1
|
Ploense KL, Vieira P, Bubalo L, Olivarria G, Carr AE, Szumlinski KK, Kippin TE. Contributions of prolonged contingent and non-contingent cocaine exposure to escalation of cocaine intake and glutamatergic gene expression. Psychopharmacology (Berl) 2018; 235:1347-1359. [PMID: 29234834 PMCID: PMC5924572 DOI: 10.1007/s00213-017-4798-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/01/2017] [Indexed: 01/08/2023]
Abstract
Similar to the pattern observed in people with substance abuse disorders, laboratory animals will exhibit escalation of cocaine intake when the drug is available over prolonged periods of time. Here, we investigated the contribution of behavioral contingency of cocaine administration on escalation of cocaine intake and gene expression in the dorsal medial prefrontal cortex (dmPFC) in adult male rats. Rats were allowed to self-administer intravenous cocaine (0.25 mg/infusion) under either limited cocaine-(1 h/day), prolonged cocaine-(6 h/day), or limited cocaine-(1 h/day) plus yoked cocaine-access (5 h/day); a control group received access to saline (1 h/day). One day after the final self-administration session, the rats were euthanized and the dmPFC was removed for quantification of mRNA expression of critical glutamatergic signaling genes, Homer2, Grin1, and Dlg4, as these genes and brain region have been previously implicated in addiction, learning, and memory. All groups with cocaine-access showed escalated cocaine intake during the first 10 min of each daily session, and within the first 1 h of cocaine administration. Additionally, the limited-access + yoked group exhibited more non-reinforced lever responses during self-administration sessions than the other groups tested. Lastly, Homer2, Grin1, and Dlg4 mRNA were impacted by both duration and mode of cocaine exposure. Only prolonged-access rats exhibited increases in mRNA expression for Homer2, Grin1, and Dlg4 mRNA. Taken together, these findings indicate that both contingent and non-contingent "excessive" cocaine exposure supports escalation behavior, but the behavioral contingency of cocaine-access has distinct effects on the patterning of operant responsiveness and changes in mRNA expression.
Collapse
Affiliation(s)
- Kyle L Ploense
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA.
| | - Philip Vieira
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
- Department of Psychology, California State University-Dominguez Hills, Carson, CA, 90747, USA
| | - Lana Bubalo
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Gema Olivarria
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Amanda E Carr
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Karen K Szumlinski
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Tod E Kippin
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
2
|
Murakami G, Edamura M, Furukawa T, Kawasaki H, Kosugi I, Fukuda A, Iwashita T, Nakahara D. MHC class I in dopaminergic neurons suppresses relapse to reward seeking. SCIENCE ADVANCES 2018; 4:eaap7388. [PMID: 29546241 PMCID: PMC5851664 DOI: 10.1126/sciadv.aap7388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/07/2018] [Indexed: 05/12/2023]
Abstract
Major histocompatibility complex class I (MHCI) is an important immune protein that is expressed in various brain regions, with its deficiency leading to extensive synaptic transmission that results in learning and memory deficits. Although MHCI is highly expressed in dopaminergic neurons, its role in these neurons has not been examined. We show that MHCI expressed in dopaminergic neurons plays a key role in suppressing reward-seeking behavior. In wild-type mice, cocaine self-administration caused persistent reduction of MHCI specifically in dopaminergic neurons, which was accompanied by enhanced glutamatergic synaptic transmission and relapse to cocaine seeking. Functional MHCI knockout promoted this addictive phenotype for cocaine and a natural reward, namely, sucrose. In contrast, wild-type mice overexpressing a major MHCI gene (H2D) in dopaminergic neurons showed suppressed cocaine seeking. These results show that persistent cocaine-induced reduction of MHCI in dopaminergic neurons is necessary for relapse to cocaine seeking.
Collapse
Affiliation(s)
- Gen Murakami
- Department of Psychology and Behavioral Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
- Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Mitsuhiro Edamura
- Department of Psychology and Behavioral Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Tomonori Furukawa
- Department of Neurophysiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hideya Kawasaki
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Isao Kosugi
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Toshihide Iwashita
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Daiichiro Nakahara
- Department of Psychology and Behavioral Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|
3
|
RETRACTED ARTICLE: A Clock mutation enhances light-phase responsiveness to cocaine in locomotor activity and self-administration with impulsive-like responding in mice. Psychopharmacology (Berl) 2017; 234:185. [PMID: 27068482 DOI: 10.1007/s00213-016-4284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
|
4
|
Webb IC, Lehman MN, Coolen LM. Diurnal and circadian regulation of reward-related neurophysiology and behavior. Physiol Behav 2015; 143:58-69. [PMID: 25708277 DOI: 10.1016/j.physbeh.2015.02.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 12/16/2022]
Abstract
Here, we review work over the past two decades that has indicated drug reward is modulated by the circadian system that generates daily (i.e., 24h) rhythms in physiology and behavior. Specifically, drug-self administration, psychomotor stimulant-induced conditioned place preference, and locomotor sensitization vary widely across the day in various species. These drug-related behavioral rhythms are associated with rhythmic neural activity and dopaminergic signaling in the mesocorticolimbic pathways, with a tendency toward increased activity during the species typical wake period. While the mechanisms responsible for such cellular rhythmicity remain to be fully identified, circadian clock genes are expressed in these brain areas and can function locally to modulate both dopaminergic neurotransmission and drug-associated behavior. In addition, neural and endocrine inputs to these brain areas contribute to cellular and reward-related behavioral rhythms, with the medial prefrontal cortex playing a pivotal role. Acute or chronic administration of drugs of abuse can also alter clock gene expression in reward-related brain regions. Emerging evidence suggests that drug craving in humans is under a diurnal regulation and that drug reward may be influenced by clock gene polymorphisms. These latter findings, in particular, indicate that the development of therapeutic strategies to modulate the circadian influence on drug reward may prove beneficial in the treatment of substance abuse disorders.
Collapse
Affiliation(s)
- Ian C Webb
- Dept. of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Michael N Lehman
- Dept. of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lique M Coolen
- Dept. of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA; Dept. of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|