1
|
Dulski T, Tolak S, Zmorzyńska J. Challenges and hopes for treatment of anxiety disorder in the autistic population. Brain Res 2025; 1860:149675. [PMID: 40324673 DOI: 10.1016/j.brainres.2025.149675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Anxiety disorders, marked by excessive fear and worry, are particularly prevalent in autism, affecting up to 45 % of individuals with the condition. Since the 1960s, advances in neuroscience, psychology, and psychopharmacology have enhanced understanding and treatment of anxiety disorders in general population. Standardized diagnostic criteria development facilitated accurate classification of anxiety disorders. Neurobiological research identified key brain regions forming the basis of the amygdala-centred fear circuit model. Pharmacological advancements introduced selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) as safer, first-line treatments. However, these medications show limited efficacy and significant side effects in autistic individuals, highlighting the need for alternative treatments. Cognitive-behavioural therapy (CBT) has gained empirical support, helping to reduce avoidance behaviours, but modifications are often needed for autistic individuals. Emerging therapies, including Mindfulness-Based Stress Reduction for Autism Spectrum Disorder (MASSI) and virtual reality-based interventions, are being explored for individuals with more treatment-resistant anxiety. Ongoing clinical trials are assessing medications used for other psychiatric disorders to determine their efficacy in anxiety treatment for autism. Recent genetic and neuroimaging research has revealed altered brain connectivity and genetic susceptibility in anxiety, promoting the development of personalized treatments. Despite these advances, challenges remain in optimizing interventions and addressing treatment resistance, necessitating continued research and innovation.
Collapse
Affiliation(s)
- Tomasz Dulski
- Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Sanata Tolak
- Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Justyna Zmorzyńska
- Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Shi XN, Liu CY, Li L, Yao ML, Zhong Z, Jiang YM. The role and therapeutic potential of mitophagy in major depressive disorder. Front Pharmacol 2025; 16:1564276. [PMID: 40206060 PMCID: PMC11979158 DOI: 10.3389/fphar.2025.1564276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
Major depressive disorder, also known as MDD, affects more than 264 million people globally, making it a prevalent and critical health challenge. Traditional treatments show limited efficacy in many patients. Therefore, exploring new treatment methods is particularly crucial. Mitophagy, as a regulatory process, can help understand and treat MDD. This paper focuses on the molecular mechanisms of mitophagy, starting from proteins and related pathways, and its role in MDD. The study also explores the associations between mitophagy and neuroinflammation, oxidative stress, neurotransmitter synthesis, and neuroplasticity in MDD and discusses the progress of clinical research on the role of mitophagy in MDD. In addition, the article describes the current pharmaceutical and non-pharmaceutical interventions that can regulate mitophagy in MDD and unravels the potential and challenges of these therapeutic strategies in clinical settings. This article offers a deeper insight into the pathogenesis of MDD and offers a scientific basis for the development of new treatment strategies.
Collapse
Affiliation(s)
- Xin-Nuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chen-Yue Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Li
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Ming-Li Yao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Zhong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - You-Ming Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Zhao R, Wang J, Chung SK, Xu B. New insights into anti-depression effects of bioactive phytochemicals. Pharmacol Res 2025; 212:107566. [PMID: 39746497 DOI: 10.1016/j.phrs.2024.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Depression is one of the most common psychological disorders, and due to its high prevalence and mortality rates, it imposes a significant disease burden. Contemporary treatments for depression involve various synthetic drugs, which have limitations such as side effects, single targets, and slow onset of action. Unlike synthetic medications, phytochemicals offer the benefits of a multi-target and multi-pathway mode of treatment for depression. In this literature review, we describe the pharmacological actions, experimental models, and clinical trials of the antidepressant effects of various phytochemicals. Additionally, we summarize the potential mechanisms by which these phytochemicals prevent depression, including regulating neurotransmitters and their receptors, the HPA axis, inflammatory responses, managing oxidative stress, neuroplasticity, and the gut microbiome. Phytochemicals exert therapeutic effects through multiple pathways and targets, making traditional Chinese medicine (TCM) a promising adjunctive antidepressant for the prevention, alleviation, and treatment of depression. Therefore, this review aims to provide robust evidence for subsequent research into developing phytochemical resources as effective antidepressant agents.
Collapse
Affiliation(s)
- Ruohan Zhao
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
4
|
Marey H, Chai A, Bikov A. Periodic limb movements in sleep in patients using antidepressants. Sleep Med Rev 2025; 79:102011. [PMID: 39326087 DOI: 10.1016/j.smrv.2024.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Depression and periodic limb movement disease are both common disorders which frequently co-exist. Furthermore, antidepressants are known to cause and worsen periodic limb movements in sleep, which can worsen the quality of sleep and subsequently daytime symptoms. However, the effect of antidepressants on periodic limb movements is not uniform and depends on their mechanism of action. In this review we summarise the knowledge on the mechanism of periodic limb movements in sleep, and how changes in the concentration of neurotransmitters can contribute to them. We comprehensively evaluate the literature on antidepressants induced periodic limb movement in sleep. Based on this, we suggest clinical implications and further focus on research.
Collapse
Affiliation(s)
- Hossam Marey
- Pennine Care NHS Foundation Trust, Manchester, United Kingdom
| | - Andrew Chai
- University of Manchester, Manchester, United Kingdom
| | - Andras Bikov
- University of Manchester, Manchester, United Kingdom; Regional Sleep Service, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom.
| |
Collapse
|
5
|
Tchinda Defo SH, Moussa D, Bouvourné P, Guédang Nyayi SD, Woumitna GC, Kodji K, Wado EK, Ngatanko Abaissou HH, Foyet HS. Unpredictable chronic mild stress induced anxio-depressive disorders and enterobacteria dysbiosis: Potential protective effects of Detariummicrocarpum. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118940. [PMID: 39423942 DOI: 10.1016/j.jep.2024.118940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Detarium microcarpum Guill. & Perr. is used traditionally in Far North Cameroun to treat stomach aches, anxiety, epilepsy, and other mental disorders. AIM OF THE STUDY Evaluate the anxiolytic and antidepressant-like effects of D. microcarpum (DM) in unpredictable chronic mild stress (UCMS) model of depression in male rats and its impact on fecal enterobacteria of stressed rats. MATERIALS AND METHODS Rats were handled daily (control) or subjected to the UCMS procedure for 42 days. Anxiety-like behaviors were assessed using the light and dark box test (LBD) and the open field test (OFT). Depressive-like behaviors were assessed using the forced swimming test (FST), the sucrose preference test (SPT), and the novelty suppressed feeding test (NSFT). Feces were then collected, followed by blood, brain, and duodenum sections after sacrifice. Monoamine levels, pro-inflammatory cytokines, oxidative stress factors, and nitrosative stress were assessed. Feces were introduced into Hectoen enteric agar for the identification of enterobacteria. An in vitro growth test was performed. RESULTS The DM ethanolic extract has significantly increased the time spent in the light box, in the LBD, and in the center area of the OFT. Moreover, the extract has significantly reduced the preference for sucrose in the SPT, the time of immobility in the FST, and the latency period to consume the pet in the NSFT. DM extract has significantly reduced serum cortisol levels. It also significantly decreased the pro-inflammatory cytokines TNF-α and Il-1β in both brain and duodenum homogenate. DM has increased the brain's serotonin, GABA, and dopamine levels. The DM extract also decreased the MDA and nitrite levels. It also increased the SOD and CAT activities in both brain and duodenal homogenate. Histologically, the DM extract restored the cell's density in hippocampi sections and prevented gut inflammation and peroxidation characterizing leaky gut syndrome. DM extract has no effect on the growth of enterobacteria species isolated in vitro. CONCLUSION The ethanolic extract of DM would have anxiolytic and antidepressant effects via the modulation of the HPA axis, brain antioxidant enzyme activities, inflammation, and nitrosative stress. Moreover, it could act by preventing leaky gut syndrome.
Collapse
Affiliation(s)
- Serge Hermann Tchinda Defo
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Djaouda Moussa
- Department of Life and Earth Sciences, Higher Teachers' Training College, University of Maroua, P.O. Box: 55, Maroua, Cameroon.
| | - Parfait Bouvourné
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Simon Désiré Guédang Nyayi
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Guillaume Camdi Woumitna
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Kalib Kodji
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Eglantine Keugong Wado
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Hervé Hervé Ngatanko Abaissou
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Harquin Simplice Foyet
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| |
Collapse
|
6
|
Cheng Y, Chen Y, Zhao X, Mou F, Tan Y, Wang W, Qian R, Xu Q, Yu S. The antidepressants and sexual dysfunction: a pharmacovigilance-pharmacodynamic study of the FDA adverse event reporting system. Expert Opin Drug Saf 2024:1-11. [PMID: 39693256 DOI: 10.1080/14740338.2024.2443956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Sexual dysfunction (SD) is a commonly occurring yet often underestimated adverse event associated with the use of antidepressants. This study aimed to analyze the reporting of SD associated with the use of antidepressants in comparison with one another, and to explore potential receptor mechanisms based on the real-world data from the Food and Drug Administration Adverse Event Reporting System (FAERS). METHODS Disproportionality analysis was conducted based on FAERS reports (2004 Q1 to 2024 Q2) using reporting odds ratios (ROR) and information components (IC) methods. Spearman correlation analysis was performed to explore the relationship between ROR and the related receptor-binding properties. RESULTS In total, 233 significant signals involving 9767 cases were included. The analysis confirmed that the selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors exhibited significant signals, consistent with previous research. Additionally, unexpected signals were detected for vortioxetine (ROR = 13.60), suggesting a potential risk despite its low reported incidence rates of SD. Spearman correlation analysis revealed potential effects for the binding affinities of serotonin transporter, 5-HT1B, and 5-HT2A receptors on reduced sexual desire. CONCLUSIONS The present investigation has detected new and unexpected signals of antidepressant-related SDs. Further research is needed to validate and clarify the observed associations.
Collapse
Affiliation(s)
- Yu Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youjun Chen
- Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Mou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingting Tan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanying Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiyi Qian
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Chien PY, Su CL, Liu PH, Chang CH, Gean PW. The dorsal raphe-to-ventral hippocampal projection modulates reactive aggression through 5-HT 1B receptors. Eur J Pharmacol 2024; 981:176918. [PMID: 39159717 DOI: 10.1016/j.ejphar.2024.176918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Maladaptive reactive aggression is a core symptom of neuropsychiatric disorders such as schizophrenia. While uncontrolled aggression dampens societal safety, there is a limited understanding of the neural regulation involved in reactive aggression and its treatment. High levels of aggression have been linked to low serotonin (5-HT) levels. Additionally, post-weaning socially isolated (SI) mice exhibit outbursts of aggression following encountering acute stress, and hyperactivated ventral hippocampus (vHip) involves this stress-provoked escalated aggression. Here, we investigated the potential role of the raphe nucleus projecting to the vHip in modulating aggressive behavior. Chemogenetically activating the dorsal raphe nucleus (DRN) soma projecting the vHip or DRN nerve terminals in the vHip reduced reactive aggression. The reduction of attack behavior was abolished by the pretreatment of 5-HT1B receptor antagonist SB-224289. However, activating the median raphe nucleus (MRN)-to-vHip pathway ameliorated depression-like behavior but did not affect reactive aggression. DRN→vHip activation suppressed the vHip downstream area, the ventromedial hypothalamus (VMH), which is a core aggression area. Intra-vHip infusion of 5-HT1B receptor agonists (anpirtoline, CP-93129) suppressed reactive aggression and decreased c-Fos levels in the vHip neurons projecting to the VMH, suggesting an inhibition mechanism. Our findings indicate that activating the DRN projecting to the vHip is sufficient to inhibit reactive aggression in a 5-HT1B receptor-dependent manner. Thus, targeting 5-HT1B receptor could serve as a promising therapeutic approach to ameliorate symptoms of reactive aggression.
Collapse
Affiliation(s)
- Po-Yu Chien
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan; Department of Pharmacy, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung, Taiwan
| | - Chun-Lin Su
- Division of Natural Sciences, Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Pei-Hua Liu
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan
| | - Chih-Hua Chang
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan.
| | - Po-Wu Gean
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan.
| |
Collapse
|
8
|
Fujii C, Zorumski CF, Izumi Y. Endoplasmic reticulum stress, autophagy, neuroinflammation, and sigma 1 receptors as contributors to depression and its treatment. Neural Regen Res 2024; 19:2202-2211. [PMID: 38488553 PMCID: PMC11034583 DOI: 10.4103/1673-5374.391334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 04/24/2024] Open
Abstract
The etiological factors contributing to depression and other neuropsychiatric disorders are largely undefined. Endoplasmic reticulum stress pathways and autophagy are well-defined mechanisms that play critical functions in recognizing and resolving cellular stress and are possible targets for the pathophysiology and treatment of psychiatric and neurologic illnesses. An increasing number of studies indicate the involvement of endoplasmic reticulum stress and autophagy in the control of neuroinflammation, a contributing factor to multiple neuropsychiatric illnesses. Initial inflammatory triggers induce endoplasmic reticulum stress, leading to neuroinflammatory responses. Subsequently, induction of autophagy by neurosteroids and other signaling pathways that converge on autophagy induction are thought to participate in resolving neuroinflammation. The aim of this review is to summarize our current understanding of the molecular mechanisms governing the induction of endoplasmic reticulum stress, autophagy, and neuroinflammation in the central nervous system. Studies focused on innate immune factors, including neurosteroids with anti-inflammatory roles will be reviewed. In the context of depression, animal models that led to our current understanding of molecular mechanisms underlying depression will be highlighted, including the roles of sigma 1 receptors and pharmacological agents that dampen endoplasmic reticulum stress and associated neuroinflammation.
Collapse
Affiliation(s)
- Chika Fujii
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
9
|
Mograbi DC, Rodrigues R, Bienemann B, Huntley J. Brain Networks, Neurotransmitters and Psychedelics: Towards a Neurochemistry of Self-Awareness. Curr Neurol Neurosci Rep 2024; 24:323-340. [PMID: 38980658 PMCID: PMC11258181 DOI: 10.1007/s11910-024-01353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Self-awareness can be defined as the capacity of becoming the object of one's own awareness and, increasingly, it has been the target of scientific inquiry. Self-awareness has important clinical implications, and a better understanding of the neurochemical basis of self-awareness may help clarifying causes and developing interventions for different psychopathological conditions. The current article explores the relationship between neurochemistry and self-awareness, with special attention to the effects of psychedelics. RECENT FINDINGS The functioning of self-related networks, such as the default-mode network and the salience network, and how these are influenced by different neurotransmitters is discussed. The impact of psychedelics on self-awareness is reviewed in relation to specific processes, such as interoception, body ownership, agency, metacognition, emotional regulation and autobiographical memory, within a framework based on predictive coding. Improved outcomes in emotional regulation and autobiographical memory have been observed in association with the use of psychedelics, suggesting higher-order self-awareness changes, which can be modulated by relaxation of priors and improved coping mechanisms linked to cognitive flexibility. Alterations in bodily self-awareness are less consistent, being potentially impacted by doses employed, differences in acute/long-term effects and the presence of clinical conditions. Future studies investigating the effects of different molecules in rebalancing connectivity between resting-state networks may lead to novel therapeutic approaches and the refinement of existing treatments.
Collapse
Affiliation(s)
- Daniel C Mograbi
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Rafael Rodrigues
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bheatrix Bienemann
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonathan Huntley
- Division of Psychiatry, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
10
|
Tejeda-Martínez AR, Ramos-Molina AR, Brand-Rubalcava PA, Flores-Soto ME. Involvement of serotonergic receptors in depressive processes and their modulation by β-arrestins: A review. Medicine (Baltimore) 2024; 103:e38943. [PMID: 38996114 PMCID: PMC11245247 DOI: 10.1097/md.0000000000038943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Over time, several studies have been conducted to demonstrate the functions of the neurotransmitter 5-hydroxytryptamine (5-HT), better known as serotonin. This neurotransmitter is associated with the modulation of various social and physiological behaviors, and its dysregulation has consequences at the behavioral level, leading to various neurophysiological disorders. Disorders such as anxiety, depression, schizophrenia, epilepsy, sexual disorders, and eating disorders, have been closely linked to variations in 5-HT concentrations and modifications in brain structures, including the raphe nuclei (RN), prefrontal cortex, basal ganglia, hippocampus, and hypothalamus, among others. The involvement of β-arrestin proteins has been implicated in the modulation of the serotonergic receptor response, as well as the activation of different signaling pathways related to the serotonergic system, this is particularly relevant in depressive disorders. This review will cover the implications of alterations in 5-HT receptor expression in depressive disorders in one hand and how β-arrestin proteins modulate the response mediated by these receptors in the other hand.
Collapse
Affiliation(s)
- Aldo R. Tejeda-Martínez
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Ana R. Ramos-Molina
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Patricia A. Brand-Rubalcava
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, México
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, México
| | - Mario E. Flores-Soto
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara, México
| |
Collapse
|
11
|
Korkmaz ND, Cikrikcili U, Akan M, Yucesan E. Psychedelic therapy in depression and substance use disorders. Eur J Neurosci 2024; 60:4063-4077. [PMID: 38773750 DOI: 10.1111/ejn.16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/20/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
Psychoactive substances obtained from botanicals have been applied for a wide variety of purposes in the rituals of different cultures for thousands of years. Classical psychedelics from N,N'-dimethyltryptamine, psilocybin, mescaline and various lysergamides cause specific alterations in perception, emotion and cognition by acting through serotonin 5-HT2A receptor activation. Lysergic acid diethylamide, the first famous breakthrough in the field, was discovered by chance by Albert Hoffman in the Zurich Sandoz laboratory in 1943, and studies on its psychoactive effects began to take place in the literature. Studies in this area were blocked after the legislation controlling the use and research of psychedelic drugs came into force in 1967, but since the 1990s, it has started to be a matter of scientific curiosity again by various research groups. In particular, with the crucial reports of psychotherapy-assisted psilocybin applications for life-threatening cancer-related anxiety and depression, a new avenues have been opened in the treatment of psychiatric diseases such as treatment-resistant depression and substance addictions. An increasing number of studies show that psychedelics have a very promising potential in the treatment of neuropsychiatric diseases where the desired efficiency cannot be achieved with conventional treatment methods. In this context, we discuss psychedelic therapy, encompassing its historical development, therapeutic applications and potential treatment effects-especially in depression, trauma disorders and substance use disorders-within the framework of ethical considerations.
Collapse
Affiliation(s)
- Nur Damla Korkmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ugur Cikrikcili
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, Germany
- Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Merve Akan
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Emrah Yucesan
- Institute of Neurological Sciences, Department of Neurogenetics, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
12
|
Liu J, Tong R, Lu Z, Wang Z, Wang Y, Liu Y, Yuan H, Jia F, Zhang X, Li Z, Du X, Zhang X. Development and validation of a nomogram for suicide attempts in patients with first-episode drug-naïve major depressive disorder. Front Psychiatry 2024; 15:1398733. [PMID: 38903642 PMCID: PMC11187325 DOI: 10.3389/fpsyt.2024.1398733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVE The risk of suicide can be decreased by accurately identifying high-risk suicide groups and implementing the right interventions. The aim of this study was to develop a nomogram for suicide attempts (SA) in patients with first-episode drug-naïve (FEDN) major depressive disorder (MDD). METHODS This study undertook a cross-sectional analysis of 1,718 patients diagnosed with FEDN MDD, providing comprehensive clinical data from September 2016 to December 2018. Data on anthropometric and sociodemographic factors were gathered, and the severity of depression and anxiety was evaluated using the 17-item Hamilton Depression Scale (HAMD-17) and the Hamilton Anxiety Scale (HAMA), respectively. Additionally, thyroid hormone levels, lipid profile parameters, and fasting blood glucose (FBG) were measured. Suicide attempt (SA) history was verified based on an amalgamation of medical records, patient interviews, and family interviews. Participants were randomly divided into a training group (70%, n = 1,204) and a validation group (30%, n = 514). In the training group, LASSO analysis and multivariate regression were used to identify variables associated with SA. A nomogram was then constructed using the identified risk factors to estimate the likelihood of SA within the training group. To assess the accuracy, the area under the receiver operating characteristic curve (AUC) was utilized, and calibration plots were employed to evaluate calibration. Additionally, decision curve analysis (DCA) was performed to assess the precision of the model. Finally, internal validation was carried out using the validation group. RESULTS A practical nomogram has been successfully constructed, incorporating HAMD, HAMA, thyroid stimulating hormone (TSH), thyroid peroxidase antibody (TPOAb), and systolic blood pressure (SBP) parameters, to estimate the probability of SA in Chinese patients diagnosed with FEDN MDD. The pooled area under the ROC for SA risk in both the training and validation groups was found to be 0.802 (95% CI: 0.771 to 0.832) and 0.821 (95% CI: 0.774 to 0.868), respectively. Calibration analysis revealed a satisfactory correlation between the nomogram probabilities and the actual observed probabilities. The clinical applicability of the nomogram was confirmed through decision curve analysis. To enhance accessibility for clinicians and researchers, an online version of the nomogram can be accessed at https://doctorjunjunliu.shinyapps.io/dynnomapp/. CONCLUSIONS We constructed and validated a nomogram for the early detection of FEDN MDD patients with a high risk of SA, thereby contributing to the implementation of effective suicide prevention programs.
Collapse
Affiliation(s)
- Junjun Liu
- Nanjing Meishan Hospital, Nanjing, China
- Soochow University, Suzhou, China
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | | | - Zhaomin Lu
- Nanjing Meishan Hospital, Nanjing, China
| | - Zhiye Wang
- Nanjing Meishan Hospital, Nanjing, China
| | | | - Yang Liu
- Nanjing Meishan Hospital, Nanjing, China
| | | | - Fengnan Jia
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiaobin Zhang
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Zhe Li
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiangdong Du
- Soochow University, Suzhou, China
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiangyang Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Fakih N, Fakhoury M. Alzheimer Disease-Link With Major Depressive Disorder and Efficacy of Antidepressants in Modifying its Trajectory. J Psychiatr Pract 2024; 30:181-191. [PMID: 38819242 DOI: 10.1097/pra.0000000000000779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Alzheimer disease (AD) is a devastating neurodegenerative disorder that affects millions of individuals worldwide, with no effective cure. The main symptoms include learning and memory loss, and the inability to carry out the simplest tasks, significantly affecting patients' quality of life. Over the past few years, tremendous progress has been made in research demonstrating a link between AD and major depressive disorder (MDD). Evidence suggests that MDD is commonly associated with AD and that it can serve as a precipitating factor for this disease. Antidepressants such as selective serotonin reuptake inhibitors, which are the first line of treatment for MDD, have shown great promise in the treatment of depression in AD, although their effectiveness remains controversial. The goal of this review is to summarize current knowledge regarding the association between AD, MDD, and antidepressant treatment. It first provides an overview of the interaction between AD and MDD at the level of genes, brain regions, neurotransmitter systems, and neuroinflammatory markers. The review then presents current evidence regarding the effectiveness of various antidepressants for AD-related pathophysiology and then finally discusses current limitations, challenges, and future directions.
Collapse
Affiliation(s)
- Nour Fakih
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | | |
Collapse
|
14
|
Beltrame FL, Moysés THP, Coelho MP, Steinvascher MCR, de Oliveira SA, da Silva AAS, Cerri PS, Sasso-Cerri E. Role of serotonin, estrogen, and TNF-α in the paroxetine-impaired steroidogenesis and testicular macrophages polarization. Andrology 2024; 12:655-673. [PMID: 37675929 DOI: 10.1111/andr.13513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Paroxetine, a selective serotonin reuptake inhibitor (SSRI) antidepressant, has caused male sexual dysfunction; however, the paroxetine mechanisms of action in testes are still unclear. OBJECTIVES Paroxetine serotonergic effects in testes were evaluated, focusing on steroidogenesis and the correlation between macrophages population and possible TNF-α-derived oxidative stress. We also verified whether the changes are reversible following treatment interruption. MATERIALS AND METHODS Adult rats received paroxetine (PG35 and PG65) or tap water (CG) for 35 days. PG65 was maintained without treatment for 30 more days. Intratesticular testosterone (IT), nitrite, and malondialdehyde concentrations were measured. To confirm serotonergic and estrogenic effects, Htr1b and Esr1 expressions were analyzed. The daily sperm production (DSP), frequency of abnormal seminiferous tubules (ST), SC number, ST area, and Leydig cells nuclear area (LCnu) were evaluated. TUNEL+ germ cells, M1 (CD68+ ), and M2 (Perls+ ) macrophages were quantified. 17β-HSD7, CYP19A1, NDRG2, oxytocin, TNF-α, and iNOS were evaluated by immunoreactions. Oxytocin and NDRG2 protein levels as well as Tnfa mRNA expression were also analyzed. RESULTS The Htr1b downregulation in testes confirmed the paroxetine serotonergic effect. The testicular sections showed abnormal ST frequency, ST atrophy and reduction of DSP, LCnu, SC number and Perls+ macrophages. TUNEL+ germ cells and LC were associated with strong NDRG2 immunoexpression. Paroxetine reduced IT levels and 17β-HSD7 immunoexpression in parallel to increased CYP19A1, oxytocin, TNF-α and iNOS. Esr1 and Tnfa overexpression and increased number of CD68+ macrophages were also observed together with high nitrite and malondialdehyde levels. Most parameters were not recovered in PG65. CONCLUSIONS Paroxetine serotonergic effect impairs LC steroidogenesis, via aromatization, increasing estrogen/testosterone ratio, which in turn upregulate NDRG2, promoting apoptosis, and impairing sperm production. Serotonin-estrogen pathways may be responsible for M2/M1 polarization, Tnfa upregulation, and induction of oxidative stress. The unrecovered testicular changes after treatment discontinuation are due to persistent paroxetine serotonin/estrogen effects.
Collapse
Affiliation(s)
- Flávia Luciana Beltrame
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
- Institute of Health Sciences, Paulista University (UNIP), São Paulo, Brazil
| | | | | | - Maria Clara Rossetto Steinvascher
- School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University (Unesp), Araraquara, Brazil
| | | | | | - Paulo Sérgio Cerri
- School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University (Unesp), Araraquara, Brazil
| | - Estela Sasso-Cerri
- School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University (Unesp), Araraquara, Brazil
| |
Collapse
|
15
|
Su Y, Qiu P, Cheng L, Zhang L, Peng W, Meng X. Catechin Protects against Lipopolysaccharide-induced Depressive-like Behaviour in Mice by Regulating Neuronal and Inflammatory Genes. Curr Gene Ther 2024; 24:292-306. [PMID: 38783529 DOI: 10.2174/0115665232261045231215054305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Many studies have suggested that tea has antidepressant effects; however, the underlying mechanism is not fully studied. As the main anti-inflammatory polyphenol in tea, catechin may contribute to the protective role of tea against depression. OBJECTIVE The objective of this study is to prove that catechin can protect against lipopolysaccharide (LPS)-induced depressive-like behaviours in mice, and then explore the underlying molecular mechanisms. METHODS Thirty-one C57BL/6J mice were categorized into the normal saline (NS) group, LPS group, catechin group, and amitriptyline group according to their treatments. Elevated Plus Maze (EPM), Tail Suspension Test (TST), and Open Field Test (OFT) were employed to assess depressive- like behaviours in mice. RNA sequencing (RNA-seq) and subsequent Bioinformatics analyses, such as differential gene analysis and functional enrichment, were performed on the four mouse groups. RESULTS In TST, the mice in the LPS group exhibited significantly longer immobility time than those in the other three groups, while the immobility times for the other three groups were not significantly different. Similarly in EPM, LPS-treated mice exhibited a significantly lower percentage in the time/path of entering open arms than the mice in the other three groups, while the percentages of the mice in the other three groups were not significantly different. In OFT, LPS-treated mice exhibited significantly lower percentages in the time/path of entering the centre area than those in the other three groups. The results suggested that the LPS-induced depression models were established successfully and catechin can reverse (LPS)-induced depressive-like behaviours in mice. Finally, RNA-seq analyses revealed 57 differential expressed genes (DEGs) between LPS and NS with 19 up-regulated and 38 down-regulated. Among them, 13 genes were overlapped with the DEGs between LPS and cetechin (in opposite directions), with an overlapping p-value < 0.001. The 13 genes included Rnu7, Lcn2, C4b, Saa3, Pglyrp1, Gpx3, Lyz2, S100a8, S100a9, Tmem254b, Gm14288, Hbb-bt, and Tmem254c, which might play key roles in the protection of catechin against LPS-induced depressive-like behaviours in mice. The 13 genes were significantly enriched in defense response and inflammatory response, indicating that catechin might work through counteracting changes in the immune system induced by LPS. CONCLUSION Catechin can protect mice from LPS-induced depressive-like behaviours through affecting inflammatory pathways and neuron-associated gene ontologies.
Collapse
Affiliation(s)
- Yanfang Su
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Qiu
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Cheng
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijing Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenpeng Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianfang Meng
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
16
|
Sharp T, Collins H. Mechanisms of SSRI Therapy and Discontinuation. Curr Top Behav Neurosci 2024; 66:21-47. [PMID: 37955823 DOI: 10.1007/7854_2023_452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
SSRIs are one of the most widely used drug therapies in primary care and psychiatry, and central to the management of the most common mental health problems in today's society. Despite this, SSRIs suffer from a slow onset of therapeutic effect and relatively poor efficacy as well as adverse effects, with recent concerns being focused on a disabling SSRI discontinuation syndrome. The mechanism underpinning their therapeutic effect has long shifted away from thinking that SSRIs act simply by increasing 5-HT in the synapse. Rather, a current popular view is that increased 5-HT is just the beginning of a series of complex downstream signalling events, which trigger changes in neural plasticity at the functional and structural level. These changes in plasticity are then thought to interact with neuropsychological processes to enhance re-learning of emotional experiences that ultimately brings about changes in mood. This compelling view of SSRI action is underpinning attempts to understand fast-acting antidepressants, such as ketamine and psychedelic drugs, and aid the development of future therapies. An important gap in the theory is evidence that changes in plasticity are causally linked to relevant behavioural effects. Also, predictions that the SSRI-induced neural plasticity might have applicability in other areas of medicine have not yet been borne out. In contrast to the sophisticated view of the antidepressant action of SSRIs, the mechanism underpinning SSRI discontinuation is little explored. Nevertheless, evidence of rebound increases in 5-HT neuron excitability immediately on cessation of SSRI treatment provide a starting point for future investigation. Indeed, this evidence allows formulation of a mechanistic explanation of SSRI discontinuation which draws on parallels with the withdrawal states of other psychotropic drugs.
Collapse
Affiliation(s)
- Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Helen Collins
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Seung HB, Kwon HJ, Kwon CY, Kim SH. Neuroendocrine Biomarkers of Herbal Medicine for Major Depressive Disorder: A Systematic Review and Meta-Analysis. Pharmaceuticals (Basel) 2023; 16:1176. [PMID: 37631092 PMCID: PMC10458856 DOI: 10.3390/ph16081176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Major depressive disorder (MDD) is a medical condition involving persistent sadness and loss of interest; however, conventional treatments with antidepressants and cognitive behavioral therapy have limitations. Based on the pathogenesis of MDD, treatments using herbal medicines (HM) have been identified in animal studies. We conducted a systematic review of clinical studies to identify neurobiological outcomes and evaluate the effectiveness of HM in treating MDD. A meta-analysis was performed by searching nine databases from their inception until 12 September 2022, including 31 randomized controlled trials with 3133 participants, to examine the effects of HM on MDD using neurobiological biomarkers and a depression questionnaire scale. Quality assessment was performed using a risk of bias tool. Compared to antidepressants alone, HM combined with an antidepressant significantly increased concentrations of serotonin (SMD = 1.96, 95% CI: 1.24-2.68, p < 0.00001, I2 = 97%), brain-derived neurotrophic factor (SMD = 1.38, 95% CI: 0.92-1.83, p < 0.00001, I2 = 91%), and nerve growth factors (SMD = 2.38, 95% CI: 0.67-4.10, p = 0.006, I2 = 96%), and decreased cortisol concentrations (SMD = -3.78, 95% CI: -4.71 to -2.86, p < 0.00001, I2 = 87%). Although HM or HM with an antidepressant benefits MDD treatment through improving neuroendocrine factors, these findings should be interpreted with caution because of the low methodological quality and clinical heterogeneity of the included studies.
Collapse
Affiliation(s)
- Hye-Bin Seung
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (H.-B.S.); (H.-J.K.)
| | - Hui-Ju Kwon
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (H.-B.S.); (H.-J.K.)
| | - Chan-Young Kwon
- Department of Oriental Neuropsychiatry, Dong-Eui University College of Korean Medicine, Busan 47227, Republic of Korea;
| | - Sang-Ho Kim
- Department of Neuropsychiatry of Korean Medicine, Pohang Korean Medicine Hospital, Daegu Haany University, 411 Saecheonnyeon-daero, Nam-gu, Pohang-si 790-826, Republic of Korea
| |
Collapse
|
18
|
Zhou H, Wang K, Xu Z, Liu D, Wang Y, Guo M. Chronic unpredictable stress induces depression/anxiety-related behaviors and alterations of hippocampal monoamine receptor mRNA expression in female mice at different ages. Heliyon 2023; 9:e18369. [PMID: 37539192 PMCID: PMC10393760 DOI: 10.1016/j.heliyon.2023.e18369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023] Open
Abstract
Depression and anxiety are the most common mental health disorders. Though they affect people at any age and occur more often in females, the pathophysiological changes under these conditions are less investigated. In the present study, we examined the effects of age and stress on depression- and anxiety-related behaviors in female mice. Saccharin preference and the open field test were carried out before and after chronic unpredictable stress in 4-, 14- and 25-month-old female mice. After behavioral tests, mRNA levels of monoamine receptors in the hippocampus were measured by real-time RT-PCR. Chronic unpredictable stress decreased saccharin preference in 4-, 14- and 25-month-old mice and the time spent in the center in the open field test in 25-month-old mice. For monoamine receptors, analysis of variance revealed significant effects of age on mRNA levels of Htr1a, Htr2a, Htr6, Adra1a, Adrb2, and Adrb3, significant effects of stress on mRNA levels of Htr4, Adra2c, Adrb1, and Adrb2, and interactions of age × stress on mRNA levels of Htr1a, Htr5b, Adra1d, Adra2a, Adra2c, and Adrb1. Chronic unpredictable stress decreased mRNA levels of Htr4, Htr5b, Adra2c, and Adrb1 in 4-month-old female mice. Correlations were observed between saccharin preference and mRNA levels of Htr4, Htr5b, Htr6, Adra1d, Adra2a, and Adra2c in 4-month-old mice and between the time spent in the center in the open field test and mRNA levels of Htr1b in 4-month-old mice, Htr3a, Htr7, and Adrb2 in 14-month-old mice, and Drd2 in 4- and 14-month-old mice. Our findings support that stress induces depression- and anxiety-related behaviors and the expression of hippocampal monoamine receptors in an age-dependent manner in female mice.
Collapse
Affiliation(s)
- Han Zhou
- Department of Psychology, Binzhou Medical University Hospital, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, 256603, China
- Medical Research Center, Binzhou Medical University Hospital, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Kaixin Wang
- Medical Research Center, Binzhou Medical University Hospital, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Zhicheng Xu
- Medical Research Center, Binzhou Medical University Hospital, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Dunjiang Liu
- Medical Research Center, Binzhou Medical University Hospital, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Yameng Wang
- Medical Research Center, Binzhou Medical University Hospital, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Ming Guo
- Department of Psychology, Binzhou Medical University Hospital, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, 256603, China
- Medical Research Center, Binzhou Medical University Hospital, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, 256603, China
| |
Collapse
|
19
|
Tsybko AS, Kondaurova EM, Zalivina EA, Blaginya VO, Naumenko VS. Effects of Chronic Combined Treatment with Ketanserin and Fluoxetine in B6.CBA-D13Mit76C Recombinant Mice with Abnormal 5-HT 1A Receptor Functional Activity. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:758-769. [PMID: 37748872 DOI: 10.1134/s0006297923060044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 09/27/2023]
Abstract
The recombinant B6.CBA-D13Mit76C mouse strain is characterized by an altered sensitivity of 5-HT1A receptors and upregulated 5-HT1A gene transcription. Recently, we found that in B6.CBA-D13Mit76C mice, chronic fluoxetine treatment produced the pro-depressive effect in a forced swim test. Since 5-HT2A receptor blockade may be beneficial in treatment-resistant depression, we investigated the influence of chronic treatment (14 days, intraperitoneally) with selective 5-HT2A antagonist ketanserin (0.5 mg/kg), fluoxetine (20 mg/kg), or fluoxetine + ketanserin on the behavior, functional activity of 5-HT1A and 5-HT2A receptors, serotonin turnover, and transcription of principal genes of the serotonin system in the brain of B6.CBA-D13Mit76C mice. Ketanserin did not reverse the pro-depressive effect of fluoxetine, while fluoxetine, ketanserin, and fluoxetine + ketanserin decreased the functional activity of 5-HT1A receptors and Htr1a gene transcription in the midbrain and hippocampus. All tested drug regimens decreased the mRNA levels of Slc6a4 and Maoa in the midbrain. These changes were not accompanied by a significant shift in the levels of serotonin and its metabolite 5-HIAA. Notably, ketanserin upregulated enzymatic activity of tryptophan hydroxylase 2 (TPH2). Thus, despite some benefits (reduced Htr1a, Slc6a4, and Maoa transcription and increased TPH2 activity), prolonged blockade of 5-HT2A receptors failed to ameliorate the adverse effect of fluoxetine in the case of abnormal functioning of 5-HT1A receptors.
Collapse
Affiliation(s)
- Anton S Tsybko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Elena M Kondaurova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Elena A Zalivina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Varvara O Blaginya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
20
|
Halder AK, Mitra S, Cordeiro MNDS. Designing multi-target drugs for the treatment of major depressive disorder. Expert Opin Drug Discov 2023; 18:643-658. [PMID: 37183604 DOI: 10.1080/17460441.2023.2214361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Major depressive disorders (MDD) pose major health burdens globally. Currently available medications have their limitations due to serious adverse effects, long latency periods as well as resistance. Considering the highly complicated pathological nature of this disorder, it has been suggested that multitarget drugs or multi-target-directed ligands (MTDLs) may provide long-term therapeutic solutions for the treatment of MDD. AREAS COVERED In the current review, recent lead design and lead modification strategies have been covered. Important investigations reported in the last ten years (2013-2022) for the pre-clinical development of MTDLs (through synthetic medicinal chemistry and biological evaluation) for the treatment of MDD were discussed as case studies to focus on the recent design strategies. The discussions are categorized based on the pharmacological targets. On the basis of these important case studies, the challenges involved in different design strategies were discussed in detail. EXPERT OPINION Even though large variations were observed in the selection of pharmacological targets, some potential biological targets (NMDA, melatonin receptors) are required to be explored extensively for the design of MTDLs. Similarly, apart from structure activity relationship (SAR), in silico techniques such as multitasking cheminformatic modelling, molecular dynamics simulation and virtual screening should be exploited to a greater extent.
Collapse
Affiliation(s)
- Amit Kumar Halder
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur 713206, India
| | - Soumya Mitra
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur 713206, India
| | - Maria Natalia D S Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
21
|
Lin J, Liu W, Guan J, Cui J, Shi R, Wang L, Chen D, Liu Y. Latest updates on the serotonergic system in depression and anxiety. Front Synaptic Neurosci 2023; 15:1124112. [PMID: 37228487 PMCID: PMC10203201 DOI: 10.3389/fnsyn.2023.1124112] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/24/2023] [Indexed: 05/27/2023] Open
Abstract
Psychiatric disorders are among the leading causes of global health burden, with depression and anxiety being the most disabling subtypes. The two common disorders, depression and anxiety, usually coexist and are pathologically polygenic with complicated etiologies. Current drug-based therapies include selective serotonin reuptake inhibitors, serotonin and norepinephrine reuptake inhibitors, and 5-hydroxytryptamine partial agonists. However, these modalities share common limitations, such as slow onset and low efficacy, which is why potential mechanistic insights for new drug targets are needed. In this review, we summarize recent advances in brain localization, pathology, and therapeutic mechanisms of the serotonergic system in depression and anxiety.
Collapse
Affiliation(s)
- Jianwen Lin
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
| | - Wenxin Liu
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Graduate Studies, Dalian Medical University, Dalian, China
| | - Jing Guan
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Graduate Studies, Dalian Medical University, Dalian, China
- Department of Pediatrics, Yingkou Economic and Technological Development Zone Central Hospital, Yingkou, China
| | - Jianing Cui
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
| | - Ruolin Shi
- Department of Graduate Studies, Dalian Medical University, Dalian, China
| | - Lu Wang
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
| | - Dong Chen
- Department of Neurosurgery, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
| | - Yi Liu
- Department of Neurology, Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Graduate Studies, Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
Shad MU. Recent Developments in Pharmacotherapy of Depression: Bench to Bedside. J Pers Med 2023; 13:jpm13050773. [PMID: 37240943 DOI: 10.3390/jpm13050773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
For the last 70 years, we did not move beyond the monoamine hypothesis of depression until the approval of the S-enantiomer of ketamine, an N-methyl-D-aspartate (NMDA) receptor blocker and the first non-monoaminergic antidepressant characterized by rapid antidepressant and antisuicidal effects. A similar profile has been reported with another NMDA receptor antagonist, dextromethorphan, which has also been approved to manage depression in combination with bupropion. More recently, the approval of a positive allosteric modulator of GABA-A receptors, brexanolone, has added to the list of recent breakthroughs with the relatively rapid onset of antidepressant efficacy. However, multiple factors have compromised the clinical utility of these exciting discoveries in the general population, including high drug acquisition costs, mandatory monitoring requirements, parenteral drug administration, lack of insurance coverage, indirect COVID-19 effects on healthcare systems, and training gaps in psychopharmacology. This narrative review aims to analyze the clinical pharmacology of recently approved antidepressants and discuss potential barriers to the bench-to-bedside transfer of knowledge and clinical application of exciting recent discoveries. Overall, clinically meaningful advances in the treatment of depression have not reached a large proportion of depressed patients, including those with treatment-resistant depression, who might benefit the most from the novel antidepressants.
Collapse
Affiliation(s)
- Mujeeb U Shad
- Valley Health System (VHS), Las Vegas, NV 89118, USA
- The Department of Psychiatry, University of Nevada, Las Vegas, School of Medicine, The Touro University of Nevada College of Osteopathic Medicine (TUNCOM), Henderson, NV 89014, USA
- The University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
23
|
Kwami Edem Kukuia K, Boakye Burns F, Kofi Adutwum-Ofosu K, Appiah F, Kwabena Amponsah S, Begyinah R, Efua Koomson A, Yaw Takyi F, Amatey Tagoe T, Amoateng P. Increased BDNF and hippocampal dendritic spine density are associated with the rapid antidepressant-like effect of iron-citalopram and iron-imipramine combinations in mice. Neuroscience 2023; 519:90-106. [PMID: 36948482 DOI: 10.1016/j.neuroscience.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Iron supplementation previously demonstrated antidepressant-like effects in post-partum rats. The present study evaluates the possible synergistic antidepressant effect of sub-therapeutic dose of iron co-administered with citalopram or imipramine in female Institute of Cancer Research mice. Depression-like symptoms were induced in the forced swim (FST), tail suspension (TST), and open space swim (OSST) tests while open field test (OFT) was used to assess locomotor activity. Mice (n=8) received iron (0.8- 7.2 mg/kg), citalopram (3-30 mg/kg), imipramine (3-30 mg/kg), desferrioxamine (50 mg/kg) or saline in the single treatment phase of each model and subsequently a sub-therapeutic dose of iron co-administered with citalopram or imipramine. Assessment of serum BDNF and dendritic spine density was done using ELISA and Golgi staining techniques respectively. Iron, citalopram and imipramine, unlike desferrioxamine, reduced immobility score in the TST, FST and OSST without affecting locomotor activity, suggesting antidepressant-like effect. Sub-therapeutic dose of iron in combination with citalopram or imipramine further enhanced the antidepressant-like effect, producing a more rapid effect when compared to the iron, citalopram or imipramine alone. Iron, citalopram and imipramine or their combinations increased serum BDNF concentration, hippocampal neuronal count and dendritic spine densities. Our study provides experimental evidence that iron has antidepressant-like effect and sub-therapeutic dose of iron combined with citalopram or imipramine produces more rapid antidepressant-like effect. We further show that iron alone or its combination with citalopram or imipramine attenuates the neuronal loss associated with depressive conditions, increases dendritic spines density and BDNF levels. These finding suggest iron-induced neuronal plasticity in the mice brain.
Collapse
Affiliation(s)
- Kennedy Kwami Edem Kukuia
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana.
| | - Frederick Boakye Burns
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, P.O Box LG 43, Legon, Accra, Ghana.
| | - Kevin Kofi Adutwum-Ofosu
- Department of Anatomy, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana.
| | - Frimpong Appiah
- Department of Community Health and Medicine, School of Food and Health Sciences, Anglican University College of Technology, Nkoranza, Ghana.
| | - Seth Kwabena Amponsah
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana.
| | - Richard Begyinah
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, P.O Box LG 43, Legon, Accra, Ghana.
| | - Awo Efua Koomson
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana.
| | - Ferka Yaw Takyi
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, P.O Box LG 43, Legon, Accra, Ghana.
| | - Thomas Amatey Tagoe
- Department of Physiology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana.
| | - Patrick Amoateng
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, P.O Box LG 43, Legon, Accra, Ghana.
| |
Collapse
|
24
|
Rech TDST, Ribeiro EH, Castro ET, Alves AG, Strelow DN, Neto JSS, Braga AL, Brüning CA, Bortolatto CF. Antidepressant Potential of a Functionalized 3-Selanyl Benzo[ b]Furan Compound in Mice: Focus on the Serotonergic System. ACS Chem Neurosci 2023; 14:1181-1192. [PMID: 36853167 DOI: 10.1021/acschemneuro.2c00816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The present study investigated the antidepressant-like potential of a functionalized 3-selanyl benzo[b]furan (SeBZF) in male Swiss mice. To evaluate possible antidepressant-like actions, the compounds SeBZF1-5 (50 mg/kg, intragastric, i.g., route) were acutely screened in the tail suspension tests (TSTs). The compound 3-((4-methoxyphenyl)selanyl)-2-phenylbenzofuran (SeBZF3) was then selected. Dose-response and time-response curves revealed that SeBFZ3 exerts antidepressant-like effects in the TST (5-50 mg/kg) and forced swimming test (FST; 50 mg/kg). Additional tests demonstrated that pretreatment with receptor antagonists WAY100635 (5-HT1A; 0.1 mg/kg, subcutaneous route), ketanserin (5-HT2A/C; 1 mg/kg, intraperitoneal, i.p.), or ondansetron (5-HT3; 1 mg/kg, i.p.) blocked the SeBZF3 antidepressant-like effects (50 mg/kg) in the TST. In addition, the coadministration of subeffective doses of SeBZF3 (1 mg/kg, i.g.) and fluoxetine (a selective serotonin reuptake inhibitor; 5 mg/kg, i.p.) produced synergistic action. A high dose of SeBZF3 (300 mg/kg) did not produce oral acute toxicity. The present results provide evidence for the antidepressant-like action of SeBZF3 and its relative safety, as well as predict the possible interactions with the serotonergic system, aiding in the development of novel options to alleviate psychiatric disabilities.
Collapse
Affiliation(s)
- Taís da Silva Teixeira Rech
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Estela Hartwig Ribeiro
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Ediandra Tissot Castro
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Amália Gonçalves Alves
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Dianer Nornberg Strelow
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - José Sebastião Santos Neto
- Programa de Pós-graduação em Química (PPGQ), Laboratório de Síntese de Derivados de Selênio e Telúrio (LabSelen), Departamento de Química, Universidade Federal de Santa Catarina, CEP 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Antonio Luiz Braga
- Programa de Pós-graduação em Química (PPGQ), Laboratório de Síntese de Derivados de Selênio e Telúrio (LabSelen), Departamento de Química, Universidade Federal de Santa Catarina, CEP 88040-900 Florianópolis, Santa Catarina, Brazil
| | - César Augusto Brüning
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Cristiani Folharini Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
25
|
Ezurike PU, Odunola E, Oke TA, Bakre AG, Olumide O, Odetoye O, Alege AM, Abiodun OO. Ganoderma lucidum ethanol extract promotes weight loss and improves depressive-like behaviors in male and female Swiss mice. Physiol Behav 2023; 265:114155. [PMID: 36907499 DOI: 10.1016/j.physbeh.2023.114155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Metabolic and mood-related disturbances can increase the risks of developing adverse mental health problems. The medicinal mushroom, Ganoderma lucidum, is utilized in indigenous medicine to improve quality of life, promote health, and boost vitality. This study investigated the effects of Ganoderma lucidum ethanol extract (EEGL) on feeding behavioral parameters, depressive-like symptoms, and motor activity in Swiss mice. We hypothesized that EEGL would have beneficial effect on metabolic and behavioral outcomes in a dose-related manner. The mushroom was identified and authenticated via techniques of molecular biology. Forty Swiss mice (n = 10/group) of either sex were given distilled water (10 mL/kg) and graded doses of EEGL (100, 200, and 400 mg/kg) orally for 30 days, during which feed and water intake, body weight, neurobehavioral, and safety data were documented. The animals experienced a significant decrease in body weight gain and feed intake while water intake increased in a dose-dependent manner. Furthermore, EEGL significantly diminished immobility time in forced swim test (FST) and tail suspension test (TST). At the 100 and 200 mg/kg, EEGL did not cause significant alteration in motor activity in the open field test (OFT). Meanwhile, an increase in motor activity in male mice without remarkable difference in female mice was observed at the highest dose (400 mg/kg). Eighty percent of mice treated with 400 mg/kg survived till day 30. These findings suggest that EEGL at 100 and 200 mg/kg reduces the amount of weight gained and elicits antidepressant-like effects. Thus, EEGL might be useful for the management of obesity and depressive-like symptoms.
Collapse
Affiliation(s)
- Precious U Ezurike
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria.
| | - Evelyn Odunola
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Tolulope A Oke
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Adewale G Bakre
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Oluwayimika Olumide
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - OgoOluwa Odetoye
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Adenike M Alege
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Oyindamola O Abiodun
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria.
| |
Collapse
|
26
|
Zhang Y, Huang CC, Zhao J, Liu Y, Xia M, Wang X, Wei D, Chen Y, Liu B, Zheng Y, Wu Y, Chen T, Cheng Y, Xu X, Gong Q, Si T, Qiu S, Cheng J, Tang Y, Wang F, Qiu J, Xie P, Li L, He Y, Lin CP, Zac Lo CY. Resting-state functional connectivity of the raphe nuclei in major depressive Disorder: A Multi-site study. Neuroimage Clin 2023; 37:103359. [PMID: 36878150 PMCID: PMC9999207 DOI: 10.1016/j.nicl.2023.103359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/06/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Accumulating evidence showed that major depressive disorder (MDD) is characterized by a dysfunction of serotonin neurotransmission. Raphe nuclei are the sources of most serotonergic neurons that project throughout the brain. Incorporating measurements of activity within the raphe nuclei into the analysis of connectivity characteristics may contribute to understanding how neurotransmitter synthesized centers are involved in thepathogenesisof MDD. Here, we analyzed the resting-state functional magnetic resonance imaging (RS-fMRI) dataset from 1,148 MDD patients and 1,079 healthy individuals recruited across nine centers. A seed-based analysis with the dorsal raphe and median raphe nuclei was performed to explore the functional connectivity (FC) alterations. Compared to controls, for dorsal raphe, the significantly decreased FC linking with the right precuneus and median cingulate cortex were found; for median raphe, the increased FC linking with right superior cerebellum (lobules V/VI) was found in MDD patients. In further exploratory analyzes, MDD-related connectivity alterations in dorsal and median raphe nuclei in different clinical factors remained highly similar to the main findings, indicating these abnormal connectivities are a disease-related alteration. Our study highlights a functional dysconnection pattern of raphe nuclei in MDD with multi-site big data. These findings help improve our understanding of the pathophysiology of depression and provide evidence of the theoretical foundation for the development of novel pharmacotherapies.
Collapse
Affiliation(s)
- Yajuan Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China.
| | - Jiajia Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Yuchen Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaoqin Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bangshan Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Yanting Zheng
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yankun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Tianmei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Lingjiang Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Institute for Brain Research, Beijing, China
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | | | - Chun-Yi Zac Lo
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| |
Collapse
|
27
|
Popova NK, Tsybko AS, Naumenko VS. The Implication of 5-HT Receptor Family Members in Aggression, Depression and Suicide: Similarity and Difference. Int J Mol Sci 2022; 23:ijms23158814. [PMID: 35955946 PMCID: PMC9369404 DOI: 10.3390/ijms23158814] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Being different multifactorial forms of psychopathology, aggression, depression and suicidal behavior, which is considered to be violent aggression directed against the self, have principal neurobiological links: preclinical and clinical evidence associates depression, aggression and suicidal behavior with dysregulation in central serotonergic (5-HT) neurotransmission. The implication of different types of 5-HT receptors in the genetic and epigenetic mechanisms of aggression, depression and suicidality has been well recognized. In this review, we consider and compare the orchestra of 5-HT receptors involved in these severe psychopathologies. Specifically, it concentrates on the role of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3 and 5-HT7 receptors in the mechanisms underlying the predisposition to aggression, depression and suicidal behavior. The review provides converging lines of evidence that: (1) depression-related 5-HT receptors include those receptors with pro-depressive properties (5-HT2A, 5-HT3 and 5-HT7) as well as those providing an antidepressant effect (5-HT1A, 5-HT1B, 5-HT2C subtypes). (2) Aggression-related 5-HT receptors are identical to depression-related 5-HT receptors with the exception of 5-HT7 receptors. Activation of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C receptors attenuate aggressiveness, whereas agonists of 5-HT3 intensify aggressive behavior.
Collapse
|
28
|
Serotonin Receptor 5-HT2A Regulates TrkB Receptor Function in Heteroreceptor Complexes. Cells 2022; 11:cells11152384. [PMID: 35954229 PMCID: PMC9368268 DOI: 10.3390/cells11152384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Serotonin receptor 5-HT2A and tropomyosin receptor kinase B (TrkB) strongly contribute to neuroplasticity regulation and are implicated in numerous neuronal disorders. Here, we demonstrate a physical interaction between 5-HT2A and TrkB in vitro and in vivo using co-immunoprecipitation and biophysical and biochemical approaches. Heterodimerization decreased TrkB autophosphorylation, preventing its activation with agonist 7,8-DHF, even with low 5-HT2A receptor expression. A blockade of 5-HT2A receptor with the preferential antagonist ketanserin prevented the receptor-mediated downregulation of TrkB phosphorylation without restoring the TrkB response to its agonist 7,8-DHF in vitro. In adult mice, intraperitoneal ketanserin injection increased basal TrkB phosphorylation in the frontal cortex and hippocampus, which is in accordance with our findings demonstrating the prevalence of 5-HT2A–TrkB heteroreceptor complexes in these brain regions. An expression analysis revealed strong developmental regulation of 5-HT2A and TrkB expressions in the cortex, hippocampus, and especially the striatum, demonstrating that the balance between TrkB and 5-HT2A may shift in certain brain regions during postnatal development. Our data reveal the functional role of 5-HT2A–TrkB receptor heterodimerization and suggest that the regulated expression of 5-HT2A and TrkB is a molecular mechanism for the brain-region-specific modulation of TrkB functions during development and under pathophysiological conditions.
Collapse
|
29
|
Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, Ahadi R, Joghataei MT. The Roles of Serotonin in Neuropsychiatric Disorders. Cell Mol Neurobiol 2022; 42:1671-1692. [PMID: 33651238 PMCID: PMC11421740 DOI: 10.1007/s10571-021-01064-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
The serotonergic system extends throughout the central nervous system (CNS) and the gastrointestinal (GI) tract. In the CNS, serotonin (5-HT, 5-hydroxytryptamine) modulates a broad spectrum of functions, including mood, cognition, anxiety, learning, memory, reward processing, and sleep. These processes are mediated through 5-HT binding to 5-HT receptors (5-HTRs), are classified into seven distinct groups. Deficits in the serotonergic system can result in various pathological conditions, particularly depression, schizophrenia, mood disorders, and autism. In this review, we outlined the complexity of serotonergic modulation of physiologic and pathologic processes. Moreover, we provided experimental and clinical evidence of 5-HT's involvement in neuropsychiatric disorders and discussed the molecular mechanisms that underlie these illnesses and contribute to the new therapies.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ghasemi Moravej
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Arabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Shahriari
- Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Richard Ward
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taghi Joghataei
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Nikitina IL, Gaisina GG. Involvement of monoaminergic system in the antidepressant effect of 3-substituted thietane-1,1-dioxide derivative. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.81007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The aim of the study was to assess the involvement of the monoaminergic system in the antidepressant effect of a new 3-substituted thietane-1,1-dioxide derivative (N-199/1) using tests with several pharmacological antagonists and agonists.
Materials and methods: We conducted 3 sets of experiments in white outbred male mice. In Experiment 1, we assessed the antidepressant effect of N-199/1 in the forced swimming test (FST) and tail suspension test (TST) when administered repeatedly for 2 weeks intraperitoneally (i.p.). In Experiment 2, we evaluated the antidepressant effect of N-199/1 in FST and TST when co-administered with 5HT1A- (WAY100635, 0.1 mg/kg), 5HT2A/2C- (ketanserin, 5 mg/kg), 5HT3- (ondansetron, 1 mg/kg) serotonergic and α2-adrenergic (yohimbine, 1 mg/kg) receptors antagonists. In Experiment 3, we assessed the effect of N-199/1 on the hypothermia induced by i.p. injection of α2-adrenergic receptors agonist clonidine (0.3 mg/kg).
Results and discussion: N-199/1 reduced immobility time (IT) and index of depression (ID) in FST, and did not affect IT in TST, either when administered repeatedly in Experiment 1, or acutely in Experiment 2. In Experiment 2, ketanserin enhanced the effect of N-199/1, decreasing ID by 36%, while WAY100635 and yohimbine antagonized it, increasing ID by 27% and IT by 115%, respectively, in comparison with N-199/1. N-199/1 attenuated the effect of ondansetron, increasing IT by 36%. In Experiment, 3 N-199/1 reduced clonidine-induced hypothermia 1 h after the injection of clonidine. N-199/1 exhibited pronounced antidepressant properties in FST, an agonism to 5HT1A-receptors and an antagonism to 5HT2A/2C- and α2-receptors in tests of neuropharmacological interaction, which indicates an atypical mechanism of its antidepressant action.
Conclusion: The antidepressant effect of N-199/1 is due to the stimulation of 5HT1A-receptors and blockade of 5HT2A/2C- and α2-receptors.
Graphical abstract:
Collapse
|
31
|
Garcia CS, Besckow EM, da Silva Espíndola CN, D’Avila Nunes G, Zuge NP, de Azeredo MP, Rocha MJD, Carraro Junior LR, Penteado F, Gomes CS, Lenardão EJ, Bortolatto CF, Brüning CA. Antidepressant-Like Effect of a Selenoindolizine in Mice: In Vivo and In Silico Evidence for the Involvement of the Serotonergic 5-HT 2A/C Receptors. ACS Chem Neurosci 2022; 13:1746-1755. [PMID: 35605134 DOI: 10.1021/acschemneuro.2c00129] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The monoaminergic dysfunction plays a central role in major depressive disorder (MDD), a mental disturbance associated with constant feeling of sadness and lack of interest. The available treatments do not present a desirable efficacy and some of them provoke several adverse effects. In this context, organoselenium compounds and molecules containing the indolizine nucleus have demonstrated interesting pharmacological properties, including antidepressant-like effects. In this study, the antidepressant-like effect of 2-phenyl-1-(phenylselanyl)indolizine (SeI), a selenium-containing indolizine derivative, was investigated on the forced swimming test (FST) and on the tail suspension test (TST) in male Swiss mice. The involvement of the serotonergic system in this effect was also accessed. The selenium compound SeI (10-100 mg/kg, intragastrical (i.g.)) was administered 0.5 h before the behavioral tests, and it diminished the immobility on both FST and TST experiments, which is an indication of antidepressant-like effect. No changing in the locomotor motion was observed in the open-field test (OFT). The anti-immobility effect of SeI was not altered by the preadministration of the selective serotonergic receptor antagonists ondansetron (1 mg/kg, intraperitoneally (i.p.), antagonist of 5-HT3 receptor) and WAY100635 (0.1 mg/kg, subcutaneous route (s.c.), antagonist of 5-HT1A receptor). In contrast, the preadministration of ketanserin (1 mg/kg, i.p., antagonist of 5-HT2A/C receptor) blocked this effect, demonstrating that the antidepressant-like effect of SeI involves 5-HT2A/C. In addition, molecular docking studies showed a strong interaction between SeI and the receptors of 5-HT2A and 5-HT2C. The toxicological results demonstrated that SeI has low potential to cause adverse effects in mice. It was found that the antidepressant-like effect of SeI is related to modulation of the serotonergic system, and this selenium compound could be included in new treatment approaches for MDD.
Collapse
Affiliation(s)
- Cleisson Schossler Garcia
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box, 354, Pelotas, 96010-900 RS, Brazil
| | - Evelyn Mianes Besckow
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box, 354, Pelotas, 96010-900 RS, Brazil
| | - Carlos Natã da Silva Espíndola
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box, 354, Pelotas, 96010-900 RS, Brazil
| | - Gustavo D’Avila Nunes
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box, 354, Pelotas, 96010-900 RS, Brazil
| | - Narryman Pinto Zuge
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box, 354, Pelotas, 96010-900 RS, Brazil
| | - Marcos Pizzatto de Azeredo
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box, 354, Pelotas, 96010-900 RS, Brazil
| | - Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box, 354, Pelotas, 96010-900 RS, Brazil
| | - Luiz Roberto Carraro Junior
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box, 354, Pelotas, 96010-900 RS, Brazil
| | - Filipe Penteado
- Laboratory of Clean Organic Synthesis (LASOL), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box, 354, Pelotas, 96010-900 RS, Brazil
| | - Caroline Signorini Gomes
- Laboratory of Clean Organic Synthesis (LASOL), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box, 354, Pelotas, 96010-900 RS, Brazil
| | - Eder João Lenardão
- Laboratory of Clean Organic Synthesis (LASOL), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box, 354, Pelotas, 96010-900 RS, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box, 354, Pelotas, 96010-900 RS, Brazil
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box, 354, Pelotas, 96010-900 RS, Brazil
| |
Collapse
|
32
|
Veldman ER, Varrone A, Varnäs K, Svedberg MM, Cselényi Z, Tiger M, Gulyás B, Halldin C, Lundberg J. Serotonin 1B receptor density mapping of the human brainstem using positron emission tomography and autoradiography. J Cereb Blood Flow Metab 2022; 42:630-641. [PMID: 34644198 PMCID: PMC8943614 DOI: 10.1177/0271678x211049185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The serotonin 1B (5-HT1B) receptor has lately received considerable interest in relation to psychiatric and neurological diseases, partly due to findings based on quantification using Positron Emission Tomography (PET). Although the brainstem is an important structure in this regard, PET radioligand binding quantification in brainstem areas often shows poor reliability. This study aims to improve PET quantification of 5-HT1B receptor binding in the brainstem.Volumes of interest (VOIs) were selected based on a 3D [3H]AZ10419369 Autoradiography brainstem model, which visualized 5-HT1B receptor distribution in high resolution. Two previously developed VOI delineation methods were tested and compared to a conventional manual method. For a method based on template data, a [11C]AZ10419369 PET template was created by averaging parametric binding potential (BPND) images of 52 healthy subjects. VOIs were generated based on a predefined volume and BPND thresholding and subsequently applied to test-retest [11C]AZ10419369 parametric BPND images of 8 healthy subjects. For a method based on individual subject data, VOIs were generated directly on each individual parametric image.Both methods showed improved reliability compared to a conventional manual VOI. The VOIs created with [11C]AZ10419369 template data can be automatically applied to future PET studies measuring 5-HT1B receptor binding in the brainstem.
Collapse
Affiliation(s)
- Emma R Veldman
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Marie M Svedberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden
| | - Zsolt Cselényi
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,PET Science Centre, Personalized Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden
| | - Mikael Tiger
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Balázs Gulyás
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Johan Lundberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
33
|
Khushboo, Siddiqi NJ, de Lourdes Pereira M, Sharma B. Neuroanatomical, Biochemical, and Functional Modifications in Brain Induced by Treatment with Antidepressants. Mol Neurobiol 2022; 59:3564-3584. [DOI: 10.1007/s12035-022-02780-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
|
34
|
Tan T, Xu Z, Gao C, Shen T, Li L, Chen Z, Chen L, Xu M, Chen B, Liu J, Zhang Z, Yuan Y. Influence and interaction of resting state functional magnetic resonance and tryptophan hydroxylase-2 methylation on short-term antidepressant drug response. BMC Psychiatry 2022; 22:218. [PMID: 35337298 PMCID: PMC8957120 DOI: 10.1186/s12888-022-03860-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Most antidepressants have been developed on the basis of the monoamine deficiency hypothesis of depression, in which neuronal serotonin (5-HT) plays a key role. 5-HT biosynthesis is regulated by the rate-limiting enzyme tryptophan hydroxylase-2 (TPH2). TPH2 methylation is correlated with antidepressant effects. Resting-state functional MRI (rs-fMRI) is applied for detecting abnormal brain functional activity in patients with different antidepressant effects. We will investigate the effect of the interaction between rs-fMRI and TPH2 DNA methylation on the early antidepressant effects. METHODS A total of 300 patients with major depressive disorder (MDD) and 100 healthy controls (HCs) were enrolled, of which 60 patients with MDD were subjected to rs-fMRI. Antidepressant responses was assessed by a 50% reduction in 17-item Hamilton Rating Scale for Depression (HAMD-17) scores at baseline and after two weeks of medication. The RESTPlus software in MATLAB was used to analyze the rs-fMRI data. The amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), fractional ALFF (fALFF), and functional connectivity (FC) were used, and the above results were used as regions of interest (ROIs) to extract the average value of brain ROIs regions in the RESTPlus software. Generalized linear model analysis was performed to analyze the association between abnormal activity found in rs-fMRI and the effect of TPH2 DNA methylation on antidepressant responses. RESULTS Two hundred ninety-one patients with MDD and 100 HCs were included in the methylation statistical analysis, of which 57 patients were included in the further rs-fMRI analysis (3 patients were excluded due to excessive head movement). 57 patients were divided into the responder group (n = 36) and the non-responder group (n = 21). Rs-fMRI results showed that the ALFF of the left inferior frontal gyrus (IFG) was significantly different between the two groups. The results showed that TPH2-1-43 methylation interacted with ALFF of left IFG to affect the antidepressant responses (p = 0.041, false discovery rate (FDR) corrected p = 0.149). CONCLUSIONS Our study demonstrated that the differences in the ALFF of left IFG between the two groups and its association with TPH2 methylation affect short-term antidepressant drug responses.
Collapse
Affiliation(s)
- Tingting Tan
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China. .,Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Chenjie Gao
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Tian Shen
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.89957.3a0000 0000 9255 8984Department of Psychiatric Rehabilitation, Wuxi Mental Health Center, Nanjing Medical University, WuXi, 214123 People’s Republic of China
| | - Lei Li
- grid.263826.b0000 0004 1761 0489School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Zimu Chen
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Lei Chen
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,Department of Psychology and Psychiatry, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, 210018 People’s Republic of China
| | - Min Xu
- grid.263826.b0000 0004 1761 0489Department of Anatomy, Medical School, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Bingwei Chen
- grid.263826.b0000 0004 1761 0489Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Jiacheng Liu
- grid.452290.80000 0004 1760 6316Department of Nuclear Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Zhijun Zhang
- grid.452290.80000 0004 1760 6316Department of Neurology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Yonggui Yuan
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
35
|
Sheng JA, Tan SML, Hale TM, Handa RJ. Androgens and Their Role in Regulating Sex Differences in the Hypothalamic/Pituitary/Adrenal Axis Stress Response and Stress-Related Behaviors. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2022; 2:261-274. [PMID: 35024695 PMCID: PMC8744007 DOI: 10.1089/andro.2021.0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Androgens play a pivotal role during development. These gonadal hormones and their receptors exert organizational actions that shape brain morphology in regions controlling the stress regulatory systems in a male-specific manner. Specifically, androgens drive sex differences in the hypothalamic/pituitary/adrenal (HPA) axis and corresponding hypothalamic neuropeptides. While studies have examined the role of estradiol and its receptors in sex differences in the HPA axis and associated behaviors, the role of androgens remains far less studied. Androgens are generally thought to modulate the HPA axis through the activation of androgen receptors (ARs). They can also impact the HPA axis through reduction to estrogenic metabolites that can bind estrogen receptors in the brain and periphery. Such regulation of the HPA axis stress response by androgens can often result in sex-biased risk factors for stress-related disorders, such as anxiety and depression. This review focuses on the biosynthesis pathways and molecular actions of androgens and their nuclear receptors. The impact of androgens on hypothalamic neuropeptide systems (corticotropin-releasing hormone, arginine vasopressin, oxytocin, dopamine, and serotonin) that control the stress response and stress-related disorders is discussed. Finally, this review discusses potential therapeutics involving androgens (androgen replacement therapies, selective AR modulator therapies) and ongoing clinical trials.
Collapse
Affiliation(s)
- Julietta A Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah M L Tan
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Taben M Hale
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Arizona, USA
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
36
|
Billah MM, Chowdhury AS, Nawrin K, Mostaq S, Rayhan MA, Tushar RR. Serotonergic and noradrenergic response of ethanol extract; opioidergic response of ethyl acetate extract of Dicranopteris linearis L. leaf. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Dicranopteris linearis L. is among the popular tribal plants used for various ailments, although many of its pharmacological potentials have not been investigated yet. The neuropharmacological potentials of the leaf, including sedative-anxiolytic potential, were previously studied however, the antidepressant activity was yet to be examined. Thus, this study was aimed to investigate the serotonergic, noradrenergic and opioidergic response of D. linearis leaf extracts.
Methods
The plant leaf was extracted in three solvents- water (DLAQ), ethanol (DLET) and ethyl acetate (DLEA) and applied each in 200 and 400 mg.kg− 1 per body weight of Swiss Albino mice. Forced Swim Test (FST) and Tail Suspension Test (TST) were conducted to evaluate antidepressant potential. In FST, latency and duration of immobility, swimming and climbing time were recorded. In TST, immobility, swinging, curling and pedaling were observed. Alongside, preliminary screening through acute toxicity study and pentobarbitone induced sleep test were performed.
Results
Both in FST and TST, the duration of immobility was reduced by the standard imipramine and DLET 200 and 400. In FST, DLEA 200 and 400 increased the climbing time suggesting noradrenergic mechanism of action and decreased the swimming time suggesting deficit of serotoninergic mechanism of action. Interestingly, DLET increased both the parameters presenting a dual action. However, in TST, DLEA decreased immobility but increased swinging and curling response which indicated its opioidergic mechanism. On the other hand, DLET proved to mediate through serotonin and/or NA reuptake mechanism by having decreased curling time.
Conclusion
Among the three extracts, the ethanol extract proved to be more potent. DLET mimicked the standard imipramine in all parameters except for the curling behavior. The result thus suggests D. linearis as a potent antidepressant agent however, recommends its medicinal use after further investigation to identify bioactive compounds.
Collapse
|
37
|
Netter P. Between Temperament and Psychopathology: Examples from Neuropharmacological Challenge Tests in Healthy Humans. Neuropsychobiology 2021; 80:84-100. [PMID: 33647900 DOI: 10.1159/000514074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND This paper tries to demonstrate that the questionnaire-based continuum between temperament traits and psychopathology can also be shown on the biochemical level. A common feature is the incapacity to adapt to external demands, as demonstrated by examples of disturbed hormone cycles as well as neurotransmitter (TM) responses related to affective and impulse control disorders. METHODS Pharmacological challenge tests performed in placebo-controlled balanced crossover experiments with consecutive challenges by serotonin (5-HT), noradrenaline (NA), and dopamine (DA) agonistic drugs were applied to healthy subjects, and individual responsivities of each TM system assessed by respective cortisol and prolactin responses were related to questionnaire-based facets of depressiveness and impulsivity, respectively. RESULTS The depression-related traits "Fatigue" and "Physical Anhedonia" were characterized by low and late responses to DA stimulation as opposed to "Social Anhedonia," which rather mirrored the pattern of schizophrenia. Reward-related and premature responding-related impulsivity represented by high scores on "Disinhibition" and "Motor Impulsivity," respectively, as well as the questionnaire-based components of attention deficit hyperactivity disorder, "Cognitive" and "Motor Impulsivity," could be discriminated by their patterns of DA/NA responses. 5-HT responses suggested that instead of the expected low availability of 5-HT claimed to be associated with impulse control disorders, low NA responses indicated lack of inhibition in impulsivity and high NA responses in depression-related "Anhedonia" indicated suppression of approach motivation. CONCLUSIONS In spite of the flaws of pharmacological challenge tests, they may be suitable for demonstrating similarities in TM affinities between psychopathological disturbances and respective temperament traits and for separating sub-entities of larger disease spectra.
Collapse
Affiliation(s)
- Petra Netter
- Department of Psychology, University of Gießen, Gießen, Germany,
| |
Collapse
|
38
|
Smagin DA, Kovalenko IL, Galyamina AG, Belozertseva IV, Tamkovich NV, Baranov KO, Kudryavtseva NN. Chronic Lithium Treatment Affects Anxious Behaviors and theExpression of Serotonergic Genes in Midbrain Raphe Nuclei of Defeated Male Mice. Biomedicines 2021; 9:biomedicines9101293. [PMID: 34680410 PMCID: PMC8533389 DOI: 10.3390/biomedicines9101293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023] Open
Abstract
There is experimental evidence that chronic social defeat stress is accompanied by the development of an anxiety, development of a depression-like state, and downregulation of serotonergic genes in midbrain raphe nuclei of male mice. Our study was aimed at investigating the effects of chronic lithium chloride (LiCl) administration on anxiety behavior and the expression of serotonergic genes in midbrain raphe nuclei of the affected mice. A pronounced anxiety-like state in male mice was induced by chronic social defeat stress in daily agonistic interactions. After 6 days of this stress, defeated mice were chronically treated with saline or LiCl (100 mg/kg, i.p., 2 weeks) during the continuing agonistic interactions. Anxiety was assessed by behavioral tests. RT-PCR was used to determine Tph2, Htr1a, Htr5b, and Slc6a4 mRNA expression. The results revealed anxiolytic-like effects of LiCl on social communication in the partition test and anxiogenic-like effects in both elevated plus-maze and social interaction tests. Chronic LiCl treatment upregulated serotonergic genes in midbrain raphe nuclei. Thus, LiCl effects depend on the treatment mode, psycho-emotional state of the animal, and experimental context (tests). It is assumed that increased expression of serotonergic genes is accompanied by serotonergic system activation and, as a side effect, by higher anxiety.
Collapse
Affiliation(s)
- Dmitry A. Smagin
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.A.S.); (I.L.K.); (A.G.G.)
| | - Irina L. Kovalenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.A.S.); (I.L.K.); (A.G.G.)
| | - Anna G. Galyamina
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.A.S.); (I.L.K.); (A.G.G.)
| | - Irina V. Belozertseva
- Valdman Institute of Pharmacology, First Pavlov State Medical University of St. Petersburg, 197022 St. Petersburg, Russia;
| | | | - Konstantin O. Baranov
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Natalia N. Kudryavtseva
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.A.S.); (I.L.K.); (A.G.G.)
- Pavlov Institute of Physiology, Russian Academy of Sciences, 188680 St. Petersburg, Russia
- Head of Neuropathology Modeling Laboratory, Institute of Cytology and Genetics SB RAS, pr. Ac. Lavrentjev, 10, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-49-65
| |
Collapse
|
39
|
5-HT Receptors and the Development of New Antidepressants. Int J Mol Sci 2021; 22:ijms22169015. [PMID: 34445721 PMCID: PMC8396477 DOI: 10.3390/ijms22169015] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Serotonin modulates several physiological and cognitive pathways throughout the human body that affect emotions, memory, sleep, and thermal regulation. The complex nature of the serotonergic system and interactions with other neurochemical systems indicate that the development of depression may be mediated by various pathomechanisms, the common denominator of which is undoubtedly the disturbed transmission in central 5-HT synapses. Therefore, the deliberate pharmacological modulation of serotonergic transmission in the brain seems to be one of the most appropriate strategies for the search for new antidepressants. As discussed in this review, the serotonergic system offers great potential for the development of new antidepressant therapies based on the combination of SERT inhibition with different pharmacological activity towards the 5-HT system. The aim of this article is to summarize the search for new antidepressants in recent years, focusing primarily on the possibility of benefiting from interactions with various 5-HT receptors in the pharmacotherapy of depression.
Collapse
|
40
|
Carratalá-Ros C, López-Cruz L, Martínez-Verdú A, Olivares-García R, Salamone JD, Correa M. Impact of Fluoxetine on Behavioral Invigoration of Appetitive and Aversively Motivated Responses: Interaction With Dopamine Depletion. Front Behav Neurosci 2021; 15:700182. [PMID: 34305547 PMCID: PMC8298758 DOI: 10.3389/fnbeh.2021.700182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/21/2021] [Indexed: 12/04/2022] Open
Abstract
Impaired behavioral activation and effort-related motivational dysfunctions like fatigue and anergia are debilitating treatment-resistant symptoms of depression. Depressed people show a bias towards the selection of low effort activities. To determine if the broadly used antidepressant fluoxetine can improve behavioral activation and reverse dopamine (DA) depletion-induced anergia, male CD1 mice were evaluated for vigorous escape behaviors in an aversive context (forced swim test, FST), and also with an exercise preference choice task [running wheel (RW)-T-maze choice task]. In the FST, fluoxetine increased active behaviors (swimming, climbing) while reducing passive ones (immobility). However, fluoxetine was not effective at reducing anergia induced by the DA-depleting agent tetrabenazine, further decreasing vigorous climbing and increasing immobility. In the T-maze, fluoxetine alone produced the same pattern of effects as tetrabenazine. Moreover, fluoxetine did not reverse tetrabenazine-induced suppression of RW time but it reduced sucrose intake duration. This pattern of effects produced by fluoxetine in DA-depleted mice was dissimilar from devaluing food reinforcement by pre-feeding or making the food bitter since in both cases sucrose intake time was reduced but animals compensated by increasing time in the RW. Thus, fluoxetine improved escape in an aversive context but decreased relative preference for active reinforcement. Moreover, fluoxetine did not reverse the anergic effects of DA depletion. These results have implications for the use of fluoxetine for treating motivational symptoms such as anergia in depressed patients.
Collapse
Affiliation(s)
| | | | | | | | - John D Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castelló, Spain
| |
Collapse
|
41
|
Jalali A, Firouzabadi N, Zarshenas MM. Pharmacogenetic-based management of depression: Role of traditional Persian medicine. Phytother Res 2021; 35:5031-5052. [PMID: 34041799 DOI: 10.1002/ptr.7134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
Depression is one of the most common mental disorders worldwide. The genetic factors are linked to depression and anti-depressant outcomes. Traditional Persian medicine (TPM) manuscripts have provided various anti-depressant remedies, which may be useful in depression management. This review has studied the bioactive compounds, underlying mechanisms, and treatment outcomes of the medicinal plants traditionally mentioned effective for depression from "The storehouse of medicament" (a famous pharmacopeia of TPM) to merge those with the novel genetics science and serve new scope in depression prevention and management. This review paper has been conducted in two sections: (1) Collecting medicinal plants and their bioactive components from "The storehouse of medicament," "Physician's Desk Reference (PDR) for Herbal Medicines," and "Google scholar" database. (2) The critical key factors and genes in depression pathophysiology, prevention, and treatment were clarified. Subsequently, the association between bioactive components' underlying mechanism and depression treatment outcomes via considering polymorphisms in related genes was derived. Taken together, α-Mangostin, β-carotene, β-pinene, apigenin, caffeic acid, catechin, chlorogenic acid, citral, ellagic acid, esculetin, ferulic acid, gallic acid, gentiopicroside, hyperoside, kaempferol, limonene, linalool, lycopene, naringin, protocatechuic acid, quercetin, resveratrol, rosmarinic acid, and umbelliferone are suitable for future pharmacogenetics-based studies in the management of depression.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
42
|
Edinoff AN, Wu NW, Maxey BS, Ren AL, Leethy KN, Girma B, Odisho A, Kaye JS, Kaye AJ, Kaye AM, Kaye AD, Mychaskiw G, Viswanath O, Urits I. Brexpiprazole for the Treatment of Schizophrenia and Major Depressive Disorder: A Comprehensive Review of Pharmacological Considerations in Clinical Practice. PSYCHOPHARMACOLOGY BULLETIN 2021; 51:69-95. [PMID: 34092824 PMCID: PMC8146559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mood and psychotic disorders are a group of illnesses that affect behavior and cognition. Schizophrenia is characterized by positive symptoms, such as delusions and hallucinations, as well as negative symptoms. Major depressive disorder (MDD) is a mood disorder that affects the patient's emotions, energy, and motivation. Brexpiprazole works as a partial agonist at serotonin 5-hydroxytryptamine1A and dopamine D2 receptors and an antagonist at serotonin 5-hydroxytryptamine2A. Schizophrenia and MDD have a wide range of risk factors, both biological and environmental. Third generation antipsychotics, which include brexpiprazole, are the latest group of drugs to reach the market, demonstrating efficacy and tolerability. Patients with acute schizophrenia have responded well to brexpiprazole. In this regard, in patients who have MDD plus anxiety symptoms, brexpiprazole can be effective as an adjunctive therapy and can reduce anxiety symptoms. In summary, brexpiprazole has proved to be an effective alternative to typical or first and second-generation atypical antipsychotics.
Collapse
Affiliation(s)
- Amber N Edinoff
- Edinoff, MD, Wu, MD, Odisho, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry and Behavioral Medicine. Maxey, BS, Ren, BS, Leethy, BS, Louisiana State University Shreveport School of Medicine. Girma, MD, Alan D. Kaye, MD, PhD, Mychaskiw, DO, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Jessica S. Kaye, Adam M. Kaye, PharmD, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Aaron J. Kaye, MD, Medical University of South Carolina, Department of Anesthesiology, Charleston, SC. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Urits, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA
| | - Natalie W Wu
- Edinoff, MD, Wu, MD, Odisho, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry and Behavioral Medicine. Maxey, BS, Ren, BS, Leethy, BS, Louisiana State University Shreveport School of Medicine. Girma, MD, Alan D. Kaye, MD, PhD, Mychaskiw, DO, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Jessica S. Kaye, Adam M. Kaye, PharmD, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Aaron J. Kaye, MD, Medical University of South Carolina, Department of Anesthesiology, Charleston, SC. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Urits, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA
| | - Benjamin S Maxey
- Edinoff, MD, Wu, MD, Odisho, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry and Behavioral Medicine. Maxey, BS, Ren, BS, Leethy, BS, Louisiana State University Shreveport School of Medicine. Girma, MD, Alan D. Kaye, MD, PhD, Mychaskiw, DO, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Jessica S. Kaye, Adam M. Kaye, PharmD, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Aaron J. Kaye, MD, Medical University of South Carolina, Department of Anesthesiology, Charleston, SC. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Urits, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA
| | - Amy L Ren
- Edinoff, MD, Wu, MD, Odisho, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry and Behavioral Medicine. Maxey, BS, Ren, BS, Leethy, BS, Louisiana State University Shreveport School of Medicine. Girma, MD, Alan D. Kaye, MD, PhD, Mychaskiw, DO, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Jessica S. Kaye, Adam M. Kaye, PharmD, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Aaron J. Kaye, MD, Medical University of South Carolina, Department of Anesthesiology, Charleston, SC. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Urits, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA
| | - Kenna N Leethy
- Edinoff, MD, Wu, MD, Odisho, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry and Behavioral Medicine. Maxey, BS, Ren, BS, Leethy, BS, Louisiana State University Shreveport School of Medicine. Girma, MD, Alan D. Kaye, MD, PhD, Mychaskiw, DO, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Jessica S. Kaye, Adam M. Kaye, PharmD, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Aaron J. Kaye, MD, Medical University of South Carolina, Department of Anesthesiology, Charleston, SC. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Urits, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA
| | - Brook Girma
- Edinoff, MD, Wu, MD, Odisho, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry and Behavioral Medicine. Maxey, BS, Ren, BS, Leethy, BS, Louisiana State University Shreveport School of Medicine. Girma, MD, Alan D. Kaye, MD, PhD, Mychaskiw, DO, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Jessica S. Kaye, Adam M. Kaye, PharmD, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Aaron J. Kaye, MD, Medical University of South Carolina, Department of Anesthesiology, Charleston, SC. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Urits, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA
| | - Amira Odisho
- Edinoff, MD, Wu, MD, Odisho, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry and Behavioral Medicine. Maxey, BS, Ren, BS, Leethy, BS, Louisiana State University Shreveport School of Medicine. Girma, MD, Alan D. Kaye, MD, PhD, Mychaskiw, DO, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Jessica S. Kaye, Adam M. Kaye, PharmD, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Aaron J. Kaye, MD, Medical University of South Carolina, Department of Anesthesiology, Charleston, SC. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Urits, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA
| | - Jessica S Kaye
- Edinoff, MD, Wu, MD, Odisho, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry and Behavioral Medicine. Maxey, BS, Ren, BS, Leethy, BS, Louisiana State University Shreveport School of Medicine. Girma, MD, Alan D. Kaye, MD, PhD, Mychaskiw, DO, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Jessica S. Kaye, Adam M. Kaye, PharmD, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Aaron J. Kaye, MD, Medical University of South Carolina, Department of Anesthesiology, Charleston, SC. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Urits, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA
| | - Aaron J Kaye
- Edinoff, MD, Wu, MD, Odisho, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry and Behavioral Medicine. Maxey, BS, Ren, BS, Leethy, BS, Louisiana State University Shreveport School of Medicine. Girma, MD, Alan D. Kaye, MD, PhD, Mychaskiw, DO, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Jessica S. Kaye, Adam M. Kaye, PharmD, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Aaron J. Kaye, MD, Medical University of South Carolina, Department of Anesthesiology, Charleston, SC. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Urits, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA
| | - Adam M Kaye
- Edinoff, MD, Wu, MD, Odisho, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry and Behavioral Medicine. Maxey, BS, Ren, BS, Leethy, BS, Louisiana State University Shreveport School of Medicine. Girma, MD, Alan D. Kaye, MD, PhD, Mychaskiw, DO, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Jessica S. Kaye, Adam M. Kaye, PharmD, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Aaron J. Kaye, MD, Medical University of South Carolina, Department of Anesthesiology, Charleston, SC. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Urits, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA
| | - Alan D Kaye
- Edinoff, MD, Wu, MD, Odisho, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry and Behavioral Medicine. Maxey, BS, Ren, BS, Leethy, BS, Louisiana State University Shreveport School of Medicine. Girma, MD, Alan D. Kaye, MD, PhD, Mychaskiw, DO, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Jessica S. Kaye, Adam M. Kaye, PharmD, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Aaron J. Kaye, MD, Medical University of South Carolina, Department of Anesthesiology, Charleston, SC. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Urits, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA
| | - George Mychaskiw
- Edinoff, MD, Wu, MD, Odisho, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry and Behavioral Medicine. Maxey, BS, Ren, BS, Leethy, BS, Louisiana State University Shreveport School of Medicine. Girma, MD, Alan D. Kaye, MD, PhD, Mychaskiw, DO, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Jessica S. Kaye, Adam M. Kaye, PharmD, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Aaron J. Kaye, MD, Medical University of South Carolina, Department of Anesthesiology, Charleston, SC. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Urits, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA
| | - Omar Viswanath
- Edinoff, MD, Wu, MD, Odisho, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry and Behavioral Medicine. Maxey, BS, Ren, BS, Leethy, BS, Louisiana State University Shreveport School of Medicine. Girma, MD, Alan D. Kaye, MD, PhD, Mychaskiw, DO, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Jessica S. Kaye, Adam M. Kaye, PharmD, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Aaron J. Kaye, MD, Medical University of South Carolina, Department of Anesthesiology, Charleston, SC. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Urits, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA
| | - Ivan Urits
- Edinoff, MD, Wu, MD, Odisho, MD, Louisiana State University Health Science Center Shreveport, Department of Psychiatry and Behavioral Medicine. Maxey, BS, Ren, BS, Leethy, BS, Louisiana State University Shreveport School of Medicine. Girma, MD, Alan D. Kaye, MD, PhD, Mychaskiw, DO, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA. Jessica S. Kaye, Adam M. Kaye, PharmD, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Department of Pharmacy Practice, Stockton, CA. Aaron J. Kaye, MD, Medical University of South Carolina, Department of Anesthesiology, Charleston, SC. Viswanath, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ. Urits, MD, Louisiana State University Shreveport, Department of Anesthesiology, Shreveport, LA, Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA
| |
Collapse
|
43
|
Synthesis of Novel Pyrido[1,2- c]pyrimidine Derivatives with 6-Fluoro-3-(4-piperidynyl)-1,2-benzisoxazole Moiety as Potential SSRI and 5-HT 1A Receptor Ligands. Int J Mol Sci 2021; 22:ijms22052329. [PMID: 33652672 PMCID: PMC7956643 DOI: 10.3390/ijms22052329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Two series of novel 4-aryl-2H-pyrido[1,2-c]pyrimidine (6a–i) and 4-aryl-5,6,7,8-tetrahydropyrido[1,2-c]pyrimidine (7a–i) derivatives were synthesized. The chemical structures of the new compounds were confirmed by 1H and 13C NMR spectroscopy and ESI-HRMS spectrometry. The affinities of all compounds for the 5-HT1A receptor and serotonin transporter protein (SERT) were determined by in vitro radioligand binding assays. The test compounds demonstrated very high binding affinities for the 5-HT1A receptor of all derivatives in the series (6a–i and 7a–i) and generally low binding affinities for the SERT protein, with the exception of compounds 6a and 7g. Extended affinity tests for the receptors D2, 5-HT2A, 5-HT6 and 5-HT7 were conducted with regard to selected compounds (6a, 7g, 6d and 7i). All four compounds demonstrated very high affinities for the D2 and 5-HT2A receptors. Compounds 6a and 7g also had high affinities for 5-HT7, while 6d and 7i held moderate affinities for this receptor. Compounds 6a and 7g were also tested in vivo to identify their functional activity profiles with regard to the 5-HT1A receptor, with 6a demonstrating the activity profile of a presynaptic agonist. Metabolic stability tests were also conducted for 6a and 6d.
Collapse
|
44
|
Leon RM, Borner T, Stein LM, Urrutia NA, De Jonghe BC, Schmidt HD, Hayes MR. Activation of PPG neurons following acute stressors differentially involves hindbrain serotonin in male rats. Neuropharmacology 2021; 187:108477. [PMID: 33581143 DOI: 10.1016/j.neuropharm.2021.108477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022]
Abstract
Within the hindbrain, serotonin (5-HT) functions as a modulator of the central glucagon-like peptide-1 (GLP-1) system. This interaction between 5-HT and GLP-1 is achieved via 5-HT2C and 5-HT3 receptors and is relevant for GLP-1-mediated feeding behavior. The central GLP-1 system is activated by various stressors, activates the hypothalamic pituitary adrenocortical (HPA) axis, and contributes to stress-related behaviors. Whether 5-HT modulates GLP-1's role in the stress response in unknown. We hypothesized that the serotonergic modulation of GLP-1-producing neurons (i.e., PPG neurons) is stimuli-specific and that stressed-induced PPG activity is one of the modalities in which 5-HT plays a role. In this study, we investigated the roles of 5-HT2C and 5-HT3 receptors in mediating the activation of PPG neurons in the nucleus tractus solitarius (NTS) following exposure to three different acute stressors: lithium chloride (LiCl), noncontingent cocaine (Coc), and novel restraint stress (RES). Results showed that increased c-Fos expression in PPG neurons following LiCl and RES-but not Coc-is dependent on hindbrain 5-HT2C and 5-HT3 receptor signaling. Additionally, stressors that depend on 5-HT signaling to activate PPG neurons (i.e., LiCl and RES) increased c-Fos expression in 5-HT-expressing neurons within the caudal raphe (CR), specifically in the raphe magnus (RMg). Finally, we showed that RMg neurons innervate NTS PPG neurons and that some of these PPG neurons lie in close proximity to 5-HT axons, suggesting RMg 5-HT-expressing neurons are the source of 5-HT input responsible for engaging NTS PPG neurons. Together, these findings identify a direct RMg to NTS pathway responsible for the modulatory effect of 5-HT on the central GLP-1 system-specifically via activation of 5-HT2C and 5-HT3 receptors-in the facilitation of acute stress responses.
Collapse
Affiliation(s)
- Rosa M Leon
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren M Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Norma A Urrutia
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Heath D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Reduced Motivation in Perinatal Fluoxetine-Treated Mice: A Hypodopaminergic Phenotype. J Neurosci 2021; 41:2723-2732. [PMID: 33536200 DOI: 10.1523/jneurosci.2608-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Early life is a sensitive period, in which enhanced neural plasticity allows the developing brain to adapt to its environment. This plasticity can also be a risk factor in which maladaptive development can lead to long-lasting behavioral deficits. Here, we test how early-life exposure to the selective-serotonin-reuptake-inhibitor (SSRI), fluoxetine, affects motivation, and dopaminergic signaling in adulthood. We show for the first time that mice exposed to fluoxetine in the early postnatal period exhibit a reduction in effort-related motivation. These mice also show blunted responses to amphetamine and reduced dopaminergic activation in a sucrose reward task. Interestingly, we find that the reduction in motivation can be rescued in the adult by administering bupropion, a dopamine-norepinephrine reuptake inhibitor used as an antidepressant and a smoke cessation aid but not by fluoxetine. Taken together, our studies highlight the effects of early postnatal exposure of fluoxetine on motivation and demonstrate the involvement of the dopaminergic system in this process.SIGNIFICANCE STATEMENT The developmental period is characterized by enhanced plasticity. During this period, environmental factors have the potential to lead to enduring behavioral changes. Here, we show that exposure to the SSRI fluoxetine during a restricted period in early life leads to a reduction in adult motivation. We further show that this reduction is associated with decreased dopaminergic responsivity. Finally, we show that motivational deficits induced by early-life fluoxetine exposure can be rescued by adult administration of bupropion but not by fluoxetine.
Collapse
|
46
|
Kao CF, Kuo PH, Yu YWY, Yang AC, Lin E, Liu YL, Tsai SJ. Gene-Based Association Analysis Suggests Association of HTR2A With Antidepressant Treatment Response in Depressed Patients. Front Pharmacol 2021; 11:559601. [PMID: 33519430 PMCID: PMC7845659 DOI: 10.3389/fphar.2020.559601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
The serotonin [5-hydroxytryptamine (5-HT)] system has been implicated in the pathogenesis of major depressive disorder (MDD). Among the 5-HT receptor subtypes, 5-HT2 is one of the major pharmacological therapeutic targets for MDD. There have been inconsistent findings in previous pharmacogenetic studies investigating the antidepressant therapeutic response using one or several 5-HT2A (HTR2A) genetic polymorphisms. By using gene-based association analysis, we hope to identify genetic variants of HTR2A which are related to MDD susceptibility and its antidepressant therapeutic response. 288 HTR2A single nucleotide polymorphisms in MDD susceptibility have been investigated through a case–control (455 MDD patients and 2, 998 healthy controls) study, as well as in antidepressant efficacy (n = 455) in our current research. The 21-item Hamilton Rating Scale for Depression was used to evaluate measures of antidepressant therapeutic efficacy. From two MDD groups in the antidepressant therapeutic response, by using gene-based analyses, we have identified 14 polymorphisms as suggestive markers for therapeutic response (13 for remission and 1 for response) in both meta- and mega-analyses. All of these HTR2A reported polymorphisms did not reach statistical significance in the case–control association study. This current investigation supported the link between HTR2A variants and antidepressant therapeutic response in MDD but not with MDD susceptibility.
Collapse
Affiliation(s)
- Chung-Feng Kao
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan.,Department of Public Health, National Taiwan University, Taipei, Taiwan
| | | | - Albert C Yang
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Brain Medicine Center, Taoyuan Psychiatric Center, Taoyuan City, Taiwan
| | - Eugene Lin
- Department of Biostatistics, University of Washington, Seattle, WA, United States.,Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, United States.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan Town, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
47
|
Sales AJ, Maciel IS, Suavinha ACDR, Joca SRL. Modulation of DNA Methylation and Gene Expression in Rodent Cortical Neuroplasticity Pathways Exerts Rapid Antidepressant-Like Effects. Mol Neurobiol 2021; 58:777-794. [PMID: 33025509 DOI: 10.1007/s12035-020-02145-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Stress increases DNA methylation, primarily a suppressive epigenetic mechanism catalyzed by DNA methyltransferases (DNMT), and decreases the expression of genes involved in neuronal plasticity and mood regulation. Despite chronic antidepressant treatment decreases stress-induced DNA methylation, it is not known whether inhibition of DNMT would convey rapid antidepressant-like effects. AIM This work tested such a hypothesis and evaluated whether a behavioral effect induced by DNMT inhibitors (DNMTi) corresponds with changes in DNA methylation and transcript levels in genes consistently associated with the neurobiology of depression and synaptic plasticity (BDNF, TrkB, 5-HT1A, NMDA, and AMPA). METHODS Male Wistar rats received intraperitoneal (i.p.) injection of two pharmacologically different DNMTi (5-AzaD 0.2 and 0.6 mg/kg or RG108 0.6 mg/kg) or vehicle (1 ml/kg), 1 h or 7 days before the learned helplessness test (LH). DNA methylation in target genes and the correspondent transcript levels were measured in the hippocampus (HPC) and prefrontal cortex (PFC) using meDIP-qPCR. In parallel separate groups, the antidepressant-like effect of 5-AzaD and RG108 was investigated in the forced swimming test (FST). The involvement of cortical BDNF-TrkB-mTOR pathways was assessed by intra-ventral medial PFC (vmPFC) injections of rapamycin (mTOR inhibitor), K252a (TrkB receptor antagonist), or vehicle (0.2 μl/side). RESULTS We found that both 5-AzaD and RG108 acutely and 7 days before the test decreased escape failures in the LH. LH stress increased DNA methylation and decreased transcript levels of BDNF IV and TrkB in the PFC, effects that were not significantly attenuated by RG108 treatment. The systemic administration of 5-AzaD (0.2 mg/kg) and RG108 (0.2 mg/kg) induced an antidepressant-like effect in FST, which was, however, attenuated by TrkB and mTOR inhibition into the vmPFC. CONCLUSION These findings suggest that acute inhibition of stress-induced DNA methylation promotes rapid and sustained antidepressant effects associated with increased BDNF-TrkB-mTOR signaling in the PFC.
Collapse
Affiliation(s)
- Amanda J Sales
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
- FMRP-USP, Av Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| | - Izaque S Maciel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Angélica C D R Suavinha
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sâmia R L Joca
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- FCFRP-USP, Av Café, sn, Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
48
|
Chen L, Yao Z, Qu S, Zhang J, Zhang J, Zhang Z, Huang Y, Zhong Z. Electroacupuncture improves synaptic plasticity by regulating the 5-HT1A receptor in hippocampus of rats with chronic unpredictable mild stress. J Int Med Res 2021; 48:300060520918419. [PMID: 32363965 PMCID: PMC7221223 DOI: 10.1177/0300060520918419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives To investigate the antidepressant effects of electroacupuncture (EA) on
chronic unpredictable mild stress (CUMS) in rats, as well as the effects of
EA on hippocampal neurons, synaptic morphology, and 5-hydroxytryptamine (HT)
receptor expression. Methods Forty adult male Wistar rats were randomly divided into normal control, CUMS,
EA, and paroxetine groups. CUMS modeling was performed for 21 days, followed
by 14 days of intervention: rats in the EA group underwent stimulation of
GV20 and GV29 acupuncture points for 30 minutes daily; rats in the
paroxetine group were administered paroxetine daily. Behavioral tests,
transmission electron microscopy, western blotting, and real-time
quantitative polymerase chain reaction were used to evaluate the effects of
the intervention. Results EA treatment reversed the behavioral changes observed in rats due to CUMS
modeling; it also improved the pathological changes in organelles and
synaptic structures of hippocampal neurons, and upregulated the protein and
mRNA expression levels of 5-HT1A receptor. There were no significant
differences in 5-HT1B receptor protein and mRNA expression levels among the
groups. Conclusions EA treatment can alleviate depression-like symptoms in CUMS rats. The
underlying mechanism may include promoting the expression of 5-HT1A receptor
mRNA and protein, thereby improving synaptic plasticity in the
hippocampus.
Collapse
Affiliation(s)
- Lixing Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zengyu Yao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shanshan Qu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jialing Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Jiping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhinan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zheng Zhong
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
49
|
Soga T, Nakajima S, Kawaguchi M, Parhar IS. Repressor element 1 silencing transcription factor /neuron-restrictive silencing factor (REST/NRSF) in social stress and depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110053. [PMID: 32739332 DOI: 10.1016/j.pnpbp.2020.110053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
Abstract
Extreme stress is closely linked with symptoms of depression. Chronic social stress can cause structural and functional changes in the brain. These changes are associated with dysfunction of neuroprotective signalling that is necessary for cell survival, growth, and maturation. Reduced neuronal numbers and volume of brain regions have been found in depressed patients, which may be caused by decreased cell survival and increased cell death. Elucidating the mechanism underlying the degeneration of the neuroprotective system in social stress-induced depression is important for developing neuroprotective measures. The Repressor Element 1 Silencing Transcription Factor (REST) also known as Neuron-Restrictive Silencing Factor (NRSF) has been reported as a neuroprotective molecule in certain neurological disorders. Decreased expression levels of REST/NRSF in the nucleus can induce death-related gene expression, leading to neuronal death. Under physiological stress conditions, REST/NRSF over expression is known to activate neuronal survival in the brain. Alterations in REST/NRSF expression in the brain has been reported in stressed animal models and in the post-mortem brain of patients with depression. Here, we highlight the neuroprotective function of REST/NRSF and discuss dysregulation of REST/NRSF and neuronal damage during social stress and depression.
Collapse
Affiliation(s)
- Tomoko Soga
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, PJ, 47500, Malaysia
| | - Shingo Nakajima
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, PJ, 47500, Malaysia
| | - Maiko Kawaguchi
- Laboratory of Animal Behaviour and Environmental Science, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, PJ, 47500, Malaysia.
| |
Collapse
|
50
|
Zhang Y, Wang Z, Peng J, Gerner ST, Yin S, Jiang Y. Gut microbiota-brain interaction: An emerging immunotherapy for traumatic brain injury. Exp Neurol 2020; 337:113585. [PMID: 33370556 DOI: 10.1016/j.expneurol.2020.113585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Individuals suffering from traumatic brain injury (TBI) often experience the activation of the immune system, resulting in declines in cognitive and neurological function after brain injury. Despite decades of efforts, approaches for clinically effective treatment are sparse. Evidence on the association between current therapeutic strategies and clinical outcomes after TBI is limited to poorly understood mechanisms. For decades, an increasing number of studies suggest that the gut-brain axis (GBA), a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract, plays a critical role in systemic immune response following neurological diseases. In this review, we detail current knowledge of the immune pathologies of GBA after TBI. These processes may provide a new therapeutic target and rehabilitation strategy developed and used in clinical treatment of TBI patients.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhaoyang Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Stefan T Gerner
- Department of Neurology, University Hospital Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|