1
|
Selvaraji S, Mosberger J, Fann DY, Lai MK, Hsian Chen CL, Arumugam TV. Unveiling the Therapeutic Promise of Epigenetics in Vascular Cognitive Impairment and Vascular Dementia. Aging Dis 2025:AD.2025.0010. [PMID: 39965251 DOI: 10.14336/ad.2025.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Vascular dementia (VaD) is a progressive neurodegenerative disease characterized by cognitive decline and memory deficits. Despite its significant prevalence and impact, the pathophysiology of VaD remains poorly understood, and current treatments are limited to symptom management. Emerging evidence highlights the importance of lifestyle-associated risk factors in VaD, emphasizing the role of gene-environment interactions, particularly in the realm of epigenetics. While preclinical studies using animal models have provided valuable insights into epigenetic mechanisms, the translatability of these findings to human clinical settings remains limited, and research into VaD-specific epigenetics is still in its infancy. This review aims to elucidate the intricate interplay between epigenetics and VaD, shedding light on potential therapeutic interventions rooted in epigenetic mechanisms. By synthesizing insights from existing literature, we also discuss the challenges and opportunities in translating preclinical findings into clinically viable treatments, underscoring the need for further research to bridge the gap between animal models and human applications.
Collapse
Affiliation(s)
- Sharmelee Selvaraji
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore
- Research Laboratory of Electronics, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Jasmine Mosberger
- Research Laboratory of Electronics, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - David Y Fann
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Mitchell Kp Lai
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Li Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V Arumugam
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
2
|
Neha SA, Hanson JD, Wilkinson JE, Bradley RD, Phillips CD. Impacts of host phylogeny, diet, and geography on the gut microbiome of rodents. PLoS One 2025; 20:e0316101. [PMID: 39820176 PMCID: PMC11737772 DOI: 10.1371/journal.pone.0316101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025] Open
Abstract
Mammalian gut microbial communities are thought to play a variety of important roles in health and fitness, including digestion, metabolism, nutrition, immune response, behavior, and pathogen protection. Gut microbiota diversity among hosts is strongly shaped by diet as well as phylogenetic relationships among hosts. Although various host factors may influence microbial community structure, the relative contribution may vary depending on several variables, such as taxonomic scales of the species studied, dietary patterns, geographic location, and gut physiology. The present study focused on 12 species of rodents representing 3 rodent families and 3 dietary guilds (herbivores, granivores, and omnivores) to evaluate the influence of host phylogeny, dietary guild and geography on microbial diversity and community composition. Colon samples were examined from rodents that were collected from 7 different localities in Texas and Oklahoma which were characterized using 16S rRNA gene amplicon sequencing targeting the V1-V3 variable regions. The microbiota of colon samples was largely dominated by the family Porphyromonadaceae (Parabacteriodes, Coprobacter) and herbivorous hosts harbored richer gut microbial communities than granivores and omnivores. Differential abundance analysis showed significant trends in the abundance of several bacterial families when comparing herbivores and granivores to omnivores, however, there were no significant differences observed between herbivores and granivores. The gut microbiotas displayed patterns consistent with phylosymbiosis as host phylogeny explained more variation in gut microbiotas (34%) than host dietary guilds (10%), and geography (3%). Overall, results indicate that among this rodent assemblage, evolutionary relatedness is the major determinant of microbiome compositional variation, but diet and to a lesser extent geographic provenance are also influential.
Collapse
Affiliation(s)
- Sufia Akter Neha
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - John D. Hanson
- Blackhawk Genomics, Lubbock, Texas, United States of America
| | | | - Robert D. Bradley
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, Texas, United States of America
| | - Caleb D. Phillips
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
3
|
Lu LL, Liu LZ, Li L, Hu YY, Xian XH, Li WB. Sodium butyrate improves cognitive dysfunction in high-fat diet/ streptozotocin-induced type 2 diabetic mice by ameliorating hippocampal mitochondrial damage through regulating AMPK/PGC-1α pathway. Neuropharmacology 2024; 261:110139. [PMID: 39233201 DOI: 10.1016/j.neuropharm.2024.110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Cognitive dysfunction is an important comorbidity of type 2 diabetes mellitus (T2DM). Sodium butyrate (NaB) is a short-chain fatty acid and has an effect improving T2DM-associated cognitive dysfunction. Using a high-fat diet (HFD)/streptozotocin (STZ)-induced T2DM mouse model, the present study investigated the mechanism involved in the beneficial effect of butyrate on diabetic cognitive dysfunction, with a focus on ameliorating mitochondrial damage through regulating the adenosine monophosphate-activated protein kinase/peroxisome proliferator-activated receptor gamma coactivator 1α (AMPK/PGC-1α) pathway considering the important role of mitochondrial impairments in the occurrence of T2DM-associated cognitive dysfunction. We found, based on reconfirmation of the improvement of NaB on cognitive impairment, that NaB treatment improved damaged synaptic structural plasticity including the decrease in dendritic spine density and downregulation in the expression of postsynaptic density protein 95 and synaptophysin in the hippocampus in the model mice. NaB treatment also ameliorated mitochondrial ultrastructural damage, increased mitochondrial membrane potential and adenosine 5'-triphosphate content, and improved mitochondrial biogenesis and dynamics in the model mice. Furthermore, the expression of phosphorylated AMPK and PGC-1α was upregulated after NaB treatment in the model mice. In particular, the above beneficial effects of NaB were blocked by the inhibition of either AMPK or PGC-1α. In conclusion, NaB treatment improved cognitive impairment and damaged synaptic structural plasticity in the hippocampus by ameliorating damage to mitochondrial morphology and function through regulating the AMPK/PGC-1α pathway in HFD/STZ-induced T2DM mice.
Collapse
Affiliation(s)
- Li-Li Lu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, PR China; Department of Pathology, The Third Hospital of Shijiazhuang, 15 Tiyu South Avenue, Shijiazhuang, 050011, PR China
| | - Li-Zhe Liu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Li Li
- Central Laboratory, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, PR China
| | - Yu-Yan Hu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Xiao-Hui Xian
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, PR China.
| | - Wen-Bin Li
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, PR China.
| |
Collapse
|
4
|
Go J, Maeng SY, Chang DH, Park HY, Min KS, Kim JE, Choi YK, Noh JR, Ro H, Kim BC, Kim KS, Lee CH. Agathobaculum butyriciproducens improves ageing-associated cognitive impairment in mice. Life Sci 2024; 339:122413. [PMID: 38219919 DOI: 10.1016/j.lfs.2024.122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/10/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
AIMS The gut microbiota is increasingly recognised as a pivotal regulator of immune system homeostasis and brain health. Recent research has implicated the gut microbiota in age-related cognitive impairment and dementia. Agathobaculum butyriciproducens SR79 T (SR79), which was identified in the human gut, has been reported to be beneficial in addressing cognitive deficits and pathophysiologies in a mouse model of Alzheimer's disease. However, it remains unknown whether SR79 affects age-dependent cognitive impairment. MAIN METHOD To explore the effects of SR79 on cognitive function during ageing, we administered SR79 to aged mice. Ageing-associated behavioural alterations were examined using the open field test (OFT), tail suspension test (TST), novel object recognition test (NORT), Y-maze alternation test (Y-maze), and Morris water maze test (MWM). We investigated the mechanisms of action in the gut and brain using molecular and histological analyses. KEY FINDINGS Administration of SR79 improved age-related cognitive impairment without altering general locomotor activity or depressive behaviour in aged mice. Furthermore, SR79 increased mature dendritic spines in the pyramidal cells of layer III and phosphorylation of CaMKIIα in the cortex of aged mice. Age-related activation of astrocytes in the cortex of layers III-V of the aged brain was reduced following SR79 administration. Additionally, SR79 markedly increased IL-10 production and Foxp3 and Muc2 mRNA expression in the colons of aged mice. SIGNIFICANCE These findings suggest that treatment with SR79 may be a beneficial microbial-based approach for enhancing cognitive function during ageing.
Collapse
Affiliation(s)
- Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - So-Young Maeng
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; College of Biosciences & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Dong-Ho Chang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kyeong-Seon Min
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Ju-Eun Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyunju Ro
- College of Biosciences & Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Byoung-Chan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; HealthBiome, Inc., Daejeon, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School, University of Science and Technology (UST), 217 Gajeong-ro, Youseong-gu, Daejeon, Republic of Korea.
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School, University of Science and Technology (UST), 217 Gajeong-ro, Youseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Aggarwal A, Yadav B, Sharma N, Kaur R, Rishi V. Disruption of histone acetylation homeostasis triggers cognitive dysfunction in experimental diabetes. Neurochem Int 2023; 170:105592. [PMID: 37598859 DOI: 10.1016/j.neuint.2023.105592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Epigenetic mechanisms related to diabetes-afflicted CNS complications are largely unknown. The present study investigated the role of histone acetylation mechanisms triggering cognitive dysfunction in the Type 1 and 2 diabetic mice model. Dynamic changes in diabetic parameters like fasting blood glucose levels, glucose tolerance test, and insulin levels were observed after the induction of diabetes. Cognitive performance was significantly diminished in T1D and T2D mice examined by the Morris water maze, novel object recognition test, and Y Maze as compared to controls. Histone profiling revealed a significant reduction in H3K9/14 and H4K12 acetylation in the cortex and hippocampus of T1D and T2D mice vs Controls. While histone deacetylase (HDAC) activity was significantly elevated in brain regions of T1D and T2D mice, the histone acetyltransferase (HAT) activity remain unchanged. Significantly increased HDAC 2, HDAC 3 protein and mRNA expression observed in T1D and T2D brain regions may corroborate for increased HDAC activity. No significant change was observed in protein and mRNA expression of HDAC 1, 5, 6, and 7 in diabetic brains. Reduced H3K9/14 and H4K12 acetylation paralleled transcriptional repression of memory-related markers BDNF, SYP, and PSD-95 in the cortex and hippocampus of T1D and T2D. Pharmacological inhibition of HDAC activity by Trichostatin A enhanced the cognitive changes observed in T1D and T2D by ameliorating BDNF, SYP, Psd-95. The present study provides a better insight into molecular mechanisms related to diabetes-dependent memory changes that can help to generate new advances for therapeutics to be developed in this area.
Collapse
Affiliation(s)
- Aanchal Aggarwal
- National Agri-Food Biotechnology Institute, Knowledge City, Sector-81, SAS Nagar, Punjab, India.
| | - Binduma Yadav
- National Agri-Food Biotechnology Institute, Knowledge City, Sector-81, SAS Nagar, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Nishtha Sharma
- National Agri-Food Biotechnology Institute, Knowledge City, Sector-81, SAS Nagar, Punjab, India
| | - Raminder Kaur
- National Agri-Food Biotechnology Institute, Knowledge City, Sector-81, SAS Nagar, Punjab, India; Department of Biotechnology, Sector-25, BMS Block I, Panjab University, Chandigarh, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute, Knowledge City, Sector-81, SAS Nagar, Punjab, India.
| |
Collapse
|
6
|
Chaudhari DS, Jain S, Yata VK, Mishra SP, Kumar A, Fraser A, Kociolek J, Dangiolo M, Smith A, Golden A, Masternak MM, Holland P, Agronin M, White-Williams C, Arikawa AY, Labyak CA, Yadav H. Unique trans-kingdom microbiome structural and functional signatures predict cognitive decline in older adults. GeroScience 2023; 45:2819-2834. [PMID: 37213047 PMCID: PMC10643725 DOI: 10.1007/s11357-023-00799-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
The prevalence of age-related cognitive disorders/dementia is increasing, and effective prevention and treatment interventions are lacking due to an incomplete understanding of aging neuropathophysiology. Emerging evidence suggests that abnormalities in gut microbiome are linked with age-related cognitive decline and getting acceptance as one of the pillars of the Geroscience hypothesis. However, the potential clinical importance of gut microbiome abnormalities in predicting the risk of cognitive decline in older adults is unclear. Till now the majority of clinical studies were done using 16S rRNA sequencing which only accounts for analyzing bacterial abundance, while lacking an understanding of other crucial microbial kingdoms, such as viruses, fungi, archaea, and the functional profiling of the microbiome community. Utilizing data and samples of older adults with mild cognitive impairment (MCI; n = 23) and cognitively healthy controls (n = 25). Our whole-genome metagenomic sequencing revealed that the gut of older adults with MCI harbors a less diverse microbiome with a specific increase in total viruses and a decrease in bacterial abundance compared with controls. The virome, bacteriome, and microbial metabolic signatures were significantly distinct in subjects with MCI versus controls. Selected bacteriome signatures show high predictive potential of cognitive dysfunction than virome signatures while combining virome and metabolic signatures with bacteriome boosts the prediction power. Altogether, the results from our pilot study indicate that trans-kingdom microbiome signatures are significantly distinct in MCI gut compared with controls and may have utility for predicting the risk of developing cognitive decline and dementia- debilitating public health problems in older adults.
Collapse
Affiliation(s)
- Diptaraj S Chaudhari
- USF Center for Microbiome Research, Institute for Microbiomes, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Institute for Microbiomes, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Vinod K Yata
- USF Center for Microbiome Research, Institute for Microbiomes, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
| | - Sidharth P Mishra
- USF Center for Microbiome Research, Institute for Microbiomes, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Ambuj Kumar
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Research Methodology and Biostatistics Core, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Amoy Fraser
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- University of Central Florida College of Medicine, FL, Orlando, United States
| | - Judyta Kociolek
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Neuroscience, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Mariana Dangiolo
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- University of Central Florida College of Medicine, FL, Orlando, United States
| | - Amanda Smith
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Byrd Alzheimer Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Adam Golden
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- University of Central Florida College of Medicine, FL, Orlando, United States
| | - Michal M Masternak
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Peter Holland
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Neuroscience, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Marc Agronin
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Behavioral Health, MIND Institute, Miami Jewish Health, Miami, FL, USA
| | - Cynthia White-Williams
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, USA
- School of Global Health Management and Informatics, University of Central Florida, Orlando, FL, USA
| | - Andrea Y Arikawa
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, USA
| | - Corinne A Labyak
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Institute for Microbiomes, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA.
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA.
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Byrd Alzheimer Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
7
|
Sharma P, Aggarwal K, Awasthi R, Kulkarni GT, Sharma B. Behavioral and biochemical investigations to explore the efficacy of quercetin and folacin in experimental diabetes induced vascular endothelium dysfunction and associated dementia in rats. J Basic Clin Physiol Pharmacol 2023; 34:603-615. [PMID: 34161695 DOI: 10.1515/jbcpp-2020-0159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Vascular dementia (VaD), being strongly associated with metabolic conditions is a major health concern around the world. Diabetes is a major risk factor for the development of VaD. This study investigates the efficacy of quercetin and folacin in diabetes induced vascular endothelium dysfunction and related dementia. METHODS Single dose streptozotocin (STZ) (50 mg/kg i.p) was administered to albino Wistar rats (male, 200-250 g) by dissolving in citrate buffer. Morris water maze (MWM) and attentional set shifting tests were used to assess the spatial learning, memory, reversal learning, and executive functioning in animals. Body weight, serum glucose, serum nitrite/nitrate, vascular endothelial function, aortic superoxide anion, brains' oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), mitochondrial enzyme complex (I, II, and IV), inflammatory markers (interleukin-IL-6, IL-10, tumor necrosis factor-TNF-α, and myeloperoxidase-MPO), and acetylcholinesterase activity-AChE were also assessed. Quercetin (30 mg kg-1/60 mg kg-1) and folacin (30 mg kg-1/60 mg kg-1) were used as the treatment drugs. Donepezil (0.5 mg kg-1) was used as a positive control. RESULTS STZ administered rats showed reduction in learning, memory, reversal learning, executive functioning, impairment in endothelial function, increase in brains' oxidative stress; inflammation; AChE activity, and decrease in mitochondrial complex (I, II, and IV) activity. Administration of quercetin and folacin in two different doses, significantly attenuated the STZ induced diabetes induced impairments in the behavioral, endothelial, and biochemical parameters. CONCLUSIONS STZ administration caused diabetes and VaD which was attenuated by the administration of quercetin and folacin. Therefore, these agents may be studied further for the assessment of their full potential in diabetes induced VaD conditions.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Khushboo Aggarwal
- Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Meerut, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Giriraj T Kulkarni
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
- CNS Pharmacology, Conscience Research, Delhi, India
| |
Collapse
|
8
|
Neha SA, Salazar-Bravo J. Fine-scale spatial variation shape fecal microbiome diversity and composition in black-tailed prairie dogs (Cynomys ludovicianus). BMC Microbiol 2023; 23:51. [PMID: 36858951 PMCID: PMC9979494 DOI: 10.1186/s12866-023-02778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/19/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Host associated gut microbiota are important in understanding the coevolution of host-microbe, and how they may help wildlife populations to adapt to rapid environmental changes. Mammalian gut microbiota composition and diversity may be affected by a variety of factors including geographic variation, seasonal variation in diet, habitat disturbance, environmental conditions, age, and sex. However, there have been few studies that examined how ecological and environmental factors influence gut microbiota composition in animals' natural environments. In this study, we explore how host habitat, geographical location and environmental factors affect the fecal microbiota of Cynomys ludovicianus at a small spatial scale. We collected fecal samples from five geographically distinct locations in the Texas Panhandle classified as urban and rural areas and analyzed them using high throughput 16S rRNA gene amplicon sequencing. RESULTS The results showed that microbiota of these fecal samples was largely dominated by the phylum Bacteroidetes. Fecal microbiome diversity and composition differed significantly across sampling sites and habitats. Prairie dogs inhabiting urban areas showed reduced fecal diversity due to more homogenous environment and, likely, anthropogenic disturbance. Urban prairie dog colonies displayed greater phylogenetic variation among replicates than those in rural habitats. Differentially abundant analysis revealed that bacterial species pathogenic to humans and animals were highly abundant in urban areas which indicates that host health and fitness might be negatively affected. Random forest models identified Alistipes shahii as the important species driving the changes in fecal microbiome composition. Despite the effects of habitat and geographic location of host, we found a strong correlation with environmental factors and that- average maximum temperature was the best predictor of prairie dog fecal microbial diversity. CONCLUSIONS Our findings suggest that reduction in alpha diversity in conjunction with greater dispersion in beta diversity could be indicative of declining host health in urban areas; this information may, in turn, help determine future conservation efforts. Moreover, several bacterial species pathogenic to humans and other animals were enriched in prairie dog colonies near urban areas, which may in turn adversely affect host phenotype and fitness.
Collapse
Affiliation(s)
- Sufia Akter Neha
- International Center for Arid and Semi-Arid Land Studies, Texas Tech University, Lubbock, TX, 79409, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, 79409, USA.
| | - Jorge Salazar-Bravo
- International Center for Arid and Semi-Arid Land Studies, Texas Tech University, Lubbock, TX, 79409, USA
- Department of Biological Sciences, Texas Tech University, Lubbock, 79409, USA
| |
Collapse
|
9
|
Cristiano C, Cuozzo M, Coretti L, Liguori F, Cimmino F, Turco L, Avagliano C, Aviello G, Mollica M, Lembo F, Russo R. Oral sodium butyrate supplementation ameliorates paclitaxel-induced behavioral and intestinal dysfunction. Biomed Pharmacother 2022; 153:113528. [DOI: 10.1016/j.biopha.2022.113528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
|
10
|
Neurobehavioral and neurobiochemical effect of atomoxetine and N-acetylcysteine in streptozotocin diabetes induced endothelial dysfunction and related dementia. Physiol Behav 2022; 249:113767. [PMID: 35245527 DOI: 10.1016/j.physbeh.2022.113767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022]
Abstract
Metabolic conditions like diabetes, is a major risk factor for the development of dementia of vascular origin. This study investigates the efficacy of atomoxetine (ATX) and N-acetylcysteine (NAC) in streptozotocin (STZ) diabetes induced vascular endothelium dysfunction and related dementia. Single dose STZ (50 mg/kg i.p) was administered to Albino Wistar rats (male, 200-250 g) by dissolving in citrate buffer. Morris water maze (MWM) and attentional set shifting tests (ASST) were used to assess the spatial learning, memory, reversal learning, and executive functioning in animals. Body weight, serum glucose, serum nitrite/nitrate, vascular endothelial function, aortic superoxide anion, brains' oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), inflammatory markers (IL-6, IL-10, TNF-α, and myeloperoxidase-MPO), acetylcholinesterase activity-AChE and histopathological changes were also assessed. Atomoxetine - ATX (2 mg kg-1/ 4 mg kg-1) and N-acetylcysteine- NAC (250 mg kg-1/ 500 mg kg-1) were used alone as well as in combination, as the treatment drugs. Donepezil (0.5 mg kg-1) was used as a positive control. STZ administered rats showed increase in serum glucose levels and decrease in body weight. Rats administered with STZ also showed reduction in learning, memory, reversal learning, executive functioning, impairment in endothelial function, increase in brains' oxidative stress, inflammation, AChE activity and histopathological changes. Administration of ATX and NAC in two different doses as well as in combination, significantly attenuated the STZ induced diabetes induced impairments in the behavioral, endothelial, biochemical parameters and histopathological changes. Co-treatment of ATX and NAC was better in comparison to the doses when given alone. Hence, STZ administration caused diabetes induced dementia of vascular origin which was attenuated by the administration of ATX and NAC. Therefore, these agents may be studied further for the assessment of their full potential in diabetes induced dementia of vascular origin conditions.
Collapse
|
11
|
Meyer K, Lulla A, Debroy K, Shikany JM, Yaffe K, Meirelles O, Launer LJ. Association of the Gut Microbiota With Cognitive Function in Midlife. JAMA Netw Open 2022; 5:e2143941. [PMID: 35133436 PMCID: PMC8826173 DOI: 10.1001/jamanetworkopen.2021.43941] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE Animal experiments and small clinical studies support a role for the gut microbiota in cognitive functioning. Few studies have investigated gut microbiota and cognition in large community samples. OBJECTIVE To examine associations of gut microbial composition with measures of cognition in an established population-based study of middle-aged adults. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study analyzed data from the prospective Coronary Artery Risk Development in Young Adults (CARDIA) cohort in 4 US metropolitan centers between 2015 and 2016. Data were analyzed in 2019 and 2020. EXPOSURES Stool DNA were sequenced, and the following gut microbial measures were gathered: (1) β-diversity (between-person) derived with multivariate principal coordinates analysis; (2) α-diversity (within-person), defined as richness (genera count) and the Shannon index (integrative measure of genera richness and evenness); and (3) taxonomy (107 genera, after filtering). MAIN OUTCOMES AND MEASURES Cognitive status was assessed using 6 clinic-administered cognitive tests: Montreal Cognitive Assessment (MoCA), Digit Symbol Substitution Test (DSST), Rey-Auditory Verbal Learning Test (RAVLT), Stroop, category fluency, and letter fluency. A global score measure derived using principal components analysis was also assessed; the first principal component explained 56% of variability. RESULTS Microbiome data were available on 597 CARDIA participants; mean (SD) age was 55.2 (3.5) years, 268 participants (44.7%) were men, and 270 (45.2%) were Black. In multivariable-adjusted principal coordinates analysis, permutational multivariate analysis of variance tests for β-diversity were statistically significant for all cognition measures (principal component analysis, P = .001; MoCA, P = .001; DSST, P = .001; RAVLT, P = .001; Stroop, P = .007; category fluency, P = .001) with the exception of letter fluency (P = .07). After adjusting for sociodemographic variables (age, race, sex, education), health behaviors (physical activity, diet, smoking, medication use), and clinical covariates (body mass index, diabetes, hypertension), Barnesiella was positively associated with the first principal component (β, 0.16; 95% CI, 0.08-0.24), DSST (β, 1.18; 95% CI, 0.35-2.00), and category fluency (β, 0.59; 95% CI, 0.31-0.87); Lachnospiraceae FCS020 group was positively associated with DSST (β, 2.67; 95% CI, 1.10-4.23), and Sutterella was negatively associated with MoCA (β, -0.27; 95% CI, -0.44 to -0.11). CONCLUSIONS AND RELEVANCE In this cross-sectional study, microbial community composition, based on β-diversity, was associated with all cognitive measures in multivariable-adjusted analysis. These data contribute to a growing body of literature suggesting that the gut microbiota may be associated with cognitive aging, but must be replicated in larger samples and further researched to identify relevant pathways.
Collapse
Affiliation(s)
- Katie Meyer
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill
| | - Anju Lulla
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis
| | - Kunal Debroy
- Intramural Research Program, National Institute on Aging, Bethesda, Maryland
| | - James M. Shikany
- School of Medicine, Division of Preventive Medicine, University of Alabama at Birmingham
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology and Epidemiology, University of California, San Francisco
| | - Osorio Meirelles
- Intramural Research Program, National Institute on Aging, Bethesda, Maryland
| | - Lenore J. Launer
- Intramural Research Program, National Institute on Aging, Bethesda, Maryland
| |
Collapse
|
12
|
Virk D, Kumar A, Jaggi AS, Singh N. Ameliorative role of rolipram, PDE-4 inhibitor, against sodium arsenite-induced vascular dementia in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63250-63262. [PMID: 34226994 DOI: 10.1007/s11356-021-15189-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Arsenic exposure to the population leads to serious health problems like neurotoxicity, nephrotoxicity, and cardiovascular abnormality. In the present study, the work has been commenced to discover the prospect of rolipram a phosphodiestrase-4 (PDE-4) inhibitor against sodium arsenite (SA)-induced vascular endothelial dysfunction (EnDF) leading to dementia in rats. Wistar rats were treated with SA (5 mg/kg body weight/day orally) for 44 days for induction of vascular EnDF and dementia. Learning and memory were evaluated using Morris water maze (MWM) test. Vascular EnDF was evaluated using aortic ring preparation. Various biochemical parameters were also evaluated like brain oxidative stress (viz. reduced glutathione and thiobarbituric acid reactive substances level), serum nitrite/nitrate activity, acetylcholinesterase activity, and inflammatory markers (viz. neutrophil infiltration in brain and myeloperoxidase). SA-treated rats showed poor performance in water maze trials indicating attenuated memory and ability to learn with significant rise (p < 0.05) in brain acetylcholinesterase activity, brain oxidative stress, neutrophil count, and significant decrease (p < 0.05) in serum nitrite/nitrate levels and vascular endothelial functions. Rolipram (PDE-4 inhibitor) treatment (0.03 mg/kg and 0.06 mg/kg body weight, intraperitoneally daily for 14 days) significantly improved memory and learning abilities, and restored various biochemical parameters and EnDF. It is concluded that PDE-4 modulator may be considered the prospective target for the treatment of SA-induced vascular EnDF and related dementia.
Collapse
Affiliation(s)
- Divjot Virk
- Department of Pharmaceutical Sciences and Drug Research, CNS Research Lab., Pharmacology Division, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, CNS Research Lab., Pharmacology Division, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, CNS Research Lab., Pharmacology Division, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
13
|
Thromboxane A2 synthase inhibition ameliorates endothelial dysfunction, memory deficits, oxidative stress and neuroinflammation in rat model of streptozotocin diabetes induced dementia. Physiol Behav 2021; 241:113592. [PMID: 34534530 DOI: 10.1016/j.physbeh.2021.113592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/20/2022]
Abstract
RATIONALE Vascular dementia (VaD) is the second leading cause of dementia worldwide. It is very important to find the possible pharmacological agents which may be useful in management and therapy of VaD. OBJECTIVES The present study investigates the effect of ozagrel, a selective thromboxane A2 (TXA2) synthase inhibitor, in a rat model of VaD. METHODS Single intraperitoneal injection of streptozotocin [STZ, (50 mg/kg)] was administered to Wistar rats to induced diabetes-associated vascular endothelial dysfunction and memory impairment. Morris water maze (MWM) test was employed to assess learning and memory. Endothelial dysfunction was assessed in the isolated aorta by observing endothelial-dependent vasorelaxation and levels of serum nitrite. Various biochemical and histopathological estimations were also performed. RESULTS STZ treatment produced endothelial dysfunction, impairment of learning and memory, reduction in body weight and serum nitrite/nitrate, and increase in serum glucose, brain oxidative stress (increased brain thiobarbituric acid reactive species and decreased reduced glutathione levels), brain acetylcholinesterase activity and brain myeloperoxidase activity. Further a significant rise in brain tumor necrosis factor-α & interleukin-6 levels and brain neutrophil infiltration were also observed. Treatment of ozagrel (10 & 20 mg/kg, p. o.)/donepezil (0. 5 mg/kg, i.p., serving as standard) ameliorated STZ induced endothelial dysfunction; memory deficits; biochemical and histopathological changes. CONCLUSIONS It may be concluded that ozagrel markedly improved endothelial dysfunction; learning and memory; biochemical and histopathological alteration associated with STZ induced dementia and that TXA2 can be considered as an important therapeutic target for the management of VaD.
Collapse
|
14
|
Verma B, Singh C, Singh A. Effect of hydro-alcoholic extract of centella asiatica on streptozotocin induced memory dysfunction in adult zebrafish. CURRENT RESEARCH IN BEHAVIORAL SCIENCES 2021. [DOI: 10.1016/j.crbeha.2021.100059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Sharma P, Kaushik P, Jain S, Sharma BM, Awasthi R, Kulkarni GT, Sharma B. Efficacy of Ulinastatin and Sulforaphane Alone or in Combination in Rat Model of Streptozotocin Diabetes Induced Vascular Dementia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:470-489. [PMID: 34294616 PMCID: PMC8316668 DOI: 10.9758/cpn.2021.19.3.470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 12/11/2020] [Indexed: 11/22/2022]
Abstract
Objective Vascular Dementia (VaD), is associated with metabolic conditions. Diabetes is a major risk factor for the development of VaD. This study investigates the efficacy of ulinastatin (UTI) and sulforaphane (SUL) in streptozotocin (STZ)-diabetes induced vascular endothelium dysfunction and related dementia. Methods Single dose STZ (50 mg/kg i.p.) was administered to Albino Wistar rats (male, 200−250 g). Morris water maze and attentional set shifting tests were used to assess the spatial learning, memory, reversal learning, and executive functioning in animals. Body weight, serum glucose, serum nitrite/nitrate, vascular endothelial function, aortic superoxide anion, brains’ oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), inflammatory markers (IL-6, IL-10, TNF-a, and myeloperoxidase-MPO), acetylcholinesterase activity-AChE, blood brain barrier (BBB) permeability and histopathological changes were also assessed. UTI (10,000 U/kg) and SUL (25 mg/kg) were used alone as well as in combination, as the treatment drugs. Donepezil (0.5 mg/kg) was used as a positive control. Results STZ-administered rats showed reduction in body weight, learning, memory, reversal learning, executive functioning, impairment in endothelial function, BBB permeability, increase in serum glucose, brains’ oxidative stress, inflammation, AChE-activity, BBB permeability and histopathological changes. Administration of UTI and SUL alone as well as in combination, significantly and dose dependently attenuated the STZ-diabetes-induced impairments in the behavioral, endothelial, and biochemical parameters. Conclusion STZ administration caused diabetes and VaD which was attenuated by the administration of UTI and SUL. Therefore, these agents may be studied further for the assessment of their full potential in diabetes induced VaD.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Prachi Kaushik
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Swati Jain
- Department of Pharmacology, School of Pharmacy, BIT, Meerut, India
| | | | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | | | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India.,CNS and CVS Pharmacology, Conscience Research, Delhi, India
| |
Collapse
|
16
|
Muniroh M, Nindita Y, Karlowee V, Purwoko Y, Rahmah ND, Widyowati R, Suryono S. Effect of Garcinia mangostana pericarp extract on glial NF-κB levels and expression of serum inflammation markers in an obese-type 2 diabetes mellitus animal model. Biomed Rep 2021; 15:63. [PMID: 34113445 PMCID: PMC8188163 DOI: 10.3892/br.2021.1439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an age-related disease associated with cerebral inflammation and Alzheimer's disease. Garcinia mangostana pericarp (GMP) possesses antihyperglycemic, antidiabetic and anti-inflammatory effects. The aim of the present study was to evaluate the effect of GMP extract on cerebral inflammation in Wistar rats with T2DM by examining the expression levels of glial nuclear factor-κB (NF-κB), interleukin (IL)-6, tumor necrosis factor-α (TNF-α) and superoxide dismutase (SOD). A total of 36 8-10-week-old male Wistar rats were randomly divided into six groups and provided a standard diet (normal control; C1), high-fat diet (HFD) with 200 g/kg GMP extract BW/day (GMP control; C2), HFD with streptozotocin-nicotinamide (diabetic control; C3), and HFD with 100 (M1), 200 (M2) or 400 g/kg body weight (BW)/day (M3) GMP extract for Wistar rats with diabetes. GMP extract was administered for 8 weeks after induction of T2DM was confirmed. Glial NF-κB activity was assessed by immunohistochemical staining, and by measuring IL-6 levels, TNF-α levels and SOD activity in the serum using ELISA. BW significantly increased following HFD treatment. After 7 weeks, the BW remained significantly higher compared with the normal control and GMP extract-treated groups, but decreased continuously in the T2DM groups. Glial NF-κB immunoreaction in the hippocampal region was significantly higher in the diabetic Wistar rats compared with the normal control Wistar rats, and 200 g/kg BW/day GMP significantly reduced its activity. The T2DM Wistar rats showed significantly higher expression levels of serum IL-6 and TNF-α and lower activity of SOD compared with the normal control Wistar rats. Meanwhile, rats in GMP groups M1, M2 and M3 exhibited significant reductions in the levels of IL-6 and TNF-α expression, and increases in SOD activity. GMP extract treatment effectively reduced hippocampal NF-κB, IL-6 and TNF-α levels and increased antioxidant SOD activity. These results suggest that GMP extract prevents cerebral inflammation in T2DM Wistar rats.
Collapse
Affiliation(s)
- Muflihatul Muniroh
- Department of Physiology, Faculty of Medicine Diponegoro University, Semarang, Java 50275, Indonesia
| | - Yora Nindita
- Department of Pharmacology and Therapeutics, Faculty of Medicine Diponegoro University, Semarang, Java 50275, Indonesia
| | - Vega Karlowee
- Department of Anatomical Pathology, Faculty of Medicine Diponegoro University, Semarang, Java 50275, Indonesia
| | - Yosef Purwoko
- Department of Physiology, Faculty of Medicine Diponegoro University, Semarang, Java 50275, Indonesia.,Department of Internal Medicine, Faculty of Medicine Diponegoro University, Semarang, Java 50275, Indonesia
| | - Nadya Diena Rahmah
- Department of Nutrition Science, Faculty of Medicine Diponegoro University, Semarang, Java 50275, Indonesia
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy Airlangga University, Surabaya, East Java 60115, Indonesia
| | - Suryono Suryono
- Department of Physics, Faculty of Science and Mathematics Diponegoro University, Semarang, Java 50275, Indonesia
| |
Collapse
|
17
|
Bhatia P, Kaur G, Singh N. Ozagrel a thromboxane A2 synthase inhibitor extenuates endothelial dysfunction, oxidative stress and neuroinflammation in rat model of bilateral common carotid artery occlusion induced vascular dementia. Vascul Pharmacol 2021; 137:106827. [PMID: 33346090 DOI: 10.1016/j.vph.2020.106827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022]
Abstract
The present study investigates the potential of ozagrel, a thromboxane A2 (TXA2) synthase inhibitor, in bilateral common carotid artery occlusion (BCCAo) induced vascular dementia (VaD). Wistar rats were subjected to BCCAo procedure under anesthesia to induce VaD. Morris water maze (MWM) test was employed on 7th day post-surgery to determine learning and memory. Endothelial dysfunction was assessed in isolated aorta by observing endothelial dependent vasorelaxation and levels of serum nitrite. A battery of biochemical and histopathological estimations was performed. Expression analysis of inflammatory cytokines TNF-α and IL-6 was carried out by RT-PCR. BCCAo produced significant impairment in endothelium dependent vasorelaxation and decrease in serum nitrite levels indicating endothelial dysfunction along with poor performance on MWM represents impairment of learning and memory. There was a significant rise in brain oxidative stress level (indicated by increase in brain thiobarbituric acid reactive species and decrease in reduced glutathione levels); increase in brain acetylcholinesterase activity; brain myeloperoxidase activity; brain TNF-α & IL-6 levels, brain TNF-α & IL-6 mRNA expression and brain neutrophil infiltration (as marker of inflammation) were also observed. Treatment of ozagrel (10 & 20 mg/kg, p. o.)/donepezil (0. 5 mg/kg, i.p., serving as standard) ameliorated BCCAo induced endothelial dysfunction; memory deficits; biochemical and histopathological changes in a significant manner. It may be concluded that ozagrel markedly improved endothelial dysfunction; learning and memory; biochemical and histopathological alteration associated with BCCAo induced VaD and that TXA2 can be considered as an important therapeutic target for the treatment of VaD.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/enzymology
- Brain/physiopathology
- Carotid Artery, Common/surgery
- Carotid Stenosis/complications
- Dementia, Vascular/drug therapy
- Dementia, Vascular/enzymology
- Dementia, Vascular/etiology
- Dementia, Vascular/physiopathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/pharmacology
- Female
- Inflammation Mediators/metabolism
- Ligation
- Male
- Methacrylates/pharmacology
- Morris Water Maze Test/drug effects
- Oxidative Stress/drug effects
- Rats, Wistar
- Thromboxane-A Synthase/antagonists & inhibitors
- Thromboxane-A Synthase/metabolism
- Rats
Collapse
Affiliation(s)
- Pankaj Bhatia
- CNS Research lab., Pharmacology division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala 147002, Punjab, India
| | - Gagandeep Kaur
- CNS Research lab., Pharmacology division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala 147002, Punjab, India
| | - Nirmal Singh
- Pharmacology division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala 147002, Punjab, India.
| |
Collapse
|
18
|
Liu W, La ALTZ, Evans A, Gao S, Yu Z, Bu D, Ma L. Supplementation with sodium butyrate improves growth and antioxidant function in dairy calves before weaning. J Anim Sci Biotechnol 2021; 12:2. [PMID: 33397482 PMCID: PMC7780688 DOI: 10.1186/s40104-020-00521-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background There is increasing research interest in using short-chain fatty acids (SCFAs) including butyrate as potential alternatives to antibiotic growth promoters in animal production. This study was conducted to evaluate the effects of supplementation of sodium butyrate (SB) in liquid feeds (milk, milk replacer, and the mixture of both) on the growth performance, rumen fermentation, and serum antioxidant capacity and immunoglobins in dairy calves before weaning. Forty healthy female Holstein calves (4-day-old, 40 ± 5 kg of body weight) were housed in individual hutches and randomly allocated to 1 of 4 treatment groups (n = 10 per group) using the RAND function in Excel. The control group was fed no SB (SB0), while the other three groups were supplemented with 15 (SB15), 30 (SB30), or 45 (SB45) g/d of SB mixed into liquid feeds offered. The calves were initially fed milk only (days 2 to 20), then a mixture of milk and milk replacer (days 21 to 23), and finally milk replacer only (days 24 to 60). Results The SB supplementation enhanced growth and improved feed conversion into body weight gain compared with the SB0 group, and the average daily gain increased quadratically with increasing SB supplementation. No significant effect on rumen pH; concentrations of NH3-N, individual and total VFAs; or acetate: propionate (A:P) ratio was found during the whole experimental period. Serum glutathione peroxidase activity increased linearly with the increased SB supplementation, while the serum concentration of maleic dialdehyde linearly decreased. Serum concentrations of immunoglobulin A, immunoglobulin G, or immunoglobulin M were not affected by the SB supplementation during the whole experimental period. Conclusions Under the conditions of this study, SB supplementation improved growth performance and antioxidant function in pre-weaned dairy calves. We recommended 45 g/d as the optimal level of SB supplementation mixed into liquid feeds (milk or milk replacer) to improve the growth and antioxidant function of dairy calves before weaning.
Collapse
Affiliation(s)
- Wenhui Liu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - A La Teng Zhu La
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Alexander Evans
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Shengtao Gao
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Dengpan Bu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China. .,Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Center (ICRAF), Beijing, 100193, People's Republic of China.
| | - Lu Ma
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
19
|
Bhatia P, Singh N. Ameliorative effect of ozagrel, a thromboxane A2 synthase inhibitor, in hyperhomocysteinemia-induced experimental vascular cognitive impairment and dementia. Fundam Clin Pharmacol 2020; 35:650-666. [PMID: 33020931 DOI: 10.1111/fcp.12610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
The present study investigates the effect of ozagrel, a selective thromboxane A2 (TXA2) inhibitor, in rat model of hyperhomocysteinemia (HHcy)-induced vascular cognitive impairment and dementia (VCID). Wistar rats were administered L-methionine (1.7 g/kg/day; p.o. × 8 weeks) to induce VCID. Morris water maze (MWM) test was employed to assess learning and memory. Endothelial dysfunction was assessed in the isolated aorta by observing endothelial-dependent vasorelaxation and levels of serum nitrite. Various biochemical and histopathological estimations were also performed. L-methionine produced significant impairment in endothelium-dependent vasorelaxation and decreases serum nitrite levels indicating endothelial dysfunction. Further, these animals performed poorly on MWM, depicting impairment of learning and memory. Further, a significant rise in brain oxidative stress level (indicated by increase in brain thiobarbituric acid-reactive species and decrease in reduced glutathione levels), brain acetylcholinesterase activity, brain myeloperoxidase activity, brain TNF-α and IL-6 levels, and brain leukocyte (neutrophil) infiltration was also observed. Treatment of ozagrel (10 and 20 mg/kg, p. o.)/donepezil (0.5 mg/kg, i.p., serving as standard) ameliorated L-methionine-induced endothelial dysfunction, memory deficits, and biochemical and histopathological changes. It may be concluded that ozagrel markedly improved endothelial dysfunction, learning and memory, and biochemical and histopathological alteration associated with L-methionine-induced VCID and that TXA2 can be considered as an important therapeutic target for the management of VCID.
Collapse
Affiliation(s)
- Pankaj Bhatia
- CNS Research Lab., Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| | - Nirmal Singh
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
20
|
Bhatia P, Singh N. Tadalafil ameliorates memory deficits, oxidative stress, endothelial dysfunction and neuropathological changes in rat model of hyperhomocysteinemia induced vascular dementia. Int J Neurosci 2020; 132:384-396. [PMID: 32859137 DOI: 10.1080/00207454.2020.1817009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM The present study investigates the potential of Tadalafil, a phosphodiesterase-5 inhibitor, in a rat model of hyperhomocysteinemia induced vascular dementia. METHODS Hyperhomocysteinemia induced vascular dementia in Wistar rats was produced by administering l-Methionine (1.7 g/kg/day; p.o.×8 weeks). Learning and memory was assessed by employing Morris water maze (MWM) test. Endothelial dysfunction was assessed through acetylcholine-induced endothelial-dependent vasorelaxation and serum nitrite levels. Various other biochemical and histopathological estimations were also performed. RESULTS l-Methionine produced significant impairment in acetylcholine-induced endothelium-dependent vasorelaxation and a decrease in serum nitrite levels indicating endothelial dysfunction. Further, these animals performed poorly on Morris water maze, depicting impairment of learning and memory. There was a significant rise in brain oxidative stress level (indicated by an increase in brain thiobarbituric acid reactive species and a decrease in reduced glutathione levels). Increase in brain acetylcholinesterase activity; brain myeloperoxidase activity and brain neutrophil infiltration (a marker of inflammation) were also observed. Tadalafil (5 and 10 mg/kg, p.o.)/Donepezil (0.5 mg/kg, i.p., serving as standard) treatment ameliorated l-Methionine induced endothelial dysfunction; memory deficits; biochemical and histopathological changes in a significant manner. CONCLUSIONS It may be concluded that tadalafil has shown efficacy in the rat model of l-Methionine induced vascular dementia and that phosphodiesterase-5 can be considered as an important therapeutic target for the treatment of vascular dementia.
Collapse
Affiliation(s)
- Pankaj Bhatia
- CNS Research Lab., Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, Punjab, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
21
|
Bhatia P, Singh N. Ameliorative Effect of Phosphodiesterase-5 Inhibitor in Rat Model of Vascular Dementia. Curr Neurovasc Res 2019; 16:27-39. [DOI: 10.2174/1567202616666190130153954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 12/15/2022]
Abstract
Introduction:
Cerebral hypoperfusion has been considered as major risk factor for Vascular
Dementia (VaD). The present study shows the potential of Tadalafil, a phosphodiesterase-5
inhibitor, in bilateral common carotid artery occlusion (BCCAo) induced VaD in rats.
Materials and Methods:
BCCAo procedure was performed under anesthesia in wistar rats to induce
VaD. Morris Water-Maze (MWM) parameter was employed on 7th day post-surgery to determine
learning and memory. Escape latency time, time spent in target quadrant, Path length and
average swim speed taken as important parameters in MWM. Endothelial dysfunction was assessed
in isolated aorta by observing endothelial dependent vasorelaxations and levels of serum
nitrite. Various biochemical and histopathological estimations were also performed.
Results:
BCCAo produced significant impairment in endothelium dependent vasorelaxation and a
decrease in serum nitrite levels indicating endothelial dysfunction. Further poor performance on
MWM represents impairment of learning and memory. There was a significant rise in brain oxidative
stress level (indicated by increase in brain thiobarbituric acid reactive species and decrease in
reduced glutathione levels). Increase in brain acetylcholinesterase activity; brain myloperoxidase
activity and brain neutrophil infiltration (as marker of inflammation) were also observed.
Treatment of Tadalafil (5 & 10 mg/kg, p. o.)/Donepezil (0. 5 mg/kg, i.p., serving as standard)
ameliorated BCCAo induced endothelial dysfunction; memory deficits; biochemical and
histopathological changes in a significant manner.
Conclusion:
It may be concluded that Tadalafil has shown efficacy in rat model of BCCAo induced
VaD and that phosphodiesterase-5 can be considered as an important therapeutic target for
the treatment of VaD.
Collapse
Affiliation(s)
- Pankaj Bhatia
- CNS Research Lab., Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala - 147002, Punjab, India
| | - Nirmal Singh
- CNS Research Lab., Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala - 147002, Punjab, India
| |
Collapse
|
22
|
Yusoff SI, Roman M, Lai FY, Eagle-Hemming B, Murphy GJ, Kumar T, Wozniak M. Systematic review and meta-analysis of experimental studies evaluating the organ protective effects of histone deacetylase inhibitors. Transl Res 2019; 205:1-16. [PMID: 30528323 PMCID: PMC6386580 DOI: 10.1016/j.trsl.2018.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 01/07/2023]
Abstract
The clinical efficacy of organ protection interventions are limited by the redundancy of cellular activation mechanisms. Interventions that target epigenetic mechanisms overcome this by eliciting genome wide changes in transcription and signaling. We aimed to review preclinical studies evaluating the organ protection effects of histone deacetylase inhibitors (HDACi) with a view to informing the design of early phase clinical trials. A systematic literature search was performed. Methodological quality was assessed against prespecified criteria. The primary outcome was mortality, with secondary outcomes assessing mechanisms. Prespecified analyses evaluated the effects of likely moderators on heterogeneity. The analysis included 101 experimental studies in rodents (n = 92) and swine (n = 9), exposed to diverse injuries, including: ischemia (n = 72), infection (n = 7), and trauma (n = 22). There were a total of 448 comparisons due to the evaluation of multiple independent interventions within single studies. Sodium valproate (VPA) was the most commonly evaluated HDACi (50 studies, 203 comparisons). All of the studies were judged to have significant methodological limitations. HDACi reduced mortality in experimental models of organ injury (risk ratio = 0.52, 95% confidence interval 0.40-0.68, p < 0.001) without heterogeneity. HDACi administration resulted in myocardial, brain and kidney protection across diverse species and injuries that was attributable to increases in prosurvival cell signaling, and reductions in inflammation and programmed cell death. Heterogeneity in the analyses of secondary outcomes was explained by differences in species, type of injury, HDACi class (Class I better), drug (trichostatin better), and time of administration (at least 6 hours prior to injury better). These findings highlight a potential novel application for HDACi in clinical settings characterized by acute organ injury.
Collapse
Affiliation(s)
- Syabira I Yusoff
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK.
| | - Marius Roman
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| | - Florence Y Lai
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| | - Bryony Eagle-Hemming
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| | - Gavin J Murphy
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| | - Tracy Kumar
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| | - Marcin Wozniak
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| |
Collapse
|
23
|
Prasad KN, Bondy SC. Dietary fibers and their fermented short-chain fatty acids in prevention of human diseases. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bcdf.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Gocmez SS, Şahin TD, Yazir Y, Duruksu G, Eraldemir FC, Polat S, Utkan T. Resveratrol prevents cognitive deficits by attenuating oxidative damage and inflammation in rat model of streptozotocin diabetes induced vascular dementia. Physiol Behav 2018; 201:198-207. [PMID: 30550811 DOI: 10.1016/j.physbeh.2018.12.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/21/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
Diabetes is one of the risk factors for the development of vascular dementia (VD), leading to endothelial dysfunction and cognitive impairment. Resveratrol has been shown to have antioxidant, antiinflammatory, and neuroprotective effects. The previous studies have also reported that resveratrol improves cognitive and vascular endothelial functions in several pathological conditions. In the present study we aimed to evaluate the effect of resveratrol on cognitive and vascular endothelial function and to explore the mechanisms of its effects in the streptozotocin-induced diabetic rat model of VD. Male Wistar rats were divided into 3 groups (n = 10 in each group): Control, diabetes (DM), DM + resveratrol (DM + RSV) groups. Rats from the DM + RSV group received resveratrol (20 mg/kg/day, ip) for 4 weeks after induction of diabetes and then cognitive functions of the rats were tested by the Morris water maze and a passive avoidance tests. After behavioral tests, endothelial function of thoracic aorta (the endothelium-dependent and -independent vasorelaxant responses) was investigated. To explore the mechanisms of resveratrol, endothelial eNOS, aortic superoxide dismutase (SOD), NADPH oxidase, heme oxygenase-1 (HO-1) levels, TNF-α and IL-1β expressions; serum SOD and NADPH oxidase levels and, hippocampal BDNF, TNF-α and IL-1β expressions were measured. It was shown that DM resulted in severe learning and memory deficits associated with endothelial dysfunction, increased expression of TNF-α and IL-1β, increased oxidative stress levels and decreased expression of eNOS and BDNF. In contrast, resveratrol treatment improved the cognitive decline. It was also found that chronic treatment with resveratrol ameliorated the impaired vascular reactivity. Reveratrol significantly reversed diabetes-induced changes of protein expression. Our data suggest that resveratrol prevents memory deficits, endothelial dysfunction, increased oxidative stress, inflammation and impairment of neurotrophin expression in a VD rat model. Thus, the vasculoprotective and neuroprotective effects of resveratrol may be beneficial in DM patients.
Collapse
Affiliation(s)
- Semil Selcen Gocmez
- Kocaeli University Faculty of Medicine, Department of Pharmacology, Kocaeli, Turkey.
| | - Tuğçe Demirtaş Şahin
- Kocaeli University Faculty of Medicine, Department of Pharmacology, Kocaeli, Turkey
| | - Yusufhan Yazir
- Kocaeli University Faculty of Medicine, Department of Histology and Embryology, Kocaeli, Turkey; Kocaeli University Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Kocaeli, Turkey
| | - Gökhan Duruksu
- Kocaeli University Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Kocaeli, Turkey
| | | | - Selen Polat
- Kocaeli University Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Kocaeli, Turkey
| | - Tijen Utkan
- Kocaeli University Faculty of Medicine, Department of Pharmacology, Kocaeli, Turkey; Kocaeli University Experimental Medical Research and Application Centre, Kocaeli, Turkey
| |
Collapse
|
25
|
Gannon OJ, Robison LS, Custozzo AJ, Zuloaga KL. Sex differences in risk factors for vascular contributions to cognitive impairment & dementia. Neurochem Int 2018; 127:38-55. [PMID: 30471324 DOI: 10.1016/j.neuint.2018.11.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) is the second most common cause of dementia. While males overall appear to be at a slightly higher risk for VCID throughout most of the lifespan (up to age 85), some risk factors for VCID more adversely affect women. These include female-specific risk factors associated with pregnancy related disorders (e.g. preeclampsia), menopause, and poorly timed hormone replacement. Further, presence of certain co-morbid risk factors, such as diabetes, obesity and hypertension, also may more adversely affect women than men. In contrast, some risk factors more greatly affect men, such as hyperlipidemia, myocardial infarction, and heart disease. Further, stroke, one of the leading risk factors for VCID, has a higher incidence in men than in women throughout much of the lifespan, though this trend is reversed at advanced ages. This review will highlight the need to take biological sex and common co-morbidities for VCID into account in both preclinical and clinical research. Given that there are currently no treatments available for VCID, it is critical that we understand how to mitigate risk factors for this devastating disease in both sexes.
Collapse
Affiliation(s)
- O J Gannon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - L S Robison
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - A J Custozzo
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| | - K L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
26
|
Prasad KN, Bondy SC. Dietary Fibers and Their Fermented Short-Chain Fatty Acids in Prevention of Human Diseases. Mech Ageing Dev 2018:S0047-6374(18)30013-7. [PMID: 30336163 DOI: 10.1016/j.mad.2018.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/13/2018] [Indexed: 12/17/2022]
Abstract
Many studies show that daily consumption of high-fiber diet is associated with a reduced risk of developing kidney stones, inflammatory disease, colon cancer and other malignancies, obesity, type II diabetes, and cardiovascular disease. Dietary fibers are non-digestible polysaccharides that are composed of complex carbohydrates. Based on their relative solubility in water, dietary fibers can be divided into insoluble and soluble forms. An important property of insoluble fibers is their ability to bind with carcinogens, mutagens, and other toxic chemicals that are formed during digestion of food and eliminate them through the feces. Soluble fibers can often be degraded to short-chain fatty acids, such as butyrate, propionate, and acetate by microbial fermentation. This review discusses mechanisms of action of fibers and their beneficial effects on the GI tract as well as on other organs. Among short-chain fatty acids, butyrate has been most extensively studied and the effects of sodium butyrate on cell culture and animal models are discussed in order to emphasize its potential value in prevention of certain diseases.
Collapse
Affiliation(s)
| | - Stephen C Bondy
- Center for Occupational, Environmental Medicine, Department of Medicine, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
27
|
Cao T, Zhang X, Chen D, Zhang P, Li Q, Muhammad A. The epigenetic modification during the induction of Foxp3 with sodium butyrate. Immunopharmacol Immunotoxicol 2018; 40:309-318. [DOI: 10.1080/08923973.2018.1480631] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tengli Cao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiuxiu Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dingding Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Peiyan Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qing Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Abbas Muhammad
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
28
|
Li S, Shao Y, Li K, HuangFu C, Wang W, Liu Z, Cai Z, Zhao B. Vascular Cognitive Impairment and the Gut Microbiota. J Alzheimers Dis 2018; 63:1209-1222. [PMID: 29689727 DOI: 10.3233/jad-171103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sinian Li
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yiming Shao
- The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kanglan Li
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Changmei HuangFu
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenjie Wang
- Department of Neurosurgery, The Central Hospital of Longhua District, Shenzhen, China
| | - Zhou Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, Chongqing, China
| | - Bin Zhao
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
29
|
Tiwari N, Bhatia P, Kumar A, Jaggi AS, Singh N. Potential of carnosine, a histamine precursor in rat model of bilateral common carotid artery occlusion-induced vascular dementia. Fundam Clin Pharmacol 2018; 32:516-531. [DOI: 10.1111/fcp.12376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 03/28/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Nidhi Tiwari
- CNS Research Lab.; Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| | - Pankaj Bhatia
- CNS Research Lab.; Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| | - Amit Kumar
- CNS Research Lab.; Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
- Pharmacology Division; Maharaja Agrasen School of Pharmacy; Maharaja Agrasen University; Baddi 174103 Himachal Pradesh India
| | - Amteshwar S. Jaggi
- Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| | - Nirmal Singh
- Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| |
Collapse
|
30
|
Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Transl Psychiatry 2018; 8:42. [PMID: 29391397 PMCID: PMC5804031 DOI: 10.1038/s41398-017-0089-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/20/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
Butyrate (BT) is a ubiquitous short-chain fatty acid (SCFA) principally derived from the enteric microbiome. BT positively modulates mitochondrial function, including enhancing oxidative phosphorylation and beta-oxidation and has been proposed as a neuroprotectant. BT and other SCFAs have also been associated with autism spectrum disorders (ASD), a condition associated with mitochondrial dysfunction. We have developed a lymphoblastoid cell line (LCL) model of ASD, with a subset of LCLs demonstrating mitochondrial dysfunction (AD-A) and another subset of LCLs demonstrating normal mitochondrial function (AD-N). Given the positive modulation of BT on mitochondrial function, we hypothesized that BT would have a preferential positive effect on AD-A LCLs. To this end, we measured mitochondrial function in ASD and age-matched control (CNT) LCLs, all derived from boys, following 24 and 48 h exposure to BT (0, 0.1, 0.5, and 1 mM) both with and without an in vitro increase in reactive oxygen species (ROS). We also examined the expression of key genes involved in cellular and mitochondrial response to stress. In CNT LCLs, respiratory parameters linked to adenosine triphosphate (ATP) production were attenuated by 1 mM BT. In contrast, BT significantly increased respiratory parameters linked to ATP production in AD-A LCLs but not in AD-N LCLs. In the context of ROS exposure, BT increased respiratory parameters linked to ATP production for all groups. BT was found to modulate individual LCL mitochondrial respiration to a common set-point, with this set-point slightly higher for the AD-A LCLs as compared to the other groups. The highest concentration of BT (1 mM) increased the expression of genes involved in mitochondrial fission (PINK1, DRP1, FIS1) and physiological stress (UCP2, mTOR, HIF1α, PGC1α) as well as genes thought to be linked to cognition and behavior (CREB1, CamKinase II). These data show that the enteric microbiome-derived SCFA BT modulates mitochondrial activity, with this modulation dependent on concentration, microenvironment redox state, and the underlying mitochondrial function of the cell. In general, these data suggest that BT can enhance mitochondrial function in the context of physiological stress and/or mitochondrial dysfunction, and may be an important metabolite that can help rescue energy metabolism during disease states. Thus, insight into this metabolic modulator may have wide applications for both health and disease since BT has been implicated in a wide variety of conditions including ASD. However, future clinical studies in humans are needed to help define the practical implications of these physiological findings.
Collapse
|
31
|
Kaur J, Sodhi RK, Madan J, Chahal SK, Kumar R. Forskolin convalesces memory in high fat diet-induced dementia in wistar rats—Plausible role of pregnane x receptors. Pharmacol Rep 2018; 70:161-171. [DOI: 10.1016/j.pharep.2017.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/14/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
|
32
|
Pharmacological activation of protein kinase A improves memory loss and neuropathological changes in a mouse model of dementia of Alzheimer's type. Behav Pharmacol 2018; 28:187-198. [PMID: 28177982 DOI: 10.1097/fbp.0000000000000294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The study investigates the therapeutic potential of the protein kinase A (PKA) activator forskolin in cognitive deficits of mice. Streptozotocin (STZ) [3 mg/kg, intracerebroventricularly (i.c.v.)] was used to induce memory deficits in mice, whereas aged mice served as natural model of dementia. Forskolin (2.5, 5, and 10 mg/kg/day, oral) treatment was administered to i.c.v. STZ-treated and aged mice for 14 days. The Morris Water Maze test was used to evaluate learning and memory. Estimation of brain acetylcholinesterase (AChE) activity, brain glutathione, thiobarbituric acid-reactive species, brain myeloperoxidase levels, and histopathological studies were also performed. Both STZ i.c.v. and aging resulted in a marked decline in Morris Water Maze performance, reflecting impairment of learning and memory. STZ i.c.v.-treated mice and aged mice showed a marked accentuation of AChE activity, thiobarbituric acid-reactive species and myeloperoxidase levels along with a decrease in the glutathione level. Further, the stained micrographs of STZ-treated mice and aged mice indicated pathological changes, severe neutrophilic infiltration, and amyloid deposition. Forskolin treatment significantly attenuated STZ-induced and age-related memory deficits, and biochemical and histopathological alterations. The findings indicate that the PKA activator forskolin probably alleviated memory deficits by virtue of its anticholinesterase, antiamyloid, antioxidative, and anti-inflammatory effects. It is concluded that PKA could be explored as a potential therapeutic target in dementia.
Collapse
|
33
|
Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway. Biochem Pharmacol 2017; 142:111-119. [DOI: 10.1016/j.bcp.2017.06.136] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/30/2017] [Indexed: 11/21/2022]
|
34
|
Wang L, Zhu Q, Lu A, Liu X, Zhang L, Xu C, Liu X, Li H, Yang T. Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system. J Hypertens 2017; 35:1899-1908. [PMID: 28509726 PMCID: PMC11157961 DOI: 10.1097/hjh.0000000000001378] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Butyrate, a short-chain fatty acid, is the end product of the fermentation of complex carbohydrates by the gut microbiota. Recently, sodium butyrate (NaBu) has been found to play a protective role in a number of chronic diseases. However, it is still unclear whether NaBu has a therapeutic potential in hypertension. The present study was aimed to investigate the role of NaBu in angiotensin II (Ang II)-induced hypertension and to further explore the underlying mechanism. METHODS Ang II was infused into uninephrectomized Sprague-Dawley rats with or without intramedullary infusion of NaBu for 14 days. Mean arterial blood pressure was recorded by the telemetry system. Renal tissues, serum samples, and 24-h urine samples were collected to examine renal injury and the regulation of the (pro)renin receptor (PRR) and renin. RESULTS Intramedullary infusion of NaBu in Sprague-Dawley rats lowered the Ang II-induced mean arterial pressure from 129 ± 6 mmHg to 108 ± 4 mmHg (P < 0.01). This corresponded with an improvement in Ang II-induced renal injury, including urinary albumin, glomerulosclerosis, and renal fibrosis, as well as the expression of inflammatory mediators tumor necrosis factor α, interleukin 6. The renal expression of PRR, angiotensinogen, angiotensin I-converting enzyme and the urinary excretion of soluble PRR, renin, and angiotensinogen were all increased by Ang II infusion but decreased by NaBu treatment. In cultured innermedullary collecting duct cells, NaBu treatment attenuated Ang II-induced expression of PRR and renin. CONCLUSION These results demonstrate that NaBu exerts an antihypertensive action, likely by suppressing the PRR-mediated intrarenal renin-angiotensin system.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Qing Zhu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Aihua Lu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Xiaofen Liu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Linlin Zhang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Chuanming Xu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Xiyang Liu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Haobo Li
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
- Veterans Affairs Medical Center, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
35
|
Singh M, Prakash A. Possible role of endothelin receptor against hyperhomocysteinemia and β-amyloid induced AD type of vascular dementia in rats. Brain Res Bull 2017; 133:31-41. [PMID: 28274813 DOI: 10.1016/j.brainresbull.2017.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 01/25/2017] [Accepted: 02/28/2017] [Indexed: 11/16/2022]
Abstract
Vascular dementia (VaD) is considered as the second commonest form of dementia after Alzheimer's disease (AD). The study was designed to investigate the effect of endothelin receptor against β-amyloid induced AD type of vascular dementia. This disease was induced by combine administration of single ICV (intracerebroventricle) infusion of β-amyloid (Aβ) once and chronic oral administration of l-Methionine for 21 days. Bosentan (dual endothelin receptor antagonist) was administered for 21 days. Behavioral alterations were observed during different time interval of the study. Animals were killed immediately following the last behavior session. Oxidative parameters, acetylcholinesterase activity, neuro-inflammatory markers, amyloid beta levels were determined in hippocampus and cortex while serum homocysteine, serum nitrite carotid artery superoxide anion level were also determined. Endothelial function was measured on isolated carotid artery using myograph instrument. Aβ+l-Methionine showed more significant development of cognitive and vascular endothelial deficits, manifested in terms of increase in serum homocysteine level, endothelial dysfunction, impairment of learning and memory, enhanced brain acetylcholinesterase activity, marked mito-oxidative damage in rats. We have observed that l-Methionine and combination of Aβ+l-Methionine significantly enhanced Aβ level both in cortex as well as hippocampus. Treatment of bosentan attenuated Aβ+l-Methionine induced impairment of learning and memory, enhanced Aβ level, mitochondrial and endothelial dysfunction. The results of present study concluded that bosentan offers protection against β-amyloid-induced vascular dementia in rats. Endothelin receptor may be considered as a potential pharmacological target for the management of AD type of vascular dementia.
Collapse
Affiliation(s)
- Major Singh
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga 142-001, Punjab, India
| | - Atish Prakash
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga 142-001, Punjab, India; Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
36
|
Kumar A, Singh N. Calcineurin inhibitors improve memory loss and neuropathological changes in mouse model of dementia. Pharmacol Biochem Behav 2017; 153:147-159. [PMID: 28063945 DOI: 10.1016/j.pbb.2016.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/08/2016] [Accepted: 12/31/2016] [Indexed: 01/26/2023]
Abstract
AIM The present study was designed to investigate the potential of Cyclosporine (CsA) and Tacrolimus, the inhibitors of calcineurin (CaN) in cognitive deficits of mice. METHODS Streptozotocin [STZ, 3mg/kg, injected intracerebroventricular (i.c.v.)] was used to induce memory deficits in NIH mice, while aged mice separately taken served as a natural model of dementia. Morris water maze (MWM) test was employed to evaluate learning and memory of the animals. A battery of biochemical and histopathological studies was also performed. Extent of oxidative stress was measured by estimating the levels of brain glutathione (GSH) and thiobarbituric acid reactive species (TBARS). Brain acetylcholinestrase (AChE) activity was estimated to assess cholinergic activity. The brain level of myeloperoxidase (MPO) was measured as a marker of inflammation. RESULTS STZ i.c.v. and aging results in marked decline in MWM performance of the animals, reflecting impairment of learning and memory. STZ i.c.v. treated mice and aged mice exhibited a marked accentuation of AChE activity, TBARS and MPO levels along with a fall in GSH level. Further the stained micrographs of STZ treated mice and aged mice indicate pathological changes, severe neutrophilic infiltration and amyloid deposition. Cyclosporine and Tacrolimus treatment significantly attenuated STZ induced and age related memory deficits, biochemical and histopathological alterations. CONCLUSION The findings demonstrate the potential of CaN inhibitors Cyclosporine and Tacrolimus in memory dysfunctions which may probably be attributed to anti-cholinesterase, anti-amyloid, anti-oxidative and anti-inflammatory effects. It is concluded that CaN can be explored as a potential therapeutic target in dementia.
Collapse
Affiliation(s)
- Amit Kumar
- CNS and CVS Research Lab., Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi university, Patiala 147002, Punjab, India.
| | - Nirmal Singh
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi university, Patiala 147002, Punjab, India.
| |
Collapse
|
37
|
Park MJ, Sohrabji F. The histone deacetylase inhibitor, sodium butyrate, exhibits neuroprotective effects for ischemic stroke in middle-aged female rats. J Neuroinflammation 2016; 13:300. [PMID: 27905989 PMCID: PMC5131416 DOI: 10.1186/s12974-016-0765-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023] Open
Abstract
Background Sodium butyrate (NaB) is a histone deacetylase (HDAC) inhibitor exhibiting anti-inflammatory and neuroprotective effects in a rat ischemic model of stroke as well as a myocardial ischemia model. Although clinical evidence shows that older women are at higher risk for stroke occurrence and greater stroke severity, no studies have evaluated the effectiveness of NaB either in females or in older animals. Methods To determine the effects of NaB on stroke in older females, acyclic middle-aged Sprague-Dawley female rats (9–11 months old, constant diestrus) were subject to middle cerebral artery occlusion (MCAo) by intracerebral injection of recombinant endothelin-1. Rats were treated with NaB (300 mg/kg, i.p.) at 6 and 30 h following ET-1 injection. Animals were sacrificed at the early (2 days) or late (5 days) acute phase after MCAo. Serum and tissue lysates were collected for biochemical analyses. Results NaB treatment reduced infarct volume and ameliorated sensory motor impairment in middle-aged female rats, when measured at 2 and 5 days post MCAo. At the early acute phase (2 days post stroke), NaB treatment decreased brain lipid peroxides, and reduced serum levels of GFAP, a surrogate marker of blood-brain barrier (BBB) permeability. NaB also reduced expression of the inflammatory cytokine IL-1beta in circulation and IL-18 in the ischemic hemisphere. At the late acute phase (5 days post stroke), NaB treatment further suppressed MCAo-induced increase of IL-1beta, IL-17A, and IL-18 in brain lysates (cortex and striatum) from the ischemic hemisphere, and decreased ischemia-induced upregulation of IL-1beta and IL-18 in circulation, indicating a potent anti-inflammatory effect of the HDAC inhibitor. Moreover, NaB treatment also increased expression of IGF-1, a known neuroprotectant, in peripheral tissue including serum, liver, and spleen at the late acute phase. Conclusions These data provide the first evidence that delayed (>6 h) NaB treatment post-stroke is neuroprotective in older female rats. Additionally, these data also show that in addition to its well-known anti-inflammatory actions, NaB may exert a biphasic effect after stroke, operating initially to reduce BBB permeability and oxidative stress in the brain, and later, elevating IGF-1 expression in peripheral tissues.
Collapse
Affiliation(s)
- Min Jung Park
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, College of Medicine, Texas A&M University Health Science Center, 8447 State Highway 47, Bryan, TX, 77807, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, College of Medicine, Texas A&M University Health Science Center, 8447 State Highway 47, Bryan, TX, 77807, USA.
| |
Collapse
|
38
|
Neuroprotective Effects of Nicorandil in Chronic Cerebral Hypoperfusion-Induced Vascular Dementia. J Stroke Cerebrovasc Dis 2016; 25:2717-2728. [PMID: 27622862 DOI: 10.1016/j.jstrokecerebrovasdis.2016.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/14/2016] [Accepted: 07/16/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ischemia-induced chronic cerebral hypoperfusion (CCH) is associated with reduced cerebral blood flow and vascular dementia (VaD). Brain mitochondrial potassium (adenosine triphosphate-sensitive potassium [KATP]) channels have a beneficial role in various brain conditions. The utility of KATP channels in CCH-induced VaD is still unknown. The aim of this study is to investigate the role of nicorandil, a selective KATP channel opener, in CCH-induced VaD. METHODS The method of 2-vessel occlusion (2VO) was used to induce CCH in mice. Cognitive impairment was assessed using Morris water maze. Serum nitrosative stress (nitrite/nitrate), brain cholinergic dysfunction (acetylcholinesterase [AChE] activity), brain oxidative stress (thiobarbituric acid reactive substances, glutathione [GSH], catalase [CAT], and superoxide dismutase [SOD]), inflammation (myeloperoxidase [MPO]), and infarct size (2,3,5-triphenyltetrazolium chloride staining) were assessed. RESULTS 2-vessels-occluded animals have shown significant cognitive impairment, serum nitrosative stress (reduced nitrite/nitrate), cholinergic dysfunction (increased brain AChE activity), and increased brain oxidative stress (reduction in GSH content and SOD and CAT activities with a significant increase in lipid peroxidation), along with a significant increase in MPO activity and infarct size. However, nicorandil treatment has significantly attenuated various CCH-induced behavioral and biochemical impairments. CONCLUSIONS It may be said that 2VO provoked CCH leading to VaD, which was attenuated by the treatment of nicorandil. So, modulation of KATP channels may provide benefits in CCH-induced VaD.
Collapse
|
39
|
Effect of ruthenium red, a ryanodine receptor antagonist in experimental diabetes induced vascular endothelial dysfunction and associated dementia in rats. Physiol Behav 2016; 164:140-50. [PMID: 27262216 DOI: 10.1016/j.physbeh.2016.05.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/29/2016] [Accepted: 05/31/2016] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is considered as a main risk factor for vascular dementia. In the past, we have reported the induction of vascular dementia by experimental diabetes. This study investigates the efficacy of a ruthenium red, a ryanodine receptor antagonist and pioglitazone in the pharmacological interdiction of pancreatectomy diabetes (PaD) induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. PaD rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with an increase in brain inflammation, oxidative stress and calcium. Administration of ruthenium red and pioglitazone has significantly attenuated PaD induced impairment of learning, memory, blood brain barrier permeability, endothelial function and biochemical parameters. It may be concluded that ruthenium red, a ryanodine receptor antagonist and pioglitazone, a PPAR-γ agonist may be considered as potent pharmacological agent for the management of PaD induced endothelial dysfunction and subsequent vascular dementia. Ryanodine receptor may be explored further for their possible benefits in vascular dementia.
Collapse
|
40
|
Flores G, Flores-Gómez GD, de Jesús Gomez-Villalobos M. Neuronal changes after chronic high blood pressure in animal models and its implication for vascular dementia. Synapse 2016; 70:198-205. [DOI: 10.1002/syn.21887] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/08/2016] [Accepted: 01/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla. 14 Sur 6301; Puebla 72570 México
| | - Gabriel D. Flores-Gómez
- Departamento de Ciencias de la Salud; Licenciatura en Medicina. Universidad de las Américas Puebla; Puebla Cholula México
| | | |
Collapse
|
41
|
Pharmacological benefits of selective modulation of cannabinoid receptor type 2 (CB2) in experimental Alzheimer's disease. Pharmacol Biochem Behav 2015; 140:39-50. [PMID: 26577751 DOI: 10.1016/j.pbb.2015.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 10/09/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that pervasively affects the population across the world. Currently, there is no effective treatment available for this and existing drugs merely slow the progression of cognitive function decline. Thus, massive effort is required to find an intended therapeutic target to overcome this condition. The present study has been framed to investigate the ameliorative role of selective modulator of cannabinoid receptor type 2 (CB2), 1-phenylisatin in experimental AD condition. We have induced experimental AD in mice by using two induction models viz., intracerebroventricular (i.c.v.) administration of streptozotocin (STZ) and aluminum trichloride (AlCl3)+d-galactose. Morris water maze (MWM) and attentional set shifting test (ASST) were used to assess learning and memory. Hematoxylin-eosin and Congo red staining were used to examine the structural variation in brain. Brain oxidative stress (thiobarbituric acid reactive substance and glutathione), nitric oxide levels (nitrites/nitrates), acetyl cholinesterase activity, myeloperoxidase and calcium levels were also estimated. i.c.v. STZ as well as AlCl3+d-galactose have impaired spatial and reversal learning with executive functioning, increased brain oxidative and nitrosative stress, cholinergic activity, inflammation and calcium levels. Furthermore, these agents have also enhanced the burden of Aβ plaque in the brain. Treatment with 1-phenylisatin and donepezil attenuated i.c.v. STZ as well as AlCl3+d-galactose induced impairment of learning-memory, brain biochemistry and brain damage. Hence, this study concludes that CB2 receptor modulation can be a potential therapeutic target for the management of AD.
Collapse
|
42
|
Jain S, Sharma B. Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia. Physiol Behav 2015; 152:182-93. [PMID: 26382939 DOI: 10.1016/j.physbeh.2015.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/11/2015] [Accepted: 09/08/2015] [Indexed: 12/17/2022]
Abstract
Vascular risk factors are associated with a higher incidence of dementia. Diabetes mellitus is considered as a main risk factor for Alzheimer's disease and vascular dementia. Both forms of dementia are posing greater risk to the world population and are increasing at a faster rate. In the past we have reported the induction of vascular dementia by experimental diabetes. This study investigates the role of vildagliptin, a dipeptidyl peptidase-4 inhibitor in the pharmacological interdiction of pancreatectomy diabetes induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. Pancreatectomy diabetes rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with increase in brain inflammation, oxidative stress and calcium. Administration of vildagliptin has significantly attenuated pancreatectomy induced impairment of learning, memory, endothelial function, blood brain barrier permeability and biochemical parameters. It may be concluded that vildagliptin, a dipeptidyl peptidase-4 inhibitor may be considered as potential pharmacological agents for the management of pancreatectomy induced endothelial dysfunction and subsequent vascular dementia. The selective modulators of dipeptidyl peptidase-4 may further be explored for their possible benefits in vascular dementia.
Collapse
Affiliation(s)
- Swati Jain
- CNS and CVS Lab., Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, Pin-250103, Uttar Pradesh, India; Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, A-Block, Ground Floor, Sector-125, Noida - 201303, Uttar Pradesh, India.
| | - Bhupesh Sharma
- School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, Pin-250103, Uttar Pradesh, India; CNS Pharmacology, Conscience Research, Pocket F-233, B, Dilshad Garden, Delhi 110095, India.
| |
Collapse
|
43
|
Post-occlusion administration of sodium butyrate attenuates cognitive impairment in a rat model of chronic cerebral hypoperfusion. Pharmacol Biochem Behav 2015; 135:53-9. [DOI: 10.1016/j.pbb.2015.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 11/17/2022]
|
44
|
Effects of long-term agomelatine treatment on the cognitive performance and hippocampal plasticity of adult rats. Behav Pharmacol 2015; 26:469-80. [DOI: 10.1097/fbp.0000000000000153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
45
|
Kumar A, Kumar A, Jaggi AS, Singh N. Efficacy of Cilostazol a selective phosphodiesterase-3 inhibitor in rat model of Streptozotocin diabetes induced vascular dementia. Pharmacol Biochem Behav 2015; 135:20-30. [DOI: 10.1016/j.pbb.2015.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 01/02/2023]
|
46
|
Singh P, Konar A, Kumar A, Srivas S, Thakur MK. Hippocampal chromatin-modifying enzymes are pivotal for scopolamine-induced synaptic plasticity gene expression changes and memory impairment. J Neurochem 2015; 134:642-51. [PMID: 25982413 DOI: 10.1111/jnc.13171] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Abstract
The amnesic potential of scopolamine is well manifested through synaptic plasticity gene expression changes and behavioral paradigms of memory impairment. However, the underlying mechanism remains obscure and consequently ideal therapeutic target is lacking. In this context, chromatin-modifying enzymes, which regulate memory gene expression changes, deserve major attention. Therefore, we analyzed the expression of chromatin-modifying enzymes and recovery potential of enzyme modulators in scopolamine-induced amnesia. Scopolamine administration drastically up-regulated DNA methyltransferases (DNMT1) and HDAC2 expression while CREB-binding protein (CBP), DNMT3a and DNMT3b remained unaffected. HDAC inhibitor sodium butyrate and DNMT inhibitor Aza-2'deoxycytidine recovered scopolamine-impaired hippocampal-dependent memory consolidation with concomitant increase in the expression of synaptic plasticity genes Brain-derived neurotrophic factor (BDNF) and Arc and level of histone H3K9 and H3K14 acetylation and decrease in DNA methylation level. Sodium butyrate showed more pronounced effect than Aza-2'deoxycytidine and their co-administration did not exhibit synergistic effect on gene expression. Taken together, we showed for the first time that scopolamine-induced up-regulation of chromatin-modifying enzymes, HDAC2 and DNMT1, leads to gene expression changes and consequent decline in memory consolidation. Our findings on the action of scopolamine as an epigenetic modulator can pave a path for ideal therapeutic targets. We propose the following putative pathway for scopolamine-mediated memory impairment; scopolamine up-regulates hippocampal DNMT1 and HDAC2 expression, induces methylation and deacetylation of BDNF and Arc promoter, represses gene expression and eventually impairs memory consolidation. On the other hand, Aza-2 and NaB inhibit DNMT1 and HDAC2 respectively, up-regulate BDNF and Arc expression and recover memory consolidation. We elucidate the action of scopolamine as an epigenetic modulator and hope that DNMT1 and HDAC2 would be ideal therapeutic targets for memory disorders.
Collapse
Affiliation(s)
- Padmanabh Singh
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Arpita Konar
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Ashish Kumar
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Sweta Srivas
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Mahendra K Thakur
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
47
|
Zhu B, Jiang RY, Yang C, Liu N. Adenosine monophosphate-activated protein kinase activation mediates the leptin-induced attenuation of cognitive impairment in a streptozotocin-induced rat model. Exp Ther Med 2015; 9:1998-2002. [PMID: 26136928 DOI: 10.3892/etm.2015.2317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 02/16/2015] [Indexed: 12/19/2022] Open
Abstract
Several lines of evidence have shown that the incidence of cognitive impairment in diabetic patients is significantly higher than that in healthy individuals, but the exact pathogenesis has not been fully elucidated. Furthermore, it has been suggested that leptin may have a therapeutic effect in cognitive dysfunction. The aim of the present study was to observe the effect of leptin on cognitive dysfunction in streptozotocin (STZ)-induced diabetic rats, and to explore whether adenosine monophosphate-activated protein kinase (AMPK) activation was involved in any potential therapeutic effect of leptin. Compared with control rats, STZ rats exhibited decreased levels of AMPK and a poor performance in the Morris water maze, while these changes were reversed by leptin. Furthermore, Compound C, an AMPK antagonist, significantly attenuated the leptin-induced cognitive function improvement in the STZ rats. In conclusion, these results suggest that AMPK activation may play a critical role in the leptin-induced attenuation of STZ-induced cognitive impairment.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Ri-Yue Jiang
- Department of Radiotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Chun Yang
- Department of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Ning Liu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
48
|
Singh P, Gupta S, Sharma B. Melatonin receptor and KATP channel modulation in experimental vascular dementia. Physiol Behav 2015; 142:66-78. [PMID: 25659733 DOI: 10.1016/j.physbeh.2015.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 01/08/2023]
Abstract
Cerebrovascular and cardiovascular diseases are stated as important risk factors of vascular dementia (VaD) and other cognitive disorders. In the central nervous system, melatonin (MT1/MT2) as well as serotonin subtype 2C (5-HT2C) receptors is pharmacologically associated with various neurological disorders. Brain mitochondrial potassium channels have been reported for their role in neuroprotection. This study has been structured to investigate the role of agomelatine, a melatonergic MT1/MT2 agonist and nicorandil, a selective ATP sensitive potassium (KATP) channel opener in renal artery ligation (two-kidney-one-clip: 2K1C) hypertension induced endothelial dysfunction, brain damage and VaD. 2K1C-renovascular hypertension has increased mean arterial blood pressure (MABP), impaired memory (elevated plus maze and Morris water maze), endothelial function, reduced serum nitrite/nitrate and increased brain damage (TTC staining of brain sections). Furthermore, 2K1C animals have shown high levels of oxidative stress in serum (increased thiobarbituric acid reactive species-TBARS with decreased levels of glutathione-GSH, superoxide dismutase-SOD and catalase-CAT), in the aorta (increased aortic superoxide anion) and in the brain (increased TBARS with decreased GSH, SOD and CAT). 2K1C has also induced a significant increase in brain inflammation (myeloperoxidase-MPO levels), acetylcholinesterase activity (AChE) and calcium levels. Impairment in mitochondrial complexes like NADH dehydrogenase (complex-I), succinate dehydrogenase (complex-II) and cytochrome oxidase (complex-IV) was also noted in 2K1C animals. Administration of agomelatine, nicorandil and donepezil significantly attenuated 2K1C-hypertension induced impairments in memory, endothelial function, nitrosative stress, mitochondrial dysfunction, inflammation and brain damage. Therefore, modulators of MT1/MT2 receptors and KATP channels may be considered as potential agents for the management of renovascular hypertension induced VaD.
Collapse
Affiliation(s)
- Prabhat Singh
- CNS and CVS Pharmacology Lab., Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, 250103 Uttar Pradesh, India.
| | - Surbhi Gupta
- CNS and CVS Pharmacology Lab., Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, 250103 Uttar Pradesh, India.
| | - Bhupesh Sharma
- School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, 250103 Uttar Pradesh, India; CNS Pharmacology, Conscience Research, Pocket F-233, B, Dilshad Garden, Delhi 110095, India.
| |
Collapse
|
49
|
Singh P, Sharma B, Gupta S, Sharma BM. In vivo and in vitro attenuation of naloxone-precipitated experimental opioid withdrawal syndrome by insulin and selective KATP channel modulator. Psychopharmacology (Berl) 2015; 232:465-75. [PMID: 25059539 DOI: 10.1007/s00213-014-3680-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/02/2014] [Indexed: 12/01/2022]
Abstract
RATIONALE Opiate exposure for longer duration develops state of dependence in humans and animals, which is revealed by signs and symptoms of withdrawal precipitated by opioid receptor antagonists. The sudden withdrawal of opioids produces a withdrawal syndrome in opioid-dependent subjects. Insulin and ATP-sensitive potassium (KATP) channel-mediated glucose homeostasis have been shown to modulate morphine withdrawal. OBJECTIVE Present study has been structured to investigate the role of insulin and pharmacological modulator of KATP channel (gliclazide) in experimental morphine withdrawal syndrome, both invivo and invitro. METHODS In this study, naloxone-precipitated morphine withdrawal syndrome in mice (invivo) as well as in rat ileum (invitro) were utilized to assess opioid withdrawal phenomenon. Morphine withdrawal syndromes like jumping and rearing frequency, forepaw licking, circling, fore paw tremor, wet dog shake, sneezing, overall morphine withdrawal severity (OMWS), serum glucose, brain malondialdehyde (MDA), glutathione (GSH), nitrite/nitrate, and calcium (Ca(+2)) were assessed. RESULTS Naloxone has significantly increased morphine withdrawal syndrome, both invivo and invitro. Insulin and gliclazide have significantly attenuated, naloxone induced behavioral changes like jumping and rearing frequency, forepaw licking, wet dog shake, sneezing, straightening, circling, OMWS, and various biochemical impairments such as serum glucose, brain MDA, GSH, nitrite/nitrate, and Ca(+2) in morphine-dependent animals (invivo). In vitro, insulin and gliclazide have significantly reduced naloxone-induced contraction in morphine-withdrawn rat ileum preparation. CONCLUSIONS Insulin and gliclazide (KATP channel blocker) have attenuated naloxone-precipitated morphine withdrawal syndrome, both invivo and invitro. Thus, insulin and KATP channel modulation may provide new avenues for research in morphine withdrawal.
Collapse
Affiliation(s)
- Prabhat Singh
- Neuropharmacology Laboratory, Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, 250103, Uttar Pradesh, India
| | | | | | | |
Collapse
|
50
|
Singh G, Sharma B, Jaggi AS, Singh N. Efficacy of bosentan, a dual ETA and ETB endothelin receptor antagonist, in experimental diabetes induced vascular endothelial dysfunction and associated dementia in rats. Pharmacol Biochem Behav 2014; 124:27-35. [DOI: 10.1016/j.pbb.2014.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/01/2014] [Accepted: 05/08/2014] [Indexed: 01/17/2023]
|