role of insula in addiction. Due to the inherent limitations existing in clinical versus preclinical studies, the possibility of close interaction between both models seems to be critical for the successful development of novel therapeutic strategies for nicotine dependence.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada; Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, Canada.
| | - Abhiram Pushparaj
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada
| | - Yaroslaw Pryslawsky
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada
| | - Benoit Forget
- Integrative Neurobiology of Cholinergic Systems, Department of Neuroscience, Pasteur Institute, 25 rue du Dr. Roux, Paris 75724, France
| | - Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA 02115-5005, United States; Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115-5005, United States; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115-5005, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, Boston, MA 02115-5005, United States; Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115-5005, United States; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115-5005, United States
| | - Jose M Trigo
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada
| |
Collapse
|
12
|
Kupferschmidt DA, Klas PG, Erb S. Cannabinoid CB1 receptors mediate the effects of corticotropin-releasing factor on the reinstatement of cocaine seeking and expression of cocaine-induced behavioural sensitization. Br J Pharmacol 2013; 167:196-206. [PMID: 22489809 DOI: 10.1111/j.1476-5381.2012.01983.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid and corticotropin-releasing factor (CRF) systems have been implicated in several long-lasting behavioural effects of prior cocaine experience. The present experiments were designed to probe functional interactions between endocannabinoids and CRF by testing the role of cannabinoid CB(1) receptors in cocaine-related behaviours induced or mediated by CRF. EXPERIMENTAL APPROACH In Experiment 1, rats trained to self-administer cocaine were pretreated with the CB(1) receptor antagonist, AM251 (0, 10, 100 or 200 µg, i.c.v.), before tests for reinstatement in response to CRF (0, 0.5 µg, i.c.v.), intermittent footshock stress (0, 0.9 mA) or cocaine (0, 10 mg·kg(-1) , i.p.). In Experiment 2, rats pre-exposed to cocaine (15-30 mg·kg(-1) , i.p.) or saline for 7 days were pretreated with AM251 (0, 10 or 100 µg, i.c.v.) before tests for locomotion in response to CRF (0.5 µg, i.c.v.), cocaine (15 mg·kg(-1) , i.p.) or saline (i.c.v.). KEY RESULTS Pretreatment with AM251 selectively interfered with CRF-, but not footshock- or cocaine-induced reinstatement. AM251 blocked the expression of behavioural sensitization induced by challenge injections of both CRF and cocaine. CONCLUSIONS AND IMPLICATIONS These findings reveal a mediating role for CB(1) receptor transmission in the effects of CRF on cocaine-related behaviours.
Collapse
Affiliation(s)
- D A Kupferschmidt
- Centre for the Neurobiology of Stress, Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | | | | |
Collapse
|
13
|
WIN55212-2 attenuates amyloid-beta-induced neuroinflammation in rats through activation of cannabinoid receptors and PPAR-γ pathway. Neuropharmacology 2012; 63:653-66. [DOI: 10.1016/j.neuropharm.2012.05.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/27/2012] [Accepted: 05/13/2012] [Indexed: 12/30/2022]
|
14
|
Janero DR, Lindsley L, Vemuri VK, Makriyannis A. Cannabinoid 1 G protein-coupled receptor (periphero-)neutral antagonists: emerging therapeutics for treating obesity-driven metabolic disease and reducing cardiovascular risk. Expert Opin Drug Discov 2011; 6:995-1025. [DOI: 10.1517/17460441.2011.608063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Abstract
Obesity will continue to be one of the leading causes of chronic disease unless the ongoing rise in the prevalence of this condition is reversed. Accumulating morbidity figures and a shortage of effective drugs have generated substantial research activity with several molecular targets being investigated. However, pharmacological modulation of body weight is extremely complex, since it is essentially a battle against one of the strongest human instincts and highly efficient mechanisms of energy uptake and storage. This review provides an overview of the different molecular strategies intended to lower body weight or adipose tissue mass. Weight-loss drugs in development include molecules intended to reduce the absorption of lipids from the GI tract, various ways to limit food intake, and compounds that increase energy expenditure or reduce adipose tissue size. A number of new preparations, including combinations of the existing drugs topiramate plus phentermine, bupropion plus naltrexone, and the selective 5-HT(2C) agonist lorcaserin have recently been filed for approval. Behind these leading candidates are several other potentially promising compounds and combinations currently undergoing phase II and III testing. Some interesting targets further on the horizon are also discussed.
Collapse
Affiliation(s)
- Renger F Witkamp
- Division of Human Nutrition, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands.
| |
Collapse
|
16
|
Limebeer CL, Vemuri VK, Bedard H, Lang ST, Ossenkopp KP, Makriyannis A, Parker LA. Inverse agonism of cannabinoid CB1 receptors potentiates LiCl-induced nausea in the conditioned gaping model in rats. Br J Pharmacol 2011; 161:336-49. [PMID: 20735419 DOI: 10.1111/j.1476-5381.2010.00885.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoid CB(1) receptor antagonists/inverse agonists, potentiate toxin-induced nausea and vomiting in animal models. Here, we sought to determine if this potentiated nausea was mediated by inverse agonism or neutral antagonism of the CB(1) receptor, and if the potentiated nausea would be produced by intracerebroventricular (icv) administration of an inverse agonist. EXPERIMENTAL APPROACH The conditioned gaping model of nausea in rats was used to compare the CB(1) receptor antagonist/inverse agonist, AM251, and the CB(1) receptor neutral antagonists, AM6527 (centrally and peripherally active) and AM6545 (peripherally active), in potentiating conditioned gaping produced by lithium chloride (LiCl) solution. The effect of icv (lateral ventricle and 4th ventricle) administration of AM251 on LiCl-induced gaping in this model was also evaluated. KEY RESULTS At a dose that did not produce conditioned gaping on its own, systemically administered AM251 (1.25 mg.kg(-1)) potentiated LiCl-induced conditioned gaping and reduced sucrose palatability; however, even doses as high as 8 mg.kg(-1) of AM6545 and AM6527 neither potentiated LiCl-induced conditioned gaping nor reduced sucrose palatability. Infusions of AM251 into the lateral ventricles (1.25, 12.5 and 125 microg) or the 4th ventricle (2.5, 12.5 and 125 microg) did not potentiate LiCl-induced conditioned gaping reactions, but all doses attenuated saccharin palatability during the subsequent test. CONCLUSIONS AND IMPLICATIONS Inverse agonism, but not neutral antagonism, of CB(1) receptors potentiated toxin-induced nausea. This effect may be peripherally mediated or may be mediated centrally by action on CB(1) receptors, located distal to the cerebral ventricles.
Collapse
Affiliation(s)
- C L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Randall PA, Vemuri VK, Segovia KN, Torres EF, Hosmer S, Nunes EJ, Santerre JL, Makriyannis A, Salamone JD. The novel cannabinoid CB1 antagonist AM6545 suppresses food intake and food-reinforced behavior. Pharmacol Biochem Behav 2010; 97:179-84. [PMID: 20713079 DOI: 10.1016/j.pbb.2010.07.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/04/2010] [Accepted: 07/27/2010] [Indexed: 11/26/2022]
Abstract
Drugs that interfere with cannabinoid CB1 transmission suppress food-motivated behaviors, and may be useful clinically as appetite suppressants. However, there may also be undesirable side effects (e.g., nausea, malaise, anxiety, and depression) that are produced by the current generation of CB1 inverse agonists such as rimonabant and taranabant. For that reason, it is important to continue research on novel cannabinoid antagonists. The present studies examined the effects of the novel compound AM6545, which is a neutral antagonist of CB1 receptors that is thought to have relatively poor penetrability into the central nervous system. Intraperitoneal administration of AM6545 significantly reduced food-reinforced operant responding at doses of 4.0, 8.0 and 16.0 mg/kg. AM6545 also produced a strong suppression of the intake of high-carbohydrate and high-fat diets in the same dose range, but only produced a mild suppression of lab chow intake at the highest dose (16.0 mg/kg). Although AM6545 did not affect food handling, it did reduce time spent feeding and feeding rate. Taken together, these results suggest that AM6545 is a compound that warrants further study as a potential appetite suppressant drug.
Collapse
Affiliation(s)
- P A Randall
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kennett GA, Clifton PG. New approaches to the pharmacological treatment of obesity: can they break through the efficacy barrier? Pharmacol Biochem Behav 2010; 97:63-83. [PMID: 20688100 DOI: 10.1016/j.pbb.2010.07.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/22/2010] [Accepted: 07/27/2010] [Indexed: 01/31/2023]
Abstract
In this review we assess the range of centrally active anorectics that are either in human clinical trials, or are likely to be so in the near future. We describe their weight loss efficacy, mode of action at both pharmacological and behavioural levels, where understood, together with the range of side effects that might be expected in clinical use. We have however evaluated these compounds against the considerably more rigorous criteria that are now being used by the Federal Drugs Agency and European Medicines Agency to decide approvals and market withdrawals. Several trends are evident. Recent advances in the understanding of energy balance control have resulted in the exploitation of a number of new targets, some of which have yielded promising data in clinical trials for weight loss. A second major trend is derived from the hypothesis that improved weight loss efficacy over current therapy is most likely to emerge from treatments targeting multiple mechanisms of energy balance control. This reasoning has led to the development of a number of new treatments for obesity where multiple mechanisms are targeted, either by a single molecule, such as tesofensine, or through drug combinations such as qnexa, contrave, empatic, and pramlintide+metreleptin. Many of these approaches also utilise advances in formulation technology to widen safety margins. Finally, the practicality of peptide therapies for obesity has become better validated in recent studies and this may allow more rapid exploitation of novel targets, rather than awaiting the development of orally available small molecules. We conclude that novel, more efficacious and better tolerated treatments for obesity may become available in the near future.
Collapse
Affiliation(s)
- G A Kennett
- Saretius Limited, Science and Technology Centre, Earley Gate, University of Reading, Reading, Berkshire, UK.
| | | |
Collapse
|
19
|
Skelly MJ, Guy EG, Howlett AC, Pratt WE. CB1 receptors modulate the intake of a sweetened-fat diet in response to μ-opioid receptor stimulation of the nucleus accumbens. Pharmacol Biochem Behav 2010; 97:144-51. [PMID: 20562021 DOI: 10.1016/j.pbb.2010.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 05/13/2010] [Accepted: 05/23/2010] [Indexed: 10/19/2022]
Abstract
Previous research has demonstrated that concurrent systemic administration of CB(1) cannabinoid and mu-opioid receptor agonists increases feeding in rats. However, the possible neural loci of this cooperative effect have yet to be identified. These studies tested whether the nucleus accumbens shell may be one site of the interactive effects of opioid and cannabinoid ligands on feeding. Injection of the mu-opioid agonist DAMGO (at 0, 0.025, 0.25, or 2.5 µg/0.5 µl/side) directly into the rat nucleus accumbens shell increased feeding on a sweetened-fat diet, and this effect was blocked by pretreatment with either the mu-opioid antagonist naltrexone (20 µg/0.5 µl/side) or the CB(1) antagonist SR141716 (0.5 µg/0.5 µl/side). Activation of nucleus accumbens shell CB(1) receptors with WIN55212-2 alone (at 0.1 or 0.5 µg/0.5 µl/side) had no apparent effect on food intake. However, local injections of the low dose of DAMGO (.025 µg/0.5 µl/side) in this region along with WIN55212-2 (at 0.25 or 0.50 µg/0.5 µl/side) increased feeding above that induced by DAMGO alone. These data suggest an important modulatory role for cannabinoid receptors in the expression of feeding behaviors in response to mu-opioid receptor activation of the nucleus accumbens shell.
Collapse
Affiliation(s)
- Mary Jane Skelly
- Department of Psychology, Wake Forest University, Winston-Salem, NC 27109, USA.
| | | | | | | |
Collapse
|
20
|
Sink KS, Segovia KN, Collins LE, Markus EJ, Vemuri VK, Makriyannis A, Salamone JD. The CB1 inverse agonist AM251, but not the CB1 antagonist AM4113, enhances retention of contextual fear conditioning in rats. Pharmacol Biochem Behav 2010; 95:479-84. [PMID: 20347865 DOI: 10.1016/j.pbb.2010.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 03/16/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
Abstract
The effects of CB1 antagonist/inverse agonists on the acquisition and consolidation of conditioned fear remain uncertain. Recent studies suggest that the CB1 antagonist/inverse agonist AM251 affects acquisition or consolidation of both contextual and discretely cued fear memories. AM251 is frequently referred to as a CB1 antagonist; however in vitro signal transduction assays indicate that this drug also elicits inverse agonist activity at CB1 receptors. The present studies were undertaken to compare the effects of AM251 on conditioned fear with those produced by AM4113, a novel CB1 antagonist with minimal inverse agonist activity. All drugs were administered prior to conditioning. In retention tests conducted two weeks after conditioning, both AM251 (4.0 mg/kg) and AM4113 (6.0 mg/kg)-treated animals exhibited reduced freezing during a conditioned tone cue played within a novel context. In contextual fear retention tests, animals previously treated with 4.0 or 8.0 mg/kg AM251 exhibited enhanced freezing. By contrast, no dose of AM4113 had any significant effect on contextual fear memory, which is consistent with the lower signal transduction activity of AM4113 at CB1 receptors compared to AM251. These results suggest that CB1 neutral antagonists may be less likely than CB1 inverse agonists to facilitate the acquisition or consolidation of contextual fear that may contribute to some clinical disorders.
Collapse
Affiliation(s)
- K S Sink
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
AM 251 differentially effects food-maintained responding depending on food palatability. Pharmacol Biochem Behav 2010; 95:443-8. [PMID: 20331999 DOI: 10.1016/j.pbb.2010.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/01/2010] [Accepted: 03/13/2010] [Indexed: 11/22/2022]
Abstract
Ligands functioning as antagonists and inverse agonists at the cannabinoid CB(1)-receptor (e.g., AM 251, AM 281, and rimonabant (previously identified as SR141716)) have been demonstrated to have effects on satiety, consumption of, and the motivation to work for, or obtain food. These represent behavioral effects that may also be linked to characteristics such as food palatability or motivation to obtain food. Given the recent removal of rimonabant from clinical trials, a thorough characterization of ingestive behaviors that are associated with other likely candidate drugs is warranted. In the present study, normal weight male Long Evans rats were trained to respond for grain or chocolate-flavored food pellets under progressive-ratio schedules of reinforcement. Rats received acute injections of the CB(1) receptor antagonist AM 251 (0.3-3.0 mg/kg) or vehicle prior to daily testing sessions. Administration of AM 251 produced significant dose-dependent reductions in responding for, deliveries of, and break points (BP) associated with chocolate-flavored but not grain pellets. These data add to the literature demonstrating the ability of CB(1) antagonists to selectively reduce motivation to obtain highly palatable reinforcers.
Collapse
|