1
|
Pastre M, Occéan B, Boudousq V, Conejero I, Fabbro‐Peray P, Collombier L, Mallet L, Lopez‐Castroman J. Serotonergic underpinnings of obsessive-compulsive disorder: A systematic review and meta-analysis of neuroimaging findings. Psychiatry Clin Neurosci 2025; 79:48-59. [PMID: 39511769 PMCID: PMC11789457 DOI: 10.1111/pcn.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a frequent and disabling condition, with many patients being treatment-resistant. Improved understanding of its neurobiology is vital for better therapies. Evidence is still conflicting regarding specific serotonergic-related dysfunctions in OCD. We systematically reviewed the literature to provide a quantitative assessment of the role of serotonin (5-HT) in patients with untreated OCD through imaging. We searched for neuroimaging studies investigating central 5-HT tonus in unmedicated patients with OCD, excluding studies comprising treated patients to prevent bias from antidepressant-induced changes in serotonergic tonus. We also conducted a meta-analysis using a homogeneous group of positron emission tomography and single photon emission computed tomography articles that compared 5-HT transporter (SERT) and 5-HT2A receptor (HT2AR) binding potential in different brain regions of patients with untreated OCD and healthy controls. The systematic review encompassed 18 articles, with 13 included in the subsequent meta-analysis. Risk of bias was assessed by a revised form of the Newcastle-Ottawa Scale. We provided standardized mean difference (SMD) values for SERT and 5-HT2AR binding potential measures across 15 different brain regions. Patients with OCD showed lower SERT binding potential in the brainstem (SMD = -1.13, 95% CI [-1.81 to -0.46]), midbrain (SMD = -0.54, 95% CI [-0.92 to -0.16]), and thalamus/hypothalamus regions (SMD = -0.58, 95% CI [-0.99 to -0.18]) with neglectable to moderate heterogeneity. By combining results from 2 decades of molecular imaging studies, we show that individuals with OCD exhibit lower SERT binding potential in specific brain regions, providing compelling evidence of a 5-HT system dysfunction. However, the exact mechanisms underlying this phenotype remain elusive. The limitations include heterogeneity across studies in populations, imaging techniques, and radiotracer usage.
Collapse
Affiliation(s)
| | - Bob‐Valéry Occéan
- Laboratoire de Biostatistique, Epidémiologie clinique, Santé Publique Innovation et Méthodologie (BESPIM)CHU NimesNimesFrance
| | - Vincent Boudousq
- Département de Médecine Nucléaire et Biophysique MédicaleCHU NimesNimesFrance
| | | | - Pascale Fabbro‐Peray
- Laboratoire de Biostatistique, Epidémiologie clinique, Santé Publique Innovation et Méthodologie (BESPIM)CHU NimesNimesFrance
| | - Laurent Collombier
- Département de Médecine Nucléaire et Biophysique MédicaleCHU NimesNimesFrance
| | - Luc Mallet
- Université Paris‐Est Créteil, DMU IMPACT, Département Médical‐Universitaire de Psychiatrie et d'AddictologieHôpitaux Universitaires Henri Mondor‐Albert Chenevier, Assistance Publique‐Hôpitaux de ParisCréteilFrance
- Institut du Cerveau‐Paris Brain Institute–ICMSorbonne Université, Inserm, CNRSParisFrance
- Department of Mental Health and Psychiatry, Global Health InstituteUniversity of GenevaGenevaSwitzerland
| | - Jorge Lopez‐Castroman
- Department of PsychiatryCHU NimesNimesFrance
- CIBERSAM, ISCIIIMadridSpain
- Department of Psychiatry, Radiology, Public Health, Nursing and MedicineUniversity of Santiago de CompostelaSantiago de CompostelaSpain
| |
Collapse
|
2
|
Kim JH, Kim HK, Son YD, Kim JH. The Relationship Between Impulsivity Traits and In Vivo Cerebral Serotonin Transporter and Serotonin 2A Receptor Binding in Healthy Individuals: A Double-Tracer PET Study with C-11 DASB and C-11 MDL100907. Int J Mol Sci 2024; 26:252. [PMID: 39796107 PMCID: PMC11720673 DOI: 10.3390/ijms26010252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
To elucidate the potential roles of presynaptic and postsynaptic serotonergic activity in impulsivity traits, we investigated the relationship between self-reported impulsiveness and serotonin transporter (5-HTT) and 5-HT2A receptors in healthy individuals. In this study, 26 participants completed 3-Tesla magnetic resonance imaging and positron emission tomography with [11C]DASB and [11C]MDL100907. To quantify 5-HTT and 5-HT2A receptor availability, the binding potential (BPND) of [11C]DASB and [11C]MDL100907 was derived using the simplified reference tissue model with cerebellar gray matter as the reference region. The participants' impulsivity levels were assessed using the Barratt Impulsiveness Scale-11 (BIS-11). The region of interest (ROI)-based partial correlation analysis with age, sex, and temperament traits as covariates revealed a significant positive correlation between non-planning impulsiveness and [11C]MDL100907 BPND in the caudate (CAU) at Bonferroni-corrected p < 0.0045. Non-planning impulsiveness was also positively correlated with [11C]MDL100907 BPND in the prefrontal cortex (PFC), ventromedial PFC, orbitofrontal cortex (OFC), insula (INS), amygdala (AMYG), putamen, ventral striatum, and thalamus, and the total score of BIS-11 was positively correlated with [11C]MDL100907 BPND in the OFC, INS, AMYG, and CAU at uncorrected p < 0.05. Motor impulsiveness had a positive correlation with [11C]DASB BPND in the CAU at uncorrected p < 0.05. Our results suggest that impulsivity traits, characterized by focusing on the present moment without considering future consequences, may be involved in serotonergic neurotransmission, particularly 5-HT2A receptor-mediated postsynaptic signaling in the CAU, which plays an important role in cognitive processes related to executive function, judgment of alternative outcomes, and inhibitory control.
Collapse
Affiliation(s)
- Jeong-Hee Kim
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Hang-Keun Kim
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Young-Don Son
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
3
|
Bale R, Doshi G. Deciphering the role of siRNA in anxiety and depression. Eur J Pharmacol 2024; 981:176868. [PMID: 39128805 DOI: 10.1016/j.ejphar.2024.176868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Anxiety and depression are central nervous system illnesses that are among the most prevalent medical concerns of the twenty-first century. Patients with this condition and their families bear psychological, financial, and societal hardship. There are currently restrictions when utilizing the conventional course of treatment. RNA interference is expected to become an essential approach in anxiety and depression due to its potent and targeted gene silencing. Silencing of genes by post-transcriptional modification is the mechanism of action of small interfering RNA (siRNA). The suppression of genes linked to disease is typically accomplished by siRNA molecules in an efficient and targeted manner. Unfavourable immune responses, off-target effects, naked siRNA instability, nuclease vulnerability, and the requirement to create an appropriate delivery method are some of the challenges facing the clinical application of siRNA. This review focuses on the use of siRNA in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India.
| |
Collapse
|
4
|
Lopes B, Kamau-Mitchell C. Anxiety, depression, working from home and health-related behaviours during COVID-19: Structural equation modelling and serial mediation of associations with angina, heart attacks and stroke. J Health Psychol 2024; 29:1390-1403. [PMID: 38545851 PMCID: PMC11462773 DOI: 10.1177/13591053241241412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Based on the vulnerability-stress model and coping theory, this study of 1920 people in Scotland investigated how sex, age, occupational factors, anxiety, depression and maladaptive coping behaviours are associated with cardiovascular health. Structural equation modelling and serial Sobel mediation tests were conducted. Anxiety was associated with past arrhythmia, whereas depression was associated with past heart attacks, stroke and angina. Females reported more anxiety, past arrhythmia, confectionary and alcohol consumption, whereas males had more heart attacks. Confectionary consumption was associated with past arrhythmia, and alcohol consumption was associated with past heart attacks. Being older was associated with depression, past stroke, arrhythmia and alcohol consumption. Being younger was associated with anxiety and smoking. Depression and smoking mediated the relationship between type of working and cardiovascular health history, potentially because of socioeconomic factors. Clinicians can use these results to advise clients about cardiovascular risks associated with anxiety, depression, demographics and health-related coping behaviours.
Collapse
Affiliation(s)
- Bárbara Lopes
- Center for Research in Neuropsychology and Cognitive Behavioural Intervention (CINEICC), Faculdade de Psicologia e de Ciãncias da Educação, Universidade de Coimbra, Portugal
| | - Caroline Kamau-Mitchell
- Centre for Medical Humanities, and Birkbeck Business School, Birkbeck, University of London, UK
| |
Collapse
|
5
|
Sharma R, Kumarasamy M, Parihar VK, Ravichandiran V, Kumar N. Monoamine Oxidase: A Potential Link in Papez Circuit to Generalized Anxiety Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:638-655. [PMID: 37055898 DOI: 10.2174/1871527322666230412105711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 04/15/2023]
Abstract
Anxiety is a common mental illness that affects a large number of people around the world, and its treatment is often based on the use of pharmacological substances such as benzodiazepines, serotonin, and 5-hydroxytyrosine (MAO) neurotransmitters. MAO neurotransmitters levels are deciding factors in the biological effects. This review summarizes the current understanding of the MAO system and its role in the modulation of anxiety-related brain circuits and behavior. The MAO-A polymorphisms have been implicated in the susceptibility to generalized anxiety disorder (GAD) in several investigations. The 5-HT system is involved in a wide range of physiological and behavioral processes, involving anxiety, aggressiveness, stress reactions, and other elements of emotional intensity. Among these, 5-HT, NA, and DA are the traditional 5-HT neurons that govern a range of biological activities, including sleep, alertness, eating, thermoregulation, pains, emotion, and memory, as anticipated considering their broad projection distribution in distinct brain locations. The DNMTs (DNA methyltransferase) protein family, which increasingly leads a prominent role in epigenetics, is connected with lower transcriptional activity and activates DNA methylation. In this paper, we provide an overview of the current state of the art in the elucidation of the brain's complex functions in the regulation of anxiety.
Collapse
Affiliation(s)
- Ravikant Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Murali Kumarasamy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Vipan Kumar Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| |
Collapse
|
6
|
Bruzzone SEP, Nasser A, Aripaka SS, Spies M, Ozenne B, Jensen PS, Knudsen GM, Frokjaer VG, Fisher PM. Genetic contributions to brain serotonin transporter levels in healthy adults. Sci Rep 2023; 13:16426. [PMID: 37777558 PMCID: PMC10542378 DOI: 10.1038/s41598-023-43690-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023] Open
Abstract
The serotonin transporter (5-HTT) critically shapes serotonin neurotransmission by regulating extracellular brain serotonin levels; it remains unclear to what extent 5-HTT levels in the human brain are genetically determined. Here we applied [11C]DASB positron emission tomography to image brain 5-HTT levels and evaluated associations with five common serotonin-related genetic variants that might indirectly regulate 5-HTT levels (BDNF rs6265, SLC6A4 5-HTTLPR, HTR1A rs6295, HTR2A rs7333412, and MAOA rs1137070) in 140 healthy volunteers. In addition, we explored whether these variants could predict in vivo 5-HTT levels using a five-fold cross-validation random forest framework. MAOA rs1137070 T-carriers showed significantly higher brain 5-HTT levels compared to C-homozygotes (2-11% across caudate, putamen, midbrain, thalamus, hippocampus, amygdala and neocortex). We did not observe significant associations for the HTR1A rs6295 and HTR2A rs7333412 genotypes. Our previously observed lower subcortical 5-HTT availability for rs6265 met-carriers remained in the presence of these additional variants. Despite this significant association, our prediction models showed that genotype moderately improved prediction of 5-HTT in caudate, but effects were not statistically significant after adjustment for multiple comparisons. Our observations provide additional evidence that serotonin-related genetic variants modulate adult human brain serotonin neurotransmission.
Collapse
Affiliation(s)
- Silvia Elisabetta Portis Bruzzone
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sagar Sanjay Aripaka
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Brice Ozenne
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Peter Steen Jensen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vibe Gedsoe Frokjaer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Sharma HS, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma A. Stress induced exacerbation of Alzheimer's disease brain pathology is thwarted by co-administration of nanowired cerebrolysin and monoclonal amyloid beta peptide antibodies with serotonin 5-HT6 receptor antagonist SB-399885. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:3-46. [PMID: 37783559 DOI: 10.1016/bs.irn.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Alzheimer's disease is one of the devastating neurodegenerative diseases affecting mankind worldwide with advancing age mainly above 65 years and above causing great misery of life. About more than 7 millions are affected with Alzheimer's disease in America in 2023 resulting in huge burden on health care system and care givers and support for the family. However, no suitable therapeutic measures are available at the moment to enhance quality of life to these patients. Development of Alzheimer's disease may reflect the stress burden of whole life inculcating the disease processes of these neurodegenerative disorders of the central nervous system. Thus, new strategies using nanodelivery of suitable drug therapy including antibodies are needed in exploring neuroprotection in Alzheimer's disease brain pathology. In this chapter role of stress in exacerbating Alzheimer's disease brain pathology is explored and treatment strategies are examined using nanotechnology based on our own investigation. Our observations clearly show that restraint stress significantly exacerbate Alzheimer's disease brain pathology and nanodelivery of a multimodal drug cerebrolysin together with monoclonal antibodies (mAb) to amyloid beta peptide (AβP) together with a serotonin 5-HT6 receptor antagonist SB399885 significantly thwarted Alzheimer's disease brain pathology exacerbated by restraint stress, not reported earlier. The possible mechanisms and future clinical significance is discussed.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston, MA, United States
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Gryksa K, Schmidtner AK, Masís-Calvo M, Rodríguez-Villagra OA, Havasi A, Wirobski G, Maloumby R, Jägle H, Bosch OJ, Slattery DA, Neumann ID. Selective breeding of rats for high (HAB) and low (LAB) anxiety-related behaviour: A unique model for comorbid depression and social dysfunctions. Neurosci Biobehav Rev 2023; 152:105292. [PMID: 37353047 DOI: 10.1016/j.neubiorev.2023.105292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Animal models of selective breeding for extremes in emotionality are a strong experimental approach to model psychopathologies. They became indispensable in order to increase our understanding of neurobiological, genetic, epigenetic, hormonal, and environmental mechanisms contributing to anxiety disorders and their association with depressive symptoms or social deficits. In the present review, we extensively discuss Wistar rats selectively bred for high (HAB) and low (LAB) anxiety-related behaviour on the elevated plus-maze. After 30 years of breeding, we can confirm the prominent differences between HAB and LAB rats in trait anxiety, which are accompanied by consistent differences in depressive-like, social and cognitive behaviours. We can further confirm a single nucleotide polymorphism in the vasopressin promotor of HAB rats causative for neuropeptide overexpression, and show that low (or high) anxiety and fear levels are unlikely due to visual dysfunctions. Thus, HAB and LAB rats continue to exist as a reliable tool to study the multiple facets underlying the pathology of high trait anxiety and its comorbidity with depression-like behaviour and social dysfunctions.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Anna K Schmidtner
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Marianella Masís-Calvo
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Odir A Rodríguez-Villagra
- Centro de Investigación en Neurosciencias, Universidad de Costa Rica, San Pedro, San José, Costa Rica.
| | - Andrea Havasi
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Gwendolyn Wirobski
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Rodrigue Maloumby
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Herbert Jägle
- Department of Ophthalmology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
9
|
Conradi J, E. Svensson J, V. Larsen S, Frokjaer VG. Is serotonin transporter brain binding associated with the cortisol awakening response? An independent non-replication. PLoS One 2023; 18:e0290663. [PMID: 37651457 PMCID: PMC10470919 DOI: 10.1371/journal.pone.0290663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Serotonergic brain signaling is considered critical for an appropriate and dynamic adaptation to stress, seemingly through modulating limbic system functions, such as the hypothalamic-pituitary-adrenal (HPA)-axis. This interplay is of great interest since it holds promise as a target for preventing stress-related brain disorders, e.g., major depression. Our group has previously observed that prefrontal serotonin transporter (5-HTT) binding, imaged with positron emission tomography (PET), is positively associated with the cortisol awakening response (CAR), an index of HPA axis stress hormone dynamics. The aim of this cross-sectional study was to replicate the previous finding in a larger independent group of healthy individuals. METHODS Molecular imaging and cortisol data were available for 90 healthy individuals. Prefrontal 5-HTT binding was imaged with [11C]DASB brain PET. Non-displaceable 5-HTT binding potential (BPND) was quantified using the Multilinear Reference Tissue Model 2 (MRTM2) with cerebellum as the reference region. CAR was based on five serial salivary cortisol samples within the first hour upon awakening. The association between CAR and prefrontal 5-HTT BPND was evaluated using a multiple linear regression model adjusted for age and sex. Further, we tested for sex differences in the association. Finally, an exploratory analysis of the association, was performed in 8 additional brain regions. RESULTS We observed no statistically significant association between 5-HTT binding and CAR corrected for age and sex in the prefrontal cortex (β = -0.28, p = 0.26). We saw no interaction with sex on the association (p = 0.99). CONCLUSION We could not confirm a positive association between CAR and prefrontal 5-HTT BPND in this independent dataset. Also, sex differences in the association were not apparent. Our data do not exclude that the serotonin transporter system is involved in the regulation of stress responses in at-risk or manifest depressed states.
Collapse
Affiliation(s)
- Juliane Conradi
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jonas E. Svensson
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Søren V. Larsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vibe G. Frokjaer
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mental Health Services Capital Region Denmark, Psychiatric Center Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Köhler-Forsberg K, Ozenne B, Larsen SV, Poulsen AS, Landman EB, Dam VH, Ip CT, Jørgensen A, Svarer C, Knudsen GM, Frokjaer VG, Jørgensen MB. Concurrent anxiety in patients with major depression and cerebral serotonin 4 receptor binding. A NeuroPharm-1 study. Transl Psychiatry 2022; 12:273. [PMID: 35821015 PMCID: PMC9276803 DOI: 10.1038/s41398-022-02034-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Concurrent anxiety is frequent in major depressive disorder and a shared pathophysiological mechanism between anxiety and other depressive symptoms is plausible. The serotonin 4 receptor (5-HT4R) has been implicated in both depression and anxiety. This is the first study to investigate the association between the cerebral 5-HT4R binding and anxiety in patients with depression before and after antidepressant treatment and the association to treatment response. Ninety-one drug-free patients with depression were positron emission tomography scanned with the 5-HT4R ligand [11C]-SB207145. Depression severity and concurrent anxiety was measured at baseline and throughout 8 weeks of antidepressant treatment. Anxiety measures included four domains: anxiety/somatization factor score; Generalized Anxiety Disorder 10-items (GAD-10) score; anxiety/somatization factor score ≥7 (anxious depression) and syndromal anxious depression. Forty patients were rescanned at week 8. At baseline, we found a negative association between global 5-HT4R binding and both GAD-10 score (p < 0.01) and anxiety/somatization factor score (p = 0.06). Further, remitters had a higher baseline anxiety/somatization factor score compared with non-responders (p = 0.04). At rescan, patients with syndromal anxious depression had a greater change in binding relative to patients with non-syndromal depression (p = 0.04). Concurrent anxiety in patients with depression measured by GAD-10 score and anxiety/somatization factor score is negatively associated with cerebral 5-HT4R binding. A lower binding may represent a subtype with reduced natural resilience against anxiety in a depressed state, and concurrent anxiety may influence the effect on the 5-HT4R from serotonergic antidepressants. The 5-HT4R is a promising neuroreceptor for further understanding the underpinnings of concurrent anxiety in patients with depression.
Collapse
Affiliation(s)
- Kristin Köhler-Forsberg
- grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark ,grid.475435.4Psychiatric Centre Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Brice Ozenne
- grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Søren V. Larsen
- grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Asbjørn S. Poulsen
- grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Elizabeth B. Landman
- grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Vibeke H. Dam
- grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Cheng-Teng Ip
- grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark ,grid.424580.f0000 0004 0476 7612Department of Clinical Pharmacology, H. Lundbeck A/S, Valby, Denmark
| | - Anders Jørgensen
- grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark ,grid.475435.4Psychiatric Centre Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Claus Svarer
- grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gitte M. Knudsen
- grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Vibe G. Frokjaer
- grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark ,grid.475435.4Psychiatric Centre Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Martin B. Jørgensen
- grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark ,grid.475435.4Psychiatric Centre Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Chiu YC, Yang BH, Yang KC, Liu MN, Hu LY, Liou YJ, Chan LY, Chou YH. A study of tryptophan, kynurenine and serotonin transporter in first-episode drug-naïve major depressive disorder. Psychiatry Res Neuroimaging 2021; 312:111296. [PMID: 33945927 DOI: 10.1016/j.pscychresns.2021.111296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/24/2022]
Abstract
Major depressive disorder (MDD) is associated with the disharmonic functioning of the serotonin system. The serotonin system is mainly modulated by the serotonin transporter (SERT) which regulates serotonin uptake and the metabolism of its precursor, tryptophan and following kynurenine pathway. Currently, there is a lack of research examining both markers concurrently in MDD. This study evaluated the alterations and inter-relationships of both markers in first-episode drug-naïve MDD patients. Thirty-three MDD patients and 33 age- and sex-matched healthy controls (HC) were recruited. The SERT availability were comparable between two groups in the midbrain, thalamus, caudate, and putamen. The kynurenine/tryptophan ratio which indicates tryptophan metabolism was lower in MDD than HC with no group difference in the tryptophan or kynurenine concentration. A negative correlation between the midbrain SERT availability and kynurenine concentration in HC was found. For the subgroup of HC with high kynurenine/tryptophan ratio, the SERT availability was positively associated with the kynurenine/tryptophan ratio and negatively correlated with tryptophan or kynurenine concentration. This study demonstrated the altered tryptophan metabolism and the relationship between tryptophan metabolism and the SERT availability in first-episode drug-naïve MDD patients, which gave a new insight towards the future investigation of the pathophysiology of MDD.
Collapse
Affiliation(s)
- Yen-Chen Chiu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Center for Quality Management, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bang-Hung Yang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kai-Chin Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Yu Hu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Yi Chan
- Center for Quality Management, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Center for Quality Management, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
12
|
Kim JH, Son YD, Kim HK, Kim JH. Association Between Lack of Insight and Prefrontal Serotonin Transporter Availability in Antipsychotic-Free Patients with Schizophrenia: A High-Resolution PET Study with [ 11C]DASB. Neuropsychiatr Dis Treat 2021; 17:3195-3203. [PMID: 34707358 PMCID: PMC8544267 DOI: 10.2147/ndt.s336126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Previous studies suggested a link between serotonergic neurotransmission and impaired insight in schizophrenia. In this study, we examined the relationship between serotonin transporter (SERT) availability in regions of the prefrontal cortex (dorsolateral, ventrolateral, ventromedial, and orbitofrontal cortices) and insight deficits in antipsychotic-free patients with schizophrenia using high-resolution positron emission tomography (PET) with [11C]DASB. METHODS Nineteen patients underwent [11C]DASB PET and 7-Tesla magnetic resonance imaging scans. To assess SERT availability, the binding potential with respect to non-displaceable compartment (BPND) was derived using the simplified reference tissue model. Patients' level of insight was assessed using the Insight and Treatment Attitude Questionnaire (ITAQ). The relationship between ITAQ scores and [11C]DASB BPND values was examined using the region-of-interest (ROI)- and voxel-based analyses with relevant variables as covariates. The prefrontal cortex and its four subregions were selected as a priori ROIs since the prefrontal cortex has been implicated as the critical neuroanatomical substrate of impaired insight in schizophrenia. RESULTS The ROI-based analysis revealed that the ITAQ illness insight dimension had significant negative correlations with the [11C]DASB BPND in the left dorsolateral, left orbitofrontal, and bilateral ventrolateral prefrontal cortices. The ITAQ treatment insight dimension had significant negative correlations with the [11C]DASB BPND in the bilateral dorsolateral, left orbitofrontal, and bilateral ventrolateral prefrontal cortices. The ITAQ total score showed significant negative correlations with the [11C]DASB BPND in the bilateral prefrontal cortex and three subregions (dorsolateral, ventrolateral, and orbitofrontal cortices). A supplementary voxel-based analysis corroborated a significant negative association between the ITAQ score and the [11C]DASB BPND in the prefrontal cortices. CONCLUSION Our study provides in vivo evidence of significant negative correlations between insight deficits and prefrontal SERT availability in patients with schizophrenia, suggesting significant involvement of prefrontal serotonergic signaling in impaired insight, one of the core symptoms of schizophrenia.
Collapse
Affiliation(s)
- Jeong-Hee Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea.,Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
13
|
Sarkar A, Sarmah D, Datta A, Kaur H, Jagtap P, Raut S, Shah B, Singh U, Baidya F, Bohra M, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Post-stroke depression: Chaos to exposition. Brain Res Bull 2020; 168:74-88. [PMID: 33359639 DOI: 10.1016/j.brainresbull.2020.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
Cerebral ischemia contributes to significant disabilities worldwide, impairing cognitive function and motor coordination in affected individuals. Stroke has severe neuropsychological outcomes, the major one being a stroke. Stroke survivors begin to show symptoms of depression within a few months of the incidence that overtime progresses to become a long-term ailment. As the pathophysiology for the progression of the disease is multifactorial and complex, it limits the understanding of the disease mechanism completely. Meta-analyses and randomized clinical trials have shown that intervening early with tricyclic antidepressants and selective serotonin receptor inhibitors can be effective. However, these pharmacotherapies possess several limitations that have given rise to newer approaches such as brain stimulation, psychotherapy and rehabilitation therapy, which in today's time are gaining attention for their beneficial results in post-stroke depression (PSD). The present review highlights numerous factors like lesion location, inflammatory mediators and genetic abnormalities that play a crucial role in the development of depression in stroke patients. Further, we have also discussed various mechanisms involved in post-stroke depression (PSD) and strategies for early detection and diagnosis using biomarkers that may revolutionize treatment for the affected population. Towards the end, along with the preclinical scenario, we have also discussed the various treatment approaches like pharmacotherapy, traditional medicines, psychotherapy, electrical stimulation and microRNAs being utilized for effectively managing PSD.
Collapse
Affiliation(s)
- Ankan Sarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Priya Jagtap
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Swapnil Raut
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Birva Shah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Upasna Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Falguni Baidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Mariya Bohra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
14
|
Mascarell Maričić L, Walter H, Rosenthal A, Ripke S, Quinlan EB, Banaschewski T, Barker GJ, Bokde ALW, Bromberg U, Büchel C, Desrivières S, Flor H, Frouin V, Garavan H, Itterman B, Martinot JL, Martinot MLP, Nees F, Orfanos DP, Paus T, Poustka L, Hohmann S, Smolka MN, Fröhner JH, Whelan R, Kaminski J, Schumann G, Heinz A. The IMAGEN study: a decade of imaging genetics in adolescents. Mol Psychiatry 2020; 25:2648-2671. [PMID: 32601453 PMCID: PMC7577859 DOI: 10.1038/s41380-020-0822-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 04/10/2020] [Accepted: 06/12/2020] [Indexed: 11/17/2022]
Abstract
Imaging genetics offers the possibility of detecting associations between genotype and brain structure as well as function, with effect sizes potentially exceeding correlations between genotype and behavior. However, study results are often limited due to small sample sizes and methodological differences, thus reducing the reliability of findings. The IMAGEN cohort with 2000 young adolescents assessed from the age of 14 onwards tries to eliminate some of these limitations by offering a longitudinal approach and sufficient sample size for analyzing gene-environment interactions on brain structure and function. Here, we give a systematic review of IMAGEN publications since the start of the consortium. We then focus on the specific phenotype 'drug use' to illustrate the potential of the IMAGEN approach. We describe findings with respect to frontocortical, limbic and striatal brain volume, functional activation elicited by reward anticipation, behavioral inhibition, and affective faces, and their respective associations with drug intake. In addition to describing its strengths, we also discuss limitations of the IMAGEN study. Because of the longitudinal design and related attrition, analyses are underpowered for (epi-) genome-wide approaches due to the limited sample size. Estimating the generalizability of results requires replications in independent samples. However, such densely phenotyped longitudinal studies are still rare and alternative internal cross-validation methods (e.g., leave-one out, split-half) are also warranted. In conclusion, the IMAGEN cohort is a unique, very well characterized longitudinal sample, which helped to elucidate neurobiological mechanisms involved in complex behavior and offers the possibility to further disentangle genotype × phenotype interactions.
Collapse
Affiliation(s)
- Lea Mascarell Maričić
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Annika Rosenthal
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Erin Burke Quinlan
- Department of Social Genetic & Developmental Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Büchel
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Sylvane Desrivières
- Department of Social Genetic & Developmental Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, 05405, USA
| | - Bernd Itterman
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging& Psychiatry", University Paris Sud, University Paris Descartes-Sorbonne Paris Cité, and Maison de Solenn, Paris, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud, University Paris Descartes, Sorbonne Université, and AP-HP, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | | | - Tomáš Paus
- Rotman Research Institute, Baycrest and Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, TechnischeUniversität Dresden, Dresden, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, TechnischeUniversität Dresden, Dresden, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Jakob Kaminski
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Gunter Schumann
- Department of Social Genetic & Developmental Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
15
|
McGowan OO. Pharmacogenetics of anxiety disorders. Neurosci Lett 2020; 726:134443. [PMID: 31442515 DOI: 10.1016/j.neulet.2019.134443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 07/25/2019] [Accepted: 08/19/2019] [Indexed: 01/04/2023]
Abstract
Anxiety disorders are common and disabling conditions the treatment of which remains a challenge. While different groups of medication are available for their treatment, a substantial proportion of patients remain refractory to pharmacotherapy. The reason for this variation in the individual response to treatment has yet to be understood; however genetic factors have been shown to play an important role. Up to now there have been limited publications about pharmacogenetics of anxiety disorders, compared to studies in depression. Published studies are focused on pharmacogenetics of antidepressants rather than being disease specific. This review summarizes pharmacogenetic findings related to the anxiolytic treatment response and their possible functional mechanisms. This inevitably focuses on genes involved in the pharmacodynamics of the medications used, along with some genes implicated in the disease process, as well as briefly mentioning genetic factors associated with psychotherapeutic response.
Collapse
Affiliation(s)
- O O McGowan
- Leverndale Hospital, 510 Crookston Road, Glasgow G53 7TU, UK.
| |
Collapse
|
16
|
Gruenbaum BF, Kutz R, Zlotnik A, Boyko M. Blood glutamate scavenging as a novel glutamate-based therapeutic approach for post-stroke depression. Ther Adv Psychopharmacol 2020; 10:2045125320903951. [PMID: 32110376 PMCID: PMC7026819 DOI: 10.1177/2045125320903951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022] Open
Abstract
Post-stroke depression (PSD) is a major complication of stroke that significantly impacts functional recovery and quality of life. While the exact mechanism of PSD is unknown, recent attention has focused on the association of the glutamatergic system in its etiology and treatment. Minimizing secondary brain damage and neuropsychiatric consequences associated with excess glutamate concentrations is a vital part of stroke management. The blood glutamate scavengers, oxaloacetate and pyruvate, degrade glutamate in the blood to its inactive metabolite, 2-ketoglutarate, by the coenzymes glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT), respectively. This reduction in blood glutamate concentrations leads to a subsequent shift of glutamate down its concentration gradient from the blood to the brain, thereby decreasing brain glutamate levels. Although there are not yet any human trials that support blood glutamate scavengers for clinical use, there is increasing evidence from animal research of their efficacy as a promising new therapeutic approach for PSD. In this review, we present recent evidence in the literature of the potential therapeutic benefits of blood glutamate scavengers for reducing PSD and other related neuropsychiatric conditions. The evidence reviewed here should be useful in guiding future clinical trials.
Collapse
Affiliation(s)
- Benjamin F Gruenbaum
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ruslan Kutz
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexander Zlotnik
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Matthew Boyko
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| |
Collapse
|
17
|
Correlation between Preoperative Anxiety and ABO Blood Types: Evidence from a Clinical Cross-Sectional Study. DISEASE MARKERS 2019; 2019:1761693. [PMID: 31871497 PMCID: PMC6913271 DOI: 10.1155/2019/1761693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/27/2019] [Indexed: 01/28/2023]
Abstract
Gene-environment interaction is identified as the determinant in anxiety. ABO blood types represent a part of the genetic phenotype. Therefore, we assume ABO blood types correlate with preoperative anxiety. This cross-sectional study enrolled 352 patients with different ABO blood types, scheduled for elective surgery between 2018 and 2019 in the First Affiliated Hospital of Shihezi University. HADS (hospital anxiety and depression scale) scores and VA (visual analogue scales for anxiety) scores were all used to assess the preoperative anxiety in the A, B, AB, and O groups. Bivariate correlation and logistic regression were performed to identify relationships between preoperative anxiety and related variables. A significant difference in VA and HADS-A (anxiety) scores was found between the AB and other groups. The ratio of preoperative anxiety was 3.73 (95% CI [confidence interval]: 2.32-6.00, P < 0.001) times in female than in male; 0.36 (95% CI: 0.21-0.63, P < 0.001) times in ASA (American Society of Anesthesiologists) grade II than in grade I; 0.41 (95% CI: 0.20-0.86, P < 0.05) times in ASA grade III than in grade I; 1.25 (95% CI: 1.1-1.41, P < 0.001) times in higher VAS (visual analogue scales for pain) scores than in lower VAS scores; and 0.28 (95% CI: 0.16-0.49, P < 0.01) times in non-AB blood type than in AB blood type. Differences in ABO blood types were found in preoperative anxiety, and the AB group displayed a high preoperative anxiety level. ABO blood types, sex, ASA grade, and VAS were associated with preoperative anxiety. This trial is registered with ChiCTR1800019390.
Collapse
|
18
|
Smolka MN, Reimold M, Kobiella A, Reischl G, Rietschel M, Heinz A. Smoking moderates association of 5-HTTLPR and in vivo availability of serotonin transporters. Eur Neuropsychopharmacol 2019; 29:171-178. [PMID: 30587400 DOI: 10.1016/j.euroneuro.2018.08.509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
Although preclinical studies clearly indicate an effect of 5-HTTLPR genotype on 5-HT transporter (5-HTT) expression, studies in humans provided inconclusive results, hypothetically due to environmental factors and differences in individual behavior. For example, nicotine and other constituents of tobacco smoke elevate serotonin (5-HT) levels in the brain and may thereby cause homeostatic adaptations in 5-HTT availability that moderate effects of 5-HTTLPR genotype. To test whether 5-HTT availability in the midbrain is affected by smoking status and 5-HTTLPR genotype, we pooled data from prior studies on in vivo 5-HTT availability (BPND) measured with positron emission tomography (PET) and [11C]DASB. In total, we reanalyzed 5-HTT availability in 116 subjects using ANCOVA statistics. ROI analysis revealed that current smokers and non-smokers do not differ in midbrain BPND. Interestingly, smoking status significantly interacted with 5-HTTLPR genotype: active smoking was associated with reduced 5-HTT availability only in LL subjects but not in carriers of the S-allele. From the perspective of genotype effects, non-smokers showed the expected association with 5-HTTLPR, i.e. higher 5-HTT availability in LL subjects compared to carriers of the S-allele, whereas this pattern was actually reversed for active smokers. Our study indicates that smoking status moderates the association of 5-HTTLPR genotype and 5-HTT expression, which may help to explain inconsistent findings in previous studies. Regarding the mechanism, we suggest that smoking may induce epigenetic processes such as methylation of SLC6A4, which can differ depending on its genetic constitution.
Collapse
Affiliation(s)
- Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Würzburger Straße 35, Dresden 01187, Germany.
| | - Matthias Reimold
- PET Center, Department of Nuclear Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Kobiella
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Würzburger Straße 35, Dresden 01187, Germany
| | - Gerald Reischl
- Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Andreas Heinz
- Department of Psychiatry, Charité University Medicine Berlin, Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
19
|
Sousa-Lima J, Moreira PS, Raposo-Lima C, Sousa N, Morgado P. Relationship between obsessive compulsive disorder and cortisol: Systematic review and meta-analysis. Eur Neuropsychopharmacol 2019; 29:1185-1198. [PMID: 31540796 DOI: 10.1016/j.euroneuro.2019.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/27/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
Altered stress response and consequent elevated levels of circulating glucocorticoids have been found in neuropsychiatric disorders such as depression or anxiety disorders and proposed to also play a role in the pathophysiology of obsessive-compulsive disorder (OCD). Despite the observation that stressful events may precede the disease onset or even exacerbate its symptoms, studies in this field do not always report consistent results regarding the cortisol profile of OCD patients. As such, a systematic review and meta-analysis was developed to clarify this issue. This systematic review and meta-analysis was elaborated according to the PRISMA method. The analytical procedures were implemented using Metafor package in R software. Nineteen studies were included in the systematic review and 18 were included in the meta-analysis. The meta-analytic results demonstrated that OCD patients had significantly higher cortisol levels compared to controls (d = 0.76, SE = 0.146, p < 0.001). For studies using the average of multiple assessments, the standardized coefficient was significantly higher when compared to studies focusing on single measurements. Both the systematic review and meta-analysis suggest that cortisol levels are significantly higher in OCD patients than healthy individuals.
Collapse
Affiliation(s)
- João Sousa-Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Catarina Raposo-Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
20
|
Modulation of glucocorticoids by the serotonin transporter polymorphism: A narrative review. Neurosci Biobehav Rev 2018; 92:338-349. [DOI: 10.1016/j.neubiorev.2018.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/16/2022]
|
21
|
Joling M, van den Heuvel OA, Berendse HW, Booij J, Vriend C. Serotonin transporter binding and anxiety symptoms in Parkinson's disease. J Neurol Neurosurg Psychiatry 2018; 89:89-94. [PMID: 28899958 DOI: 10.1136/jnnp-2017-316193] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/09/2017] [Accepted: 08/23/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND Anxiety is a common neuropsychiatric symptom in Parkinson's disease (PD), yet the neural mechanisms have been scarcely investigated. Disturbances in dopaminergic and serotonergic signalling may play a role in its pathophysiology. 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (123I-FP-CIT) is a single-photon emission CT radiotracer, and its binding in striatal and extrastriatal subcortical brain areas represents predominant binding to the presynaptic dopamine transporter (DAT) and the serotonin transporter (SERT), respectively. Availability of DAT and SERT may thus provide an in vivo measure for the integrity of both dopamine and serotonin neurons. METHODS We studied the association between anxiety symptoms, measured with an affective subscale of the Beck Anxiety Inventory, and (extra)striatal 123I-FP-CIT binding in 127 non-demented patients with PD with a median disease duration of 2.55 (IQR 2.90) years. We conducted the analyses on patients currently on or not on dopamine replacement therapy (DRT). RESULTS Severity of anxiety symptoms showed a significant negative association with 123I-FP-CIT binding ratios in the right thalamus (β=-0.203, p=0.019; ΔR2=0.040) (multiple testing pcorr <0.020). In the subgroup of patients not on DRT (n=81), we found a significant negative association between anxiety and thalamic 123I-FP-CIT binding ratios bilaterally (right: β=-0.349, p=0.001, ΔR2=0.119; left: β=-0.269, p=0.017, ΔR2=0.071) (pcorr <0.020). CONCLUSION This study shows that higher levels of anxiety in patients with PD are associated with lower thalamic 123I-FP-CIT binding, pointing towards a contribution of serotonergic degeneration to anxiety symptoms in PD.
Collapse
Affiliation(s)
- Merijn Joling
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Research Program Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Research Program Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands.,Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Henk W Berendse
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands.,Research Program Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Research Program Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Chris Vriend
- Research Program Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands.,Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Higuchi Y, Soga T, Parhar IS. Regulatory Pathways of Monoamine Oxidase A during Social Stress. Front Neurosci 2017; 11:604. [PMID: 29163009 PMCID: PMC5671571 DOI: 10.3389/fnins.2017.00604] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022] Open
Abstract
Social stress has a high impact on many biological systems in the brain, including serotonergic (5-HT) system-a major drug target in the current treatment for depression. Hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis and monoamine oxidase A (MAO-A) are well-known stress responses, which are involved in the central 5-HT system. Although, many MAO-A inhibitors have been developed and used in the therapeutics of depression, effective management of depression by modulating the activity of MAO-A has not been achieved. Identifying the molecular pathways that regulate the activity of MAO-A in the brain is crucial for developing new drug targets for precise control of MAO-A activity. Over the last few decades, several regulatory pathways of MAO-A consisting of Kruppel like factor 11 (KLF11), Sirtuin1, Ring finger protein in neural stem cells (RINES), and Cell division cycle associated 7-like protein (R1) have been identified, and the influence of social stress on these regulatory factors evaluated. This review explores various aspects of these pathways to expand our understanding of the roles of the HPA axis and MAO-A regulatory pathways during social stress. The first part of this review introduces some components of the HPA axis, explains how stress affects them and how they interact with the 5-HT system in the brain. The second part summarizes the novel regulatory pathways of MAO-A, which have high potential as novel therapeutic targets for depression.
Collapse
Affiliation(s)
- Yuki Higuchi
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
23
|
Iscan Z, Rakesh G, Rossano S, Yang J, Zhang M, Miller J, Sullivan GM, Sharma P, McClure M, Oquendo MA, Mann JJ, Parsey RV, DeLorenzo C. A positron emission tomography study of the serotonergic system in relation to anxiety in depression. Eur Neuropsychopharmacol 2017; 27:1011-1021. [PMID: 28811068 PMCID: PMC5623123 DOI: 10.1016/j.euroneuro.2017.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 06/02/2017] [Accepted: 07/29/2017] [Indexed: 12/17/2022]
Abstract
Symptoms of anxiety are highly comorbid with major depressive disorder (MDD) and are known to alter the course of the disease. To help elucidate the biological underpinnings of these prevalent disorders, we previously examined the relationship between components of anxiety (somatic, psychic and motoric) and serotonin 1A receptor (5-HT1A) binding in MDD and found that higher psychic and lower somatic anxiety was associated with greater 5-HT1A binding. In this work, we sought to examine the correlation between these anxiety symptom dimensions and 5-HTT binding. Positron emission tomography with [11C]-3-amino-4-(3-dimethylamino-methylphenylsulfanyl)-benzonitrile ([11C]DASB) and a metabolite-corrected arterial input function were used to estimate regional 5-HTT binding in 55 subjects with MDD and anxiety symptoms. Somatic anxiety was negatively correlated with 5-HTT binding in the thalamus (β=-.33, p=.025), amygdala (β=-.31, p=.007) and midbrain (β=-.72, p<.001). Psychic anxiety was positively correlated with 5-HTT binding in midbrain only (β=.46, p=.0025). To relate to our previous study, correlation between 5-HT1A and 5-HTT binding was examined, and none was found. We also examined how much of the variance in anxiety symptom dimensions could be explained by both 5-HTT and 5-HT1A binding. The developed model was able to explain 68% (p<.001), 38% (p=.012) and 32% (p=.038) of the total variance in somatic, psychic, and motoric anxiety, respectively. Results indicate the tight coupling between the serotonergic system and anxiety components, which may be confounded when using aggregate anxiety measures. Uncovering serotonin's role in anxiety and depression in this way may give way to a new generation of therapeutics and treatment strategies.
Collapse
Affiliation(s)
- Zafer Iscan
- Centre for Cognition and Decision Making, National Research University, Higher School of Economics, Russian Federation; Cognitive Neuroimaging Unit, CEA DRF/Joliot Institute, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France.
| | | | - Samantha Rossano
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Jie Yang
- Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Mengru Zhang
- Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Jeffrey Miller
- New York State Psychiatric Institute and Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Gregory M Sullivan
- Tonix Pharmaceuticals, Inc., 509 Madison Avenue Suite 306, New York, NY, USA
| | - Priya Sharma
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Matthew McClure
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Maria A Oquendo
- New York State Psychiatric Institute and Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - J John Mann
- New York State Psychiatric Institute and Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Ramin V Parsey
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA; Radiology, Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA; New York State Psychiatric Institute and Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
24
|
Schöner J, Heinz A, Endres M, Gertz K, Kronenberg G. Post-traumatic stress disorder and beyond: an overview of rodent stress models. J Cell Mol Med 2017; 21:2248-2256. [PMID: 28374949 PMCID: PMC5618668 DOI: 10.1111/jcmm.13161] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/13/2017] [Indexed: 11/26/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder of high prevalence and major socioeconomic impact. Patients suffering from PTSD typically present intrusion and avoidance symptoms and alterations in arousal, mood and cognition that last for more than 1 month. Animal models are an indispensable tool to investigate underlying pathophysiological pathways and, in particular, the complex interplay of neuroendocrine, genetic and environmental factors that may be responsible for PTSD induction. Since the 1960s, numerous stress paradigms in rodents have been developed, based largely on Seligman's seminal formulation of 'learned helplessness' in canines. Rodent stress models make use of physiological or psychological stressors such as foot shock, underwater trauma, social defeat, early life stress or predator-based stress. Apart from the brief exposure to an acute stressor, chronic stress models combining a succession of different stressors for a period of several weeks have also been developed. Chronic stress models in rats and mice may elicit characteristic PTSD-like symptoms alongside, more broadly, depressive-like behaviours. In this review, the major existing rodent models of PTSD are reviewed in terms of validity, advantages and limitations; moreover, significant results and implications for future research-such as the role of FKBP5, a mediator of the glucocorticoid stress response and promising target for therapeutic interventions-are discussed.
Collapse
Affiliation(s)
- Johanna Schöner
- Klinik für Psychiatrie und Psychotherapie, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Heinz
- Klinik für Psychiatrie und Psychotherapie, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Matthias Endres
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karen Gertz
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Golo Kronenberg
- Klinik für Psychiatrie und Psychotherapie, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Klinik und Poliklinik für Psychiatrie und Psychotherapie, Zentrum für Nervenheilkunde, Universitätsmedizin Rostock, Rostock, Germany
| |
Collapse
|
25
|
Moon CM, Jeong GW. Abnormalities in gray and white matter volumes associated with explicit memory dysfunction in patients with generalized anxiety disorder. Acta Radiol 2017; 58:353-361. [PMID: 27273376 DOI: 10.1177/0284185116649796] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background The neuroanatomical abnormalities associated with behavioral dysfunction on explicit memory in patients generalized anxiety disorder (GAD) have not yet been clearly identified. Purpose To investigate the regional gray matter (GM) and white matter (WM) volume alterations over the whole brain in patients with GAD, as well as the correlation between the brain structural abnormality and explicit memory dysfunction. Material and Methods Twenty patients with GAD and 20 healthy controls matched for age, sex, and education level underwent high-resolution T1-weighted magnetic resonance imaging (MRI). The participants performed the explicit memory tasks with the neutral and anxiety-inducing words. Results Patients with GAD showed significantly reduced GM volumes in the midbrain (MB), thalamus, hippocampus (Hip), insula, and superior temporal gyrus (STG); and reduced WM volumes in the MB, anterior limb of the internal capsule (ALIC), dorsolateral prefrontal cortex (DLPFC), and precentral gyrus (PrG). It is important to note that the GM volume of the Hip and the WM volume of the DLPFC were positively correlated with the recognition accuracy (%) in the explicit memory tasks with neutral and anxiety-inducing words, respectively. On the other hand, the WM volume of the PrG was negatively correlated with the reaction time in the same memory tasks. Conclusion This study demonstrated the regional volume changes on whole-brain GM and WM and the correlation between the brain structural alteration and explicit memory dysfunction in GAD patients. These findings would be helpful to understand the association between the brain structure abnormality and the functional deficit in the explicit memory in GAD.
Collapse
Affiliation(s)
- Chung-Man Moon
- Research Institute for Medical Imaging, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Gwang-Woo Jeong
- Research Institute for Medical Imaging, Chonnam National University Medical School, Gwangju, Republic of Korea
- Department of Radiology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
26
|
Dimensional psychiatry: mental disorders as dysfunctions of basic learning mechanisms. J Neural Transm (Vienna) 2016; 123:809-21. [DOI: 10.1007/s00702-016-1561-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
|
27
|
Probing the Serotonin Transporter Availability Among Male Cigarette Smokers: A SPECT Study With [123I] ADAM. J Addict Med 2016; 10:89-92. [PMID: 26742023 DOI: 10.1097/adm.0000000000000191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Genetic studies have suggested that the serotonin transporter (SERT) could be associated with cigarette smoking. However, evidence from neuroimaging is scarce. The aim of the present study was to examine the SERT availability among cigarette smokers by using single-photon emission computed tomography (SPECT). METHODS Sixteen male smokers and 32 controls were enrolled. The SERT availability was measured by SPECT with a radiotracer, [I] ADAM, which is highly sensitive and specific to SERT. RESULTS No significant difference in SERT availability was found between 2 groups in the midbrain (smokers: 2.12 ± 0.70, nonsmokers: 2.13 ± 0.63; P = 0.86), basal ganglia (smokers: 0.83 ± 0.30, nonsmokers:0.90 ± 0.39; P = 0.95), or thalamus (smokers: 1.14 ± 0.41, nonsmokers: 1.20 ± 0.38; P = 0.88). No significant association was found between the SERT availability, and either the breath carbon monoxide level or the score of the Fagerström Test for Nicotine Dependence. CONCLUSIONS Whether the SERT availability in the brain is altered in smokers remains unclear.
Collapse
|
28
|
Kambeitz JP, Howes OD. The serotonin transporter in depression: Meta-analysis of in vivo and post mortem findings and implications for understanding and treating depression. J Affect Disord 2015; 186:358-66. [PMID: 26281039 DOI: 10.1016/j.jad.2015.07.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/29/2015] [Accepted: 07/28/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Altered serotonin transporter levels have been reported in blood and brain of patients with major depressive disorders. However, the strength and consistency of the evidence for altered serotonin transporter availability in major depressive disorder is not clear. METHODS To address this, a comprehensive meta-analysis was conducted of all available in vivo neuroimaging and post mortem studies reporting serotonin transporter availability in patients with depression compared with healthy controls. RESULTS The final sample consisted of fifty (n=27 in vivo and n=25 post mortem) studies including 877 patients with depression (mean age: 42.9 years) and 968 healthy controls (mean age: 42.7 years). In vivo neuroimaging studies indicated reduced serotonin transporter binding in the striatum (g=-0.39, p=0.01), the amygdala (g=-0.37, p=0.01) and the brainstem (g=-0.31, p=0.01), including the midbrain (g=-0.27, p=0.02), but no significant alteration in the thalamus or the hippocampus. The post mortem findings indicated no significant change in serotonin transporter binding in depression in the brainstem (p=0.64), the frontal cortex (p=0.75) and the hippocampus (p=0.32, corrected for publication bias). Although there were too few studies for a meta-analysis, the post mortem studies in the amygdala and striatum showed reduced SERT binding in MDD in absolute terms, consistent with the imaging findings. LIMITATIONS A number of potential factors might have biased the results of the present meta-analysis such as the imaging modality (post mortem or in vivo neuroimaging), partial volume effects, susceptibility of some radiotracers to synaptic serotonin levels or binding to other monoamine transporters. CONCLUSIONS The results indicate that serotonin transporter availability in depressed patients is reduced in key regions of the limbic system. This provides direct support for the serotonin hypothesis of depression, and underlines the importance of the serotonin transporter as a target of pharmacological treatments.
Collapse
Affiliation(s)
- Joseph P Kambeitz
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, England, United Kingdom; Department of Psychiatry, Ludwig-Maximilians-University Munich, Germany
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, England, United Kingdom; Psychiatric Imaging Group, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, United Kingdom.
| |
Collapse
|
29
|
Spies M, Knudsen GM, Lanzenberger R, Kasper S. The serotonin transporter in psychiatric disorders: insights from PET imaging. Lancet Psychiatry 2015; 2:743-755. [PMID: 26249305 DOI: 10.1016/s2215-0366(15)00232-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 01/09/2023]
Abstract
Over the past 20 years, psychotropics affecting the serotonergic system have been used extensively in the treatment of psychiatric disorders. Molecular imaging, in particular PET, has allowed for elucidation of the essential contribution of the serotonin transporter to the pathophysiology of various psychiatric disorders and their treatment. We review studies that use PET to measure cerebral serotonin transporter activity in psychiatric disorders, focusing on major depressive disorder and antidepressant treatment. We also discuss opportunities and limitations in the application of this neuroimaging method in clinical practice. Although results from individual studies diverge, meta-analysis indicates a trend towards reduced serotonin transporter availability in patients with major depressive disorder. Inconsistencies in results might suggest symptom heterogeneity in major depressive disorder and might therefore be relevant for stratification of patients into clinical subsets. PET has enabled the elucidation of mechanisms of response to selective serotonin reuptake inhibitors (SSRIs) and hence provides a basis for rational pharmacological treatment of major depressive disorder. Such imaging studies have also suggested that the pattern of serotonin transporter binding before treatment might predict response to antidepressant treatment, which could potentially be clinically useful in the future. Additionally, this Review discusses PET studies investigating the serotonin transporter in anxiety, obsessive-compulsive disorder, and eating disorders. Few studies have shown changes in serotonin transporter activity in schizophrenia and attention deficit hyperactivity disorder. By showing the scarcity of data in these psychiatric disorders, we highlight the potential for further investigation in this field.
Collapse
Affiliation(s)
- Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
30
|
Meyer JM, McNamara JPH, Reid AM, Storch EA, Geffken GR, Mason DM, Murphy TK, Bussing R. Prospective relationship between obsessive-compulsive and depressive symptoms during multimodal treatment in pediatric obsessive-compulsive disorder. Child Psychiatry Hum Dev 2015; 45:163-72. [PMID: 23756717 DOI: 10.1007/s10578-013-0388-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study examined the prospective relationship between obsessive-compulsive and depressive symptoms during a multimodal treatment study involving youth with obsessive-compulsive disorder (OCD). Participants included fifty-six youth, aged 7-17 years (M = 12.16 years) who were enrolled in a two-site randomized controlled pharmacological and cognitive behavioral therapy treatment trial. Obsessive-compulsive severity was measured using the Children's Yale-Brown Obsessive-Compulsive Scale, and depressive symptoms were rated using the Children's Depression Rating Scale-Revised. Multi-level modeling analyses indicated that, on average over the course of treatment, variable and less severe obsessive-compulsive symptoms significantly predicted a decrease in depressive symptoms. Additionally, week-to-week fluctuations in OCD severity did not significantly predict weekly changes in depressive symptom severity. Level of baseline depressive symptom severity did not moderate these relationships. Findings suggest that when treating youth with OCD with co-occurring depression, therapists should begin by treating obsessive-compulsive symptoms, as when these are targeted effectively, depressive symptoms diminish as well.
Collapse
Affiliation(s)
- Johanna M Meyer
- Division of Medical Psychology, Department of Psychiatry, University of Florida, P.O. Box 100234, 1600 S Archer Rd, Gainesville, FL, 32611, USA,
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zimmermann K, van Phi VD, Brase A, Phi-van L. Inhibition of serotonin transporter expression by C/EBPβ in LPS-activated macrophage cells (HD11). Innate Immun 2014; 21:406-15. [PMID: 25213348 DOI: 10.1177/1753425914547434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 07/14/2014] [Indexed: 12/30/2022] Open
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) transporter (5-HTT) is involved in inflammation and the stress response. In this study, we examined the regulation of 5-HTT expression in macrophage HD11 cells in response to bacterial LPS. Long-term exposure of cells to LPS (6-18 h) produced a decrease in 5-HTT mRNA expression. Accordingly, reduced 5-HTT activity measured by 5-HT uptake was also observed in LPS-treated HD11 cells. Moreover, LPS treatment, as well as co-transfection with an expression vector encoding the chicken CCAAT/enhancer binding protein beta (C/EBPβ), resulted in inhibition of 5-HTT promoter activity. Indeed, sequence analysis revealed several C/EBPβ binding motifs in the upstream region of the 5-HTT gene, which specifically interacted with C/EBPβ both in an in vitro band shift assay and in living HD11 cells. The C/EBPβ binding was activated in cells treated with LPS. The role of C/EBPβ in LPS inhibition of 5-HTT expression was further confirmed by small interfering RNA interference, which demonstrated that knockdown of endogenous C/EBPβ attenuated the inhibition of 5-HTT expression in LPS-treated cells. Taken together, the results suggest that C/EBPβ plays a critical role in regulating the 5-HTT gene in macrophages in response to pro-inflammatory stimuli.
Collapse
Affiliation(s)
- Katrin Zimmermann
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| | - Valerie D van Phi
- Institute of Radiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Angela Brase
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| | - Loc Phi-van
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| |
Collapse
|
32
|
In abstinent MDMA users the cortisol awakening response is off-set but associated with prefrontal serotonin transporter binding as in non-users. Int J Neuropsychopharmacol 2014; 17:1119-28. [PMID: 24524290 DOI: 10.1017/s1461145714000066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Serotonergic signaling is considered critical for an appropriate adaptation to stress. We have previously observed that in healthy volunteers, prefrontal serotonin transporter (SERT) binding is positively associated with hypothalamic-pituitary-adrenal (HPA)-axis output in terms of the cortisol awakening response (CAR). Here, we tested (1) if such a correlation persists in a human model of chronic serotonin depletion, namely in 3,4-Methylenedioxymethamphetamine (MDMA or 'Ecstasy') users, and (2) if CAR differed between MDMA users (N = 18) and non-using healthy volunteers (N = 32). Participants underwent SERT brain imaging with [11C]DASB-PET, and performed home-sampling of CAR, defined as the area under curve with respect to cortisol increase from awakening level. When adjusting for age and group, CAR was positively coupled to prefrontal SERT binding (p = 0.006) and MDMA users showed significantly higher CAR than the control group (p = 0.0003). In conclusion, our data confirm the recently described positive association between prefrontal SERT binding and CAR, this time in a human model of serotonin deficiency. Also, we find that CAR was higher in MDMA users relative to non-users. We suggest that the inhibitory control on HPA-axis output is less efficient in the off-balance state established by recent MDMA use, most likely through mechanisms other than those that can be compensated by lowering SERT levels.
Collapse
|
33
|
Kronenberg G, Gertz K, Heinz A, Endres M. Of mice and men: modelling post-stroke depression experimentally. Br J Pharmacol 2014; 171:4673-89. [PMID: 24838087 DOI: 10.1111/bph.12775] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/21/2014] [Accepted: 05/04/2014] [Indexed: 12/14/2022] Open
Abstract
At least one-third of stroke survivors suffer from depression. The development of comorbid depression after stroke is clinically highly significant because post-stroke depression is associated with increased mortality, slows recovery and leads to worse functional outcomes. Here, we review the evidence that post-stroke depression can be effectively modelled in experimental rodents via a variety of approaches. This opens an exciting new window onto the neurobiology of depression and permits probing potential underlying mechanisms such as disturbed cellular plasticity, neuroendocrine dysregulation, neuroinflammation, and neurodegeneration in a novel context. From the point of view of translational stroke research, extending the scope of experimental investigations beyond the study of short-term end points and, in particular, acute lesion size, may help improve the relevance of preclinical results to human disease. Furthermore, accumulating evidence from both clinical and experimental studies offers the tantalizing prospect of 5-hydroxytryptaminergic antidepressants as the first pharmacological therapy for stroke that would be available during the subacute and chronic phases of recovery. Interdisciplinary neuropsychiatric research will be called on to dissect the mechanisms underpinning the beneficial effects of antidepressants on stroke recovery.
Collapse
Affiliation(s)
- G Kronenberg
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Berlin, Berlin, Germany; Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
34
|
Gryglewski G, Lanzenberger R, Kranz GS, Cumming P. Meta-analysis of molecular imaging of serotonin transporters in major depression. J Cereb Blood Flow Metab 2014; 34:1096-103. [PMID: 24802331 PMCID: PMC4083395 DOI: 10.1038/jcbfm.2014.82] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 11/16/2022]
Abstract
The success of serotonin-selective reuptake inhibitors has lent support to the monoamine theory of major depressive disorder (MDD). This issue has been addressed in a number of molecular imaging studies by positron emission tomography or single-photon emission computed tomography of serotonin reuptake sites (5-HTT) in the brain of patients with MDD, with strikingly disparate conclusions. Our meta-analysis of the 18 such studies, totaling 364 MDD patients free from significant comorbidities or medication and 372 control subjects, revealed reductions in midbrain 5-HTT (Hedges' g=-0.49; 95% CI: (-0.84, -0.14)) and amygdala (Hedges' g=-0.50; 95% CI: (-0.78, -0.22)), which no individual study possessed sufficient power to detect. Only small effect sizes were found in other regions with high binding (thalamus: g=-0.24, striatum: g=-0.32, and brainstem g=-0.22), and no difference in the frontal or cingulate cortex. Age emerged as an important moderator of 5-HTT availability in MDD, with more severe reductions in striatal 5-HTT evident with greater age of the study populations (P<0.01). There was a strong relationship between severity of depression and 5-HTT reductions in the amygdala (P=0.01). Thus, molecular imaging findings indeed reveal widespread reductions of ∼10% in 5-HTT availability in MDD, which may predict altered spatial-temporal dynamics of serotonergic neurotransmission.
Collapse
Affiliation(s)
- Gregor Gryglewski
- Functional, Molecular & Translational Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Functional, Molecular & Translational Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Functional, Molecular & Translational Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Paul Cumming
- Department of Nuclear Medicine, Friederich-Alexanders Universitaet, Erlangen/Nurenberg, Germany
| |
Collapse
|
35
|
Kim E, Howes OD, Kapur S. Molecular imaging as a guide for the treatment of central nervous system disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2014. [PMID: 24174903 PMCID: PMC3811103 DOI: 10.31887/dcns.2013.15.3/ekim] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular imaging techniques have a number of advantages for research into the pathophysiology and treatment of central nervous system (CNS) disorders. Firstly, they provide a noninvasive means of characterizing physiological processes in the living brain, enabling molecular alterations to be linked to clinical changes. Secondly, the pathophysiological target in a given CNS disorder can be measured in animal models and in experimental human models in the same way, which enables translational research. Moreover, as molecular imaging facilitates the detection of functional change which precedes gross pathology, it is particularly useful for the early diagnosis and treatment of CNS disorders. This review considers the application of molecular imaging to CNS disorders focusing on its potential to inform the development and evaluation of treatments. We focus on schizophrenia, Parkinson's disease, depression, and dementia as major CNS disorders. We also review the potential of molecular imaging to guide new drug development for CNS disorders.
Collapse
Affiliation(s)
- Euitae Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do 463-707, Korea
| | | | | |
Collapse
|
36
|
Abstract
Molecular imaging is the visualization, characterization, and measurement of biologic processes at the molecular and cellular levels in humans and other living systems. Molecular imaging techniques such as MR spectroscopy and PET have been used to explore the molecular pathophysiology of depression and assess treatment responses. MR spectroscopy is a noninvasive technique that assesses the levels of biochemical metabolites in the brain, while PET uses radioligands injected in the bloodstream that have high binding affinity for target molecules. MR spectroscopy findings suggest a role for glutamate/glutamine and gamma-aminobutyric acid in depression. PET has generally failed to find a correlation between radioligand binding potential and depression severity or treatment response, though it may offer promise in distinguishing responders and nonresponders to treatment. A major challenge for both modalities is that depression is a heterogeneous, multifactorial disorder, while MR spectroscopy and PET are limited to examining a few metabolites or a single radioligand at a time. This difference makes a comprehensive evaluation of neurochemical changes in the brain difficult.
Collapse
Affiliation(s)
- T-S Lee
- From the Duke-National University of Singapore Graduate Medical School, Singapore.
| | - S Y Quek
- From the Duke-National University of Singapore Graduate Medical School, Singapore
| | - K R R Krishnan
- From the Duke-National University of Singapore Graduate Medical School, Singapore
| |
Collapse
|
37
|
Wang S, Ni Y, Guo F, Sun Z, Ahmed A, Zhao R. Differential expression of hypothalamic fear- and stress-related genes in broiler chickens showing short or long tonic immobility. Domest Anim Endocrinol 2014; 47:65-72. [PMID: 24360202 DOI: 10.1016/j.domaniend.2013.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/07/2013] [Accepted: 11/12/2013] [Indexed: 01/31/2023]
Abstract
The serotonin system and the hypothalamic-pituitary-adrenal axis play important roles in modulating fear and stress-coping characteristics. Tonic immobility (TI) is a fear-related phenotype, and previously we have shown that broiler chickens showing short TI (STI) duration experience better growth performance and higher adaptability to stress. Here, we sought to further elucidate the central mechanisms underlying the phenotypic differences between chickens showing STI and long TI duration, by comparing the hypothalamic expression of genes in the serotonergic system and the hypothalamic-pituitary-adrenal axis under basal and corticosterone-exposed situations. The STI broilers had significantly lower (P < 0.01) hypothalamic expression of serotonin reuptake transporter and serotonin receptor 1A. Moreover, 11β-hydroxysteroid dehydrogenase type 2 was expressed significantly lower in STI chickens at the level of both mRNA (P < 0.01) and protein (P < 0.05). Hypothalamic expression of glucocorticoid receptor (GR) mRNA tended to be higher (P < 0.059) in long TI chickens, but the protein content was approximately 2 times higher (P < 0.01) in STI chickens. The uncoupled expression of GR mRNA and protein was associated with significantly lower (P < 0.05) expression of gga-miR-181a, gga-miR-211, and gga-miR-22, which are predicted to target GR, in STI chickens. Corticosterone administration reduced the mRNA expression of postsynaptic serotonin receptors, 5-hydroxytryptamine receptor 1B (P = 0.059) and 5-hydroxytryptamine receptor 7 (P < 0.05), yet significantly increased the protein content of 11β-hydroxysteroid dehydrogenase type 2 (P < 0.05). These results suggest that broilers of different TI phenotypes have a distinct pattern of hypothalamic expression of fear- and stress-related genes.
Collapse
Affiliation(s)
- S Wang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science, Henan Institute of Science and Technology, Xinxiang, 453001, China
| | - Y Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - F Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Z Sun
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - A Ahmed
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - R Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
38
|
Yajima M, Matsumoto M, Harada M, Hara H, Yajima T. Effects of constant light during perinatal periods on the behavioral and neuronal development of mice with or without dietary lutein. Biomed Res 2014; 34:197-204. [PMID: 23995056 DOI: 10.2220/biomedres.34.197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Constant light conditions (LL) carry a risk of disrupting the biological clock of developing animals. Our purpose in this study was to investigate what disorders occur in animals receiving an LL stress during the late embryonic and suckling periods as compared with animals housed in dark-light (14 h-10 h) conditions (DL). In addition, we examined ameliorating effects against the disorder by the oral administration of lutein as an antioxidant. LL caused hypertrophy of the spleen and induced a higher expression of serotonin transporter (5HTT) in the corpus striatum and hippocampus in 15-day-old pups. In 9-week-old offspring, LL caused abnormal behavior in the elevated plus-maze test. The expression levels of 5HTT in the brain of the LL group changed to lower than those in DL group. The oral administration of lutein lessened the abnormality in behavior and 5HTT expression in the hippocampus to a certain degree although the expression levels of 5HTT in the corpus striatum were not altered by lutein diet. LL also induced disorders in the maternal brain with lower expression levels of 5HTT and neuregulin 1. These results indicate that LL during the perinatal periods may induce some neuronal abnormalities in both offspring and mothers that may be partially ameliorated by dietary lutein as an antioxidant.
Collapse
Affiliation(s)
- Masako Yajima
- Meiji Dairies Research Chair, Creative Research Institution Sousei (CRIS), Hokkaido University, Kita-21, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| | | | | | | | | |
Collapse
|
39
|
The neurobiological pathogenesis of poststroke depression. ScientificWorldJournal 2014; 2014:521349. [PMID: 24744682 PMCID: PMC3973123 DOI: 10.1155/2014/521349] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/28/2014] [Indexed: 12/14/2022] Open
Abstract
Poststroke depression (PSD) is an important consequence after stroke, with negative impact on stroke outcome. The pathogenesis of PSD is complicated, with some special neurobiological mechanism, which mainly involves neuroanatomical, neuron, and biochemical factors and neurogenesis which interact in complex ways. Abundant studies suggested that large lesions in critical areas such as left frontal lobe and basal ganglia or accumulation of silent cerebral lesions might interrupt the pathways of monoamines or relevant pathways of mood control, thus leading to depression. Activation of immune system after stroke produces more cytokines which increase glutamate excitotoxicity, results in more cell deaths of critical areas and enlargement of infarctions, and, together with hypercortisolism induced by stress or inflammation after stroke which could decrease intracellular serotonin transporters, might be the key biochemical change of PSD. The interaction among cytokines, glucocorticoid, and neurotrophin results in the decrease of hippocampal neurogenesis which has been proved to be important for mood control and pharmaceutical effect of selective serotonin reuptake inhibitors and might be another promising pathway to understand the pathogenesis of PSD. In order to reduce the prevalence of PSD and improve the outcome of stroke, more relevant studies are still required to clarify the pathogenesis of PSD.
Collapse
|
40
|
Fang Z, Zhu S, Gillihan SJ, Korczykowski M, Detre JA, Rao H. Serotonin transporter genotype modulates functional connectivity between amygdala and PCC/PCu during mood recovery. Front Hum Neurosci 2013; 7:704. [PMID: 24198772 PMCID: PMC3813895 DOI: 10.3389/fnhum.2013.00704] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 10/04/2013] [Indexed: 11/13/2022] Open
Abstract
The short (S) allele of the serotonin transporter-linked polymorphic region (5-HTTLPR) has been associated with increased susceptibility to depression. Previous neuroimaging studies have consistently showed increased amygdala activity during the presentation of negative stimuli or regulation of negative emotion in the homozygous short allele carriers, suggesting the key role of amygdala response in mediating increased risk for depression. The brain default mode network (DMN) has also been shown to modulate amygdala activity. However, it remains unclear whether 5-HTTLPR genetic variation modulates functional connectivity (FC) between the amygdala and regions of DMN. In this study, we re-analyzed our previous imaging dataset and examined the effects of 5-HTTLPR genetic variation on amygdala connectivity. A total of 15 homozygous short (S/S) and 15 homozygous long individuals (L/L) were scanned in functional magnetic resonance imaging (fMRI) during four blocks: baseline, sad mood, mood recovery, and return to baseline. The S/S and L/L groups showed a similar pattern of FC and no differences were found between the two groups during baseline and sad mood scans. However, during mood recovery, the S/S group showed significantly reduced anti-correlation between amygdala and posterior cingulate cortex/precuneus (PCC/PCu) compared to the L/L group. Moreover, PCC/PCu-amygdala connectivity correlated with amygdala activity in the S/S group but not the L/L group. These results suggest that 5-HTTLPR genetic variation modulates amygdala connectivity which subsequently affects its activity during mood regulation, providing an additional mechanism by which the S allele confers depression risk.
Collapse
Affiliation(s)
- Zhuo Fang
- Department of Psychology, Sun Yat-Sen University, GuangzhouChina
- Center for Functional Neuroimaging, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Senhua Zhu
- Department of Psychology, Sun Yat-Sen University, GuangzhouChina
- Center for Functional Neuroimaging, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Seth J. Gillihan
- Department of Psychology, Sun Yat-Sen University, GuangzhouChina
| | - Marc Korczykowski
- Center for Functional Neuroimaging, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, USA
| | - John A. Detre
- Center for Functional Neuroimaging, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Hengyi Rao
- Department of Psychology, Sun Yat-Sen University, GuangzhouChina
- Center for Functional Neuroimaging, Department of Neurology, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
41
|
Sorenson AN, Sullivan EC, Mendoza SP, Capitanio JP, Higley JD. Serotonin transporter genotype modulates HPA axis output during stress: effect of stress, dexamethasone test and ACTH challenge. TRANSLATIONAL DEVELOPMENTAL PSYCHIATRY 2013; 1:21130. [PMID: 25068032 PMCID: PMC4109987 DOI: 10.3402/tdp.v1i0.21130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Studies show that the hypothalamic-pituitary-adrenal (HPA) axis is dysregulated in depression. Some studies suggest that variation in the serotonin transporter genotype (hereafter 5HTT) modulates both risk for depression and psychopathological HPA axis responsiveness. Rhesus monkeys are well suited to model such relationships. Rhesus macaque models of human psychopathology have assessed the effect of the serotonin transporter (rh5HTT) on levels of cortisol in stressed subjects. These studies show that that under conditions of stress, heterozygous females (Ls) reared under adversity exhibit high levels of cortisol. Studies have not to our knowledge, however, assessed the potential additive effect on the cortisol response in a number of macaque subjects homozygous for the serotonin transporter short allele (ss). Moreover, little is known about the level of the central or peripheral nervous system at which the 5HTT genotype acts to modulate the cortisol response. METHODS This study assesses a relatively large number of subjects homozygous and heterozygous for the rh5HTT short and long alleles (a) during stress; (b) following a dexamethasone suppression test; and (c) following an adrenocorticotropic hormone (ACTH) challenge. Subjects included 190 infant rhesus macaques (Macaca mulatta - 84 males and 106 females; 118 LL, 60 Ls, and 12 ss subjects), obtaining two blood plasma samples during the stress of separation from their mothers. Then on the following day, we obtained a blood sample following a dexamethasone test, and later that day we obtained a blood sample after an ACTH challenge test. Subjects ranged in age between 90 and 128 days, with a mean age of 107 days. RESULTS Subjects homozygous for the short allele had significantly higher levels of cortisol across all test conditions, when compared to those homozygous for the long allele, or those heterozygous with Ls alleles. Subsequent analyses showed a high correlation between individual cortisol levels across the three different tests. CONCLUSIONS These data suggest that subjects homozygous for the short allele are more likely to show dysregulated cortisol levels in response to stress. Given the correlation in individual responses of the HPA axis across the different tests, our data suggest that the effect of the 5HTT genotype shows some commonality in its regulation of stress, feedback, and ACTH-stimulated cortisol output. Our data suggest that under conditions of stress, the serotonin transporter may modulate HPA axis psychopathology.
Collapse
Affiliation(s)
| | - Erin C. Sullivan
- Department of Psychology, California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Sally P. Mendoza
- Department of Psychology, California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - John P. Capitanio
- Department of Psychology, California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - J. Dee Higley
- Department of Psychology, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
42
|
Lau T, Heimann F, Bartsch D, Schloss P, Weber T. Nongenomic, glucocorticoid receptor-mediated regulation of serotonin transporter cell surface expression in embryonic stem cell derived serotonergic neurons. Neurosci Lett 2013; 554:115-20. [PMID: 24021805 DOI: 10.1016/j.neulet.2013.08.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/26/2013] [Accepted: 08/29/2013] [Indexed: 01/30/2023]
Abstract
Depressive disorders have been linked to the combined dysregulation of the hypothalamus-pituitary-adrenal (HPA)-axis and the serotonergic system. The HPA-axis and serotonergic (5-HT) neurons exert reciprocal regulatory actions. It has been reported that glucocorticoid-glucocorticoid receptor (GR) signaling influences serotonin transporter (5-HTT) transcription but data also points to the fact that 5-HTT expression is regulated nongenomically via redistribution of 5-HTT from the cell surface into intracellular compartments. In order to analyze the acute effects of glucocorticoids on 5-HTT cell surface localization we differentiated serotonergic neurons from mouse embryonic stem (ES) cells derived from the C57BL/6N blastocysts. These postmitotic 5-HT neurons express all relevant serotonergic markers following the application of a growth factor-based differentiation protocol. Increasing concentrations of the GR agonist dexamethasone (Dex) resulted in enhanced, dose-dependent 5-HTT cell surface localization in the presence of the protein synthesis inhibitor cycloheximide already 1h after incubation. Inhibition of GR function by the specific GR-antagonist mifepristone abolished the increase in 5-HTT cell surface localization. Hence, our data account for a nongenomic upregulation of 5-HTT cell surface expression by glucocorticoid-GR interaction which likely constitutes a rapid physiological response to increased levels of glucocorticoids as seen during stress. Taken together, we provide a cellular model to analyze and dissect glucocorticoid-5HTT interactions on a molecular level that corresponds to in vivo animal models using C57BL/6N mice.
Collapse
Affiliation(s)
- Thorsten Lau
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
43
|
Savitz JB, Drevets WC. Neuroreceptor imaging in depression. Neurobiol Dis 2013; 52:49-65. [DOI: 10.1016/j.nbd.2012.06.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 05/21/2012] [Accepted: 06/02/2012] [Indexed: 02/08/2023] Open
|
44
|
Frokjaer VG, Erritzoe D, Holst KK, Jensen PS, Rasmussen PM, Fisher PM, Baaré W, Madsen KS, Madsen J, Svarer C, Knudsen GM. Prefrontal serotonin transporter availability is positively associated with the cortisol awakening response. Eur Neuropsychopharmacol 2013; 23:285-94. [PMID: 22732516 DOI: 10.1016/j.euroneuro.2012.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/10/2012] [Accepted: 05/29/2012] [Indexed: 01/23/2023]
Abstract
UNLABELLED Stress sensitivity and serotonergic neurotransmission interact, e.g. individuals carrying the low-expressing variants (S and LG) of the 5-HTTLPR promoter polymorphism of the serotonin transporter (SERT) gene are at higher risk for developing mood disorders when exposed to severe stress and display higher cortisol responses when exposed to psychosocial stressors relative to high expressing 5-HTTLPR variants. However, it is not clear how the relation between SERT and cortisol output is reflected in the adult brain. We investigated the relation between cortisol response to awakening (CAR) and SERT binding in brain regions considered relevant to modify the cortisol awakening response. METHODS thirty-two healthy volunteers underwent in vivo SERT imaging with [(11)C]DASB-Positron Emission Tomography (PET), genotyping, and performed home-sampling of saliva to assess CAR. RESULTS CAR, defined as the area under curve with respect to increase from baseline, was positively coupled to prefrontal SERT binding (p=0.02), independent of adjustment for 5-HTTLPR genotype. Although S- and LG-allele carriers tended to show a larger CAR (p=0.07) than LA homozygous, 5-HTTLPR genotype did not modify the coupling between CAR and prefrontal SERT binding as tested by an interaction analysis (genotype×CAR). CONCLUSION prefrontal SERT binding is positively associated with cortisol response to awakening. We speculate that in mentally healthy individuals prefrontal serotonergic neurotransmission may exert an inhibitory control on the cortisol awakening response.
Collapse
Affiliation(s)
- Vibe Gedsoe Frokjaer
- Center for Integrated Molecular Brain Imaging, DK-2100 Copenhagen, Denmark; Neurobiology Research Unit, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Smith DF, Jakobsen S. Molecular Neurobiology of Depression: PET Findings on the Elusive Correlation with Symptom Severity. Front Psychiatry 2013; 4:8. [PMID: 23459670 PMCID: PMC3586775 DOI: 10.3389/fpsyt.2013.00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/11/2013] [Indexed: 01/08/2023] Open
Abstract
Molecular mechanisms in the brain are assumed to cause the symptoms and severity of neuropsychiatric disorders. This review concerns the elusive nature of relationships between the severity of depressive disorders and neuromolecular processes studied by positron emission tomography (PET). Recent PET studies of human depression have focused on serotonergic, dopaminergic, muscarinic, nicotinic, and GABAergic receptors, as well as central processes dependent on monoamine oxidase, phosphodiesterase type 4, amyloid plaques, neurofibrillar tangles, and P-glycoprotein. We find that reliable causal links between neuromolecular mechanisms and relief from depressive disorders have yet to be convincingly demonstrated. This situation may contribute to the currently limited use of PET for exploring the neuropathways that are currently viewed as being responsible for beneficial effects of antidepressant treatment regimes.
Collapse
Affiliation(s)
- Donald F Smith
- Center for Psychiatric Research, Psychiatric Hospital of Aarhus University Risskov, Denmark
| | | |
Collapse
|
46
|
Medina-Martel M, Urbina M, Fazzino F, Lima L. Serotonin transporter in lymphocytes of rats exposed to physical restraint stress. Neuroimmunomodulation 2013; 20:361-7. [PMID: 24022686 DOI: 10.1159/000353797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/13/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Glucocorticoids and stress cause transcriptional and functional changes on the serotonin transporter (SERT) in the central nervous system. Stress can produce specific modifications of SERT in lymphocytes, which could be associated with alterations in immune response. The aim of this study was to evaluate the effect of a physical restraint stress protocol on (1) rat lymphocyte proliferation in the presence of the selective serotonin reuptake inhibitor fluoxetine and (2) SERT kinetic parameters, i.e. binding capacity (Bmax), affinity (Kd) and Hill coefficient (nH). METHODS Male adult Sprague-Dawley rats were placed in Plexiglass boxes (5 h daily for 5 days), and blood was obtained by cardiac puncture on day 6. Serum corticosterone was quantitated by an immunoenzymatic assay. Lymphocytes were isolated by density gradients and adhesion to plastic, of which there was sufficient material for further experiments, then cultured with or without the mitogen concanavalin A (Con A, 2 μg/ml) and fluoxetine (1-50 μM). Cell proliferation was measured with tetrazolium salts, and [(3)H]paroxetine was used as a SERT-specific ligand for binding assays. RESULTS Restraint produced a significant increase in serum corticosterone of stressed rats. The proliferative response to Con A was similar in the controls and stressed animals. Fluoxetine reduced cell proliferation with and without Con A. Restraint diminished the inhibitory effect of fluoxetine on proliferation. Restraint also increased Bmax and Kd, but decreased nH. Treatment of rats with actinomycin D, a transcription inhibitor, reduced Bmax in stressed animals. CONCLUSIONS Restraint stress modulated the effect of fluoxetine on cell proliferation, probably through the modification of the presence and the function of SERT.
Collapse
Affiliation(s)
- Matilde Medina-Martel
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This review highlights the key recent issues and novel findings on anxiety disorders in older adults. Studies of the epidemiology, medical and psychiatric comorbidity, neurobiology, and treatment of anxiety in the elderly are discussed. RECENT FINDINGS Overall prevalence studies of anxiety symptoms or disorders in older adults indicate that, although less common than in younger adults, they are relatively common in late life. We examine the prevalence of specific anxiety disorders in the elderly, as mechanisms, outcomes, and treatment response may vary by type of anxiety disorder. Physical and psychiatric comorbidity are common. Certain anxiety disorders, such as generalized anxiety disorder, have demonstrated a positive impact following acute coronary syndrome. Regarding treatment, small effect sizes and incomplete response are typical, posing a challenge when treating this age group. SUMMARY The epidemiology, neurobiology, and treatment of anxiety conditions in late life have recently received more attention in the medical literature. Areas in need of further investigation include neurobiology, clinical presentation, management, and treatment, as we do not know whether procedures indicated for younger cohorts hold for older adults.
Collapse
|
48
|
Schedule-induced polydipsia as a model of compulsive behavior: neuropharmacological and neuroendocrine bases. Psychopharmacology (Berl) 2012; 219:647-59. [PMID: 22113447 DOI: 10.1007/s00213-011-2570-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/01/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND Schedule-induced polydipsia (SIP), characterized by the development of excessive drinking under intermittent food-reinforcement schedules, has been proposed as a successful model for obsessive-compulsive disorder (OCD), schizophrenia, and alcohol abuse. OBJECTIVES The purpose of this study was to review the main findings and current thinking regarding the use of SIP for compulsivity assessment and evaluate its contribution to improving our knowledge of the neurobehavioral mechanisms underlying the excessive behavior manifested in SIP relevant to compulsive behavior disorders. METHODS The literature reviews SIP procedure and surveys main findings about its neurobehavioral basis and pharmacology relevant to its possible status as a model for compulsive disorders. Specifically, we reviewed effects of antipsychotics and serotoninergic drugs used in the treatment of OCD and schizophrenia. We also considered individual differences in SIP and its relevance as a possible compulsivity endophenotype. CONCLUSIONS SIP represents an animal model of non-regulatory and excessive drinking that may be valid for studying the psychopharmacology of the compulsive phenotype and modeling different psychopathologies from compulsivity spectrum disorders.
Collapse
|
49
|
Ponder KL, Salisbury A, McGonnigal B, Laliberte A, Lester B, Padbury JF. Maternal depression and anxiety are associated with altered gene expression in the human placenta without modification by antidepressant use: implications for fetal programming. Dev Psychobiol 2011; 53:711-23. [PMID: 21547899 PMCID: PMC3155003 DOI: 10.1002/dev.20549] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 03/04/2011] [Indexed: 01/22/2023]
Abstract
We sought to determine if maternal depression, anxiety, and/or treatment with selective serotonin reuptake inhibitors (SSRIs) affect placental human serotonin transporter (SLC6A4), norepinephrine transporter (SLC6A2), and 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) gene expression. Relative mRNA expression was compared among placental samples (n = 164) from healthy women, women with untreated depression and/or anxiety symptoms during pregnancy, and women who used SSRIs. SLC6A4 expression was significantly increased in placentas from women with untreated mood disorders and from women treated with SSRIs, compared to controls. SLC6A2 and 11β-HSD2 expression was increased in noncontrol groups, though the differences were not significant. SLC6A4, SLC6A2, and 11β-HSD2 expression levels were positively correlated. The finding that maternal depression/anxiety affects gene expression of placental SLC6A4 suggests a possible mechanism for the effect(s) of maternal mood on fetal neurodevelopmental programming. SSRI treatment does not further alter the elevated SLC6A4 expression levels observed with exposure to maternal depression or anxiety.
Collapse
Affiliation(s)
- Kathryn L. Ponder
- Alpert Medical School of Brown University, Women & Infants’ Hospital, Providence, RI 02905
- Department of Pediatrics, Women & Infants’ Hospital, Providence, RI 02905
| | - Amy Salisbury
- Alpert Medical School of Brown University, Women & Infants’ Hospital, Providence, RI 02905
- Brown Center for the Study of Children at Risk, Women & Infants’ Hospital, Providence, RI 02905
| | - Bethany McGonnigal
- Alpert Medical School of Brown University, Women & Infants’ Hospital, Providence, RI 02905
- Department of Pediatrics, Women & Infants’ Hospital, Providence, RI 02905
| | - Alyse Laliberte
- Alpert Medical School of Brown University, Women & Infants’ Hospital, Providence, RI 02905
- Department of Pediatrics, Women & Infants’ Hospital, Providence, RI 02905
| | - Barry Lester
- Alpert Medical School of Brown University, Women & Infants’ Hospital, Providence, RI 02905
- Brown Center for the Study of Children at Risk, Women & Infants’ Hospital, Providence, RI 02905
| | - James F. Padbury
- Alpert Medical School of Brown University, Women & Infants’ Hospital, Providence, RI 02905
- Department of Pediatrics, Women & Infants’ Hospital, Providence, RI 02905
| |
Collapse
|
50
|
Gillihan SJ, Rao H, Brennan L, Wang DJJ, Detre JA, Sankoorikal GMV, Brodkin ES, Farah MJ. Serotonin transporter genotype modulates the association between depressive symptoms and amygdala activity among psychiatrically healthy adults. Psychiatry Res 2011; 193:161-7. [PMID: 21764567 PMCID: PMC3156965 DOI: 10.1016/j.pscychresns.2011.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/16/2011] [Accepted: 03/09/2011] [Indexed: 10/17/2022]
Abstract
Recent attempts to understand the biological bases of depression vulnerability have revealed that both the short allele of the serotonin transporter-linked polymorphic region (5-HTTLPR) and activity in the amygdala are associated with depression. Other studies have reported amygdala hyperactivity associated with the 5-HTTLPR short allele, linking the genetic and neuroimaging lines of research and suggesting a mechanism whereby the short allele confers depression risk. However, fewer investigations have examined the associations among depression, 5-HTTLPR variability, and amygdala activation in a single study. The current study thus investigated whether 5-HTTLPR genotype modulates the association between depressive symptoms and amygdala activity among psychiatrically healthy adults. Regional cerebral blood flow was measured with perfusion fMRI during a task-free scan. We hypothesized differential associations between depressive symptoms and amygdala activity among individuals homozygous for the short allele and individuals homozygous for the long allele. Both whole brain analyses and region-of-interest analyses confirmed this prediction, revealing a significant negative association among the long allele group and a trend of positive association among the short allele group. These results complement existing reports of short allele related amygdala hyperactivity and suggest an additional neurobiological mechanism whereby the 5-HTTLPR is associated with psychiatric outcomes.
Collapse
Affiliation(s)
- Seth J Gillihan
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|