1
|
Paul SM, Yohn SE, Brannan SK, Neugebauer NM, Breier A. Muscarinic Receptor Activators as Novel Treatments for Schizophrenia. Biol Psychiatry 2024; 96:627-637. [PMID: 38537670 DOI: 10.1016/j.biopsych.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 05/26/2024]
Abstract
Achieving optimal treatment outcomes for individuals living with schizophrenia remains challenging, despite 70 years of drug development efforts. Many chemically distinct antipsychotics have been developed over the past 7 decades with improved safety and tolerability but with only slight variation in efficacy. All antipsychotics currently approved for the treatment of schizophrenia act as antagonists or partial agonists at the dopamine D2 receptor. With only a few possible exceptions, antipsychotic drugs have similar and modest efficacy for treating positive symptoms and are relatively ineffective in addressing the negative and cognitive symptoms of the disease. The development of novel treatments focused on targeting muscarinic acetylcholine receptors (mAChRs) has been of interest for more than 25 years following reports that treatment with a dual M1/M4-preferring mAChR agonist resulted in antipsychotic-like effects and procognitive properties in individuals living with Alzheimer's disease and schizophrenia; more recent clinical trials have confirmed these findings. In addition, advances in our understanding of the receptor binding and activation properties of xanomeline at specific mAChRs have the potential to inform future drug design targeting mAChRs.
Collapse
Affiliation(s)
- Steven M Paul
- Karuna Therapeutics, Boston, Massachusetts; Department of Psychiatry and Neurology, Washington University of St. Louis, St. Louis, Missouri.
| | | | | | | | - Alan Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
2
|
Fu L, Luo Y, Niu L, Lin Y, Chen X, Zhang J, Tang W, Chen Y, Jiao Y. M 1/M 4 receptors as potential therapeutic treatments for schizophrenia: A comprehensive study. Bioorg Med Chem 2024; 105:117728. [PMID: 38640587 DOI: 10.1016/j.bmc.2024.117728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Muscarinic acetylcholine receptors (mAChRs) play a significant role in the pathophysiology of schizophrenia. Although activating mAChRs holds potential in addressing the full range of schizophrenia symptoms, clinical application of many non-selective mAChR agonists in cognitive deficits, positive and negative symptoms is hindered by peripheral side effects (gastrointestinal disturbances and cardiovascular effects) and dosage restrictions. Ligands binding to the allosteric sites of mAChRs, particularly the M1 and M4 subtypes, demonstrate activity in improving cognitive function and amelioration of positive and negative symptoms associated with schizophrenia, enhancing our understanding of schizophrenia. The article aims to critically examine current design concepts and clinical advancements in synthesizing and designing small molecules targeting M1/M4, providing theoretical insights and empirical support for future research in this field.
Collapse
Affiliation(s)
- Lingsheng Fu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yi Luo
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Longyan Niu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Ying Lin
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Xingru Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Junhao Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Weifang Tang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China..
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China..
| | - Yu Jiao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China..
| |
Collapse
|
3
|
Wang J, Wu M, Chen Z, Wu L, Wang T, Cao D, Wang H, Liu S, Xu Y, Li F, Liu J, Chen N, Zhao S, Cheng J, Wang S, Hua T. The unconventional activation of the muscarinic acetylcholine receptor M4R by diverse ligands. Nat Commun 2022; 13:2855. [PMID: 35606397 PMCID: PMC9126879 DOI: 10.1038/s41467-022-30595-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/04/2022] [Indexed: 01/22/2023] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) respond to the neurotransmitter acetylcholine and play important roles in human nervous system. Muscarinic receptor 4 (M4R) is a promising drug target for treating neurological and mental disorders, such as Alzheimer's disease and schizophrenia. However, the lack of understanding on M4R's activation by subtype selective agonists hinders its therapeutic applications. Here, we report the structural characterization of M4R selective allosteric agonist, compound-110, as well as agonist iperoxo and positive allosteric modulator LY2119620. Our cryo-electron microscopy structures of compound-110, iperoxo or iperoxo-LY2119620 bound M4R-Gi complex reveal their different interaction modes and activation mechanisms of M4R, and the M4R-ip-LY-Gi structure validates the cooperativity between iperoxo and LY2119620 on M4R. Through the comparative structural and pharmacological analysis, compound-110 mostly occupies the allosteric binding pocket with vertical binding pose. Such a binding and activation mode facilitates its allostersic selectivity and agonist profile. In addition, in our schizophrenia-mimic mouse model study, compound-110 shows antipsychotic activity with low extrapyramidal side effects. Thus, this study provides structural insights to develop next-generation antipsychotic drugs selectively targeting on mAChRs subtypes.
Collapse
Affiliation(s)
- Jingjing Wang
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Meng Wu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Zhangcheng Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Tian Wang
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Dongmei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Huan Wang
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Shenhui Liu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yueming Xu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Fei Li
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Na Chen
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
4
|
Stroganova T, Vasilin VK, Dotsenko VV, Aksenov NA, Morozov PG, Vassiliev PM, Volynkin VA, Krapivin GD. Unusual Oxidative Dimerization in the 3-Aminothieno[2,3- b]pyridine-2-carboxamide Series. ACS OMEGA 2021; 6:14030-14048. [PMID: 34124427 PMCID: PMC8190813 DOI: 10.1021/acsomega.1c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Noncatalyzed, regio- and stereoselective hypochlorite oxidation of 3-aminothieno[2,3-b]pyridine-2-carboxamides is presented. Unexpectedly, the oxidation proceeded by different mechanistic pathways, and different products were formed, depending on the nature of solvents used. A possible mechanism, the structure of products, kinetics and dynamics of intramolecular processes, and biological activity of products are discussed.
Collapse
Affiliation(s)
- Tatyana
A. Stroganova
- Department
of Bioorganic Chemistry, Kuban State Technological
University, Krasnodar 350072, Russian Federation
| | - Vladimir K. Vasilin
- Department
of Bioorganic Chemistry, Kuban State Technological
University, Krasnodar 350072, Russian Federation
| | - Victor V. Dotsenko
- Department
of Organic Chemistry and Technologies, Kuban
State University, Krasnodar 350040, Russian Federation
- Department
of Organic Chemistry, North Caucasus Federal
University, Stavropol 355009, Russian Federation
| | - Nicolai A. Aksenov
- Department
of Organic Chemistry, North Caucasus Federal
University, Stavropol 355009, Russian Federation
| | - Pavel G. Morozov
- Department
of Chemistry of Natural Compounds, Southern
Federal University, Rostov-on-Don 344006, Russian Federation
| | - Pavel M. Vassiliev
- Volgograd
State Medical University, Volgograd 400131, Russian Federation
| | - Vitaly A. Volynkin
- Department
of Inorganic Chemistry, Kuban State University, Krasnodar 350040, Russian Federation
| | - Gennady D. Krapivin
- Scientific
Research Institute of Chemistry of Heterocyclic Compounds, Kuban State Technological University, Krasnodar 350072, Russian Federation
| |
Collapse
|
5
|
Riljak V, Janisova K, Myslivecek J. Lack of M 4 muscarinic receptors in the striatum, thalamus and intergeniculate leaflet alters the biological rhythm of locomotor activity in mice. Brain Struct Funct 2020; 225:1615-1629. [PMID: 32409918 PMCID: PMC7286859 DOI: 10.1007/s00429-020-02082-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 05/04/2020] [Indexed: 11/29/2022]
Abstract
The deletion of M4 muscarinic receptors (MRs) changes biological rhythm parameters in females. Here, we searched for the mechanisms responsible for these changes. We performed biological rhythm analysis in two experiments: in experiment 1, the mice [C57Bl/6NTac (WT) and M4 MR -/- mice (KO)] were first exposed to a standard LD regime (12/12-h light/dark cycle) for 8 days and then subsequently exposed to constant darkness (for 24 h/day, DD regime) for another 16 days. In experiment 2, the mice (after the standard LD regime) were exposed to the DD regime and to one light pulse (zeitgeber time 14) on day 9. We also detected M1 MRs in brain areas implicated in locomotor biological rhythm regulation. In experiment 1, the biological rhythm activity curves differed: the period (τ, duration of diurnal cycle) was shorter in the DD regime. Moreover, the day mean, mesor (midline value), night mean and their difference were higher in KO animals. The time in which the maximal slope occurred was lower in the DD regime than in the LD regime in both WT and KO but was lower in KO than in WT mice. In experiment 2, there were no differences in biological rhythm parameters between WT and KO mice. The densities of M1 MRs in the majority of areas implicated in locomotor biological rhythm were low. A significant amount of M1 MR was found in the striatum. These results suggest that although core clock output is changed by M4 MR deletion, the structures involved in biological rhythm regulation in WT and KO animals are likely the same, and the most important areas are the striatum, thalamus and intergeniculate leaflet.
Collapse
Affiliation(s)
- Vladimir Riljak
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 12800, Prague, Czech Republic
| | - Katerina Janisova
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 12800, Prague, Czech Republic
| | - Jaromir Myslivecek
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 12800, Prague, Czech Republic.
| |
Collapse
|
6
|
Dotsenko VV, Buryi DS, Lukina DY, Stolyarova AN, Aksenov NA, Aksenova IV, Strelkov VD, Dyadyuchenko LV. Substituted N-(thieno[2,3-b]pyridine-3-yl)acetamides: synthesis, reactions, and biological activity. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02505-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Hollingsworth SA, Kelly B, Valant C, Michaelis JA, Mastromihalis O, Thompson G, Venkatakrishnan AJ, Hertig S, Scammells PJ, Sexton PM, Felder CC, Christopoulos A, Dror RO. Cryptic pocket formation underlies allosteric modulator selectivity at muscarinic GPCRs. Nat Commun 2019; 10:3289. [PMID: 31337749 PMCID: PMC6650467 DOI: 10.1038/s41467-019-11062-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 06/20/2019] [Indexed: 01/27/2023] Open
Abstract
Allosteric modulators are highly desirable as drugs, particularly for G-protein-coupled receptor (GPCR) targets, because allosteric drugs can achieve selectivity between closely related receptors. The mechanisms by which allosteric modulators achieve selectivity remain elusive, however, particularly given recent structures that reveal similar allosteric binding sites across receptors. Here we show that positive allosteric modulators (PAMs) of the M1 muscarinic acetylcholine receptor (mAChR) achieve exquisite selectivity by occupying a dynamic pocket absent in existing crystal structures. This cryptic pocket forms far more frequently in molecular dynamics simulations of the M1 mAChR than in those of other mAChRs. These observations reconcile mutagenesis data that previously appeared contradictory. Further mutagenesis experiments validate our prediction that preventing cryptic pocket opening decreases the affinity of M1-selective PAMs. Our findings suggest opportunities for the design of subtype-specific drugs exploiting cryptic pockets that open in certain receptors but not in other receptors with nearly identical static structures.
Collapse
Affiliation(s)
- Scott A Hollingsworth
- Departments of Computer Science, Molecular and Cellular Physiology, and Structural Biology, and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305, USA
- Merck & Co., Boston, MA, 02110, USA
| | - Brendan Kelly
- Departments of Computer Science, Molecular and Cellular Physiology, and Structural Biology, and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, 3052, Australia
| | - Jordan Arthur Michaelis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, 3052, Australia
| | - Olivia Mastromihalis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, 3052, Australia
| | - Geoff Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, 3052, Australia
| | - A J Venkatakrishnan
- Departments of Computer Science, Molecular and Cellular Physiology, and Structural Biology, and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Samuel Hertig
- Departments of Computer Science, Molecular and Cellular Physiology, and Structural Biology, and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Peter J Scammells
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, 3052, Australia
| | - Christian C Felder
- Eli Lilly and Co., Neuroscience, Lilly Corporate Center, Indianapolis, IN, 46285, USA
- Karuna Pharmaceuticals, Inc., South San Francisco, CA, 94080, USA
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, 3052, Australia.
| | - Ron O Dror
- Departments of Computer Science, Molecular and Cellular Physiology, and Structural Biology, and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
Myslivecek J, Farar V, Valuskova P. M(4) muscarinic receptors and locomotor activity regulation. Physiol Res 2018; 66:S443-S455. [PMID: 29355372 DOI: 10.33549/physiolres.933796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
M(4) muscarinic receptors (M(4) MR) represent a subfamily of G-protein coupled receptors serving a substantial role in spontaneous locomotor activity regulation, cognition and modulation of cholinergic system. With increasing body of literature discussing the role of M(4) MR some controversies arose. Thus, we try here to summarize the current evidence regarding the M(4) MR, with the special focus on their role in Locomotor activity control. We review the molecular function of M(4) MR in specific brain areas implicated in locomotor regulation, and shortly in other CNS processes that could be connected to locomotor activity. We also focus on brain areas implicated in locomotor activity biorhythm changes like suprachiasmatic nucleus, subparaventricular zone posterior hypothalamic area, striatum and thalamus. Gender-related aspects and differences in locomotor activity in males and females are discussed further.
Collapse
Affiliation(s)
- J Myslivecek
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | |
Collapse
|
9
|
Croy CH, Schober DA, Xiao H, Quets A, Christopoulos A, Felder CC. Characterization of the novel positive allosteric modulator, LY2119620, at the muscarinic M(2) and M(4) receptors. Mol Pharmacol 2014; 86:106-15. [PMID: 24807965 DOI: 10.1124/mol.114.091751] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The M(4) receptor is a compelling therapeutic target, as this receptor modulates neural circuits dysregulated in schizophrenia, and there is clinical evidence that muscarinic agonists possess both antipsychotic and procognitive efficacy. Recent efforts have shifted toward allosteric ligands to maximize receptor selectivity and manipulate endogenous cholinergic and dopaminergic signaling. In this study, we present the pharmacological characterization of LY2119620 (3-amino-5-chloro-N-cyclopropyl-4-methyl-6-[2-(4-methylpiperazin-1-yl)-2-oxoethoxy] thieno[2,3-b]pyridine-2-carboxamide), a M(2)/M(4) receptor-selective positive allosteric modulator (PAM), chemically evolved from hits identified through a M4 allosteric functional screen. Although unsuitable as a therapeutic due to M(2) receptor cross-reactivity and, thus, potential cardiovascular liability, LY2119620 surpassed previous congeners in potency and PAM activity and broadens research capabilities through its development into a radiotracer. Characterization of LY2119620 revealed evidence of probe dependence in both binding and functional assays. Guanosine 5'-[γ-(35)S]-triphosphate assays displayed differential potentiation depending on the orthosteric-allosteric pairing, with the largest cooperativity observed for oxotremorine M (Oxo-M) LY2119620. Further [(3)H]Oxo-M saturation binding, including studies with guanosine-5'-[(β,γ)-imido]triphosphate, suggests that both the orthosteric and allosteric ligands can alter the population of receptors in the active G protein-coupled state. Additionally, this work expands the characterization of the orthosteric agonist, iperoxo, at the M(4) receptor, and demonstrates that an allosteric ligand can positively modulate the binding and functional efficacy of this high efficacy ligand. Ultimately, it was the M(2) receptor pharmacology and PAM activity with iperoxo that made LY2119620 the most suitable allosteric partner for the M(2) active-state structure recently solved (Kruse et al., 2013), a structure that provides crucial insights into the mechanisms of orthosteric activation and allosteric modulation of muscarinic receptors.
Collapse
Affiliation(s)
- Carrie H Croy
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (C.H.C., D.A.S., H.X., A.Q., C.C.F.); and Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C.)
| | - Douglas A Schober
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (C.H.C., D.A.S., H.X., A.Q., C.C.F.); and Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C.)
| | - Hongling Xiao
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (C.H.C., D.A.S., H.X., A.Q., C.C.F.); and Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C.)
| | - Anne Quets
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (C.H.C., D.A.S., H.X., A.Q., C.C.F.); and Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C.)
| | - Arthur Christopoulos
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (C.H.C., D.A.S., H.X., A.Q., C.C.F.); and Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C.)
| | - Christian C Felder
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (C.H.C., D.A.S., H.X., A.Q., C.C.F.); and Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C.)
| |
Collapse
|
10
|
Gannon RL, Garcia DA, Millan MJ. Effects of systemically applied nAChRα7 agonists and antagonists on light-induced phase shifts of hamster circadian activity rhythms. Eur Neuropsychopharmacol 2014; 24:964-73. [PMID: 24388152 DOI: 10.1016/j.euroneuro.2013.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/03/2013] [Accepted: 12/08/2013] [Indexed: 12/25/2022]
Abstract
Many physiological systems in mammals are linked to the body's master circadian rhythm in the sleep/wake cycle and dysfunctions in this rhythm has been associated with neurological diseases such as major depression, Alzheimer's Disease and schizophrenia. There is some evidence that nicotinic cholinergic input to the master circadian pacemaker, the suprachiasmatic nucleus, may modulate circadian activity rhythms, but data employing in vivo preparations is sparse. Therefore we examined the ability of intraperitoneally applied nicotinic agonists and antagonists relatively selective for the α7 nicotinic receptor to modulate light-induced phase shifts of hamster circadian wheel running rhythms. Hamsters were maintained in constant darkness and exposed to light pulses early and late in their active period, mimicking dusk and dawn respectively, which elicited phase delays and advances of their circadian wheel running rhythms. The α7 receptor antagonists bPiDDB (0.03-3mg/kg) and methyllacaconitine (0.1-1mg/kg) inhibited both light- induced phase advances and delays of circadian wheel running rhythms by as much as 75% versus vehicle injections. In contrast, systemic injections of the α7 agonists PHA 543613 and ABT107, both at 0.156-2.5mg/kg, had no effect on light induced phase advances or delays. Further, α7 nicotinic receptors were identified in the hamster suprachiasmatic nucleus using an antibody that recognizes α7 nicotinic receptors. These results clearly identify the ability of α7 nicotinic receptor antagonists to inhibit light-entrainment of the hamster circadian pacemaker. Therefore, nicotinic compounds may be useful for the treatment of circadian dysfunction associated with neurological diseases.
Collapse
Affiliation(s)
- Robert L Gannon
- Department of Biology, Valdosta State University, Valdosta, Georgia, USA.
| | - David A Garcia
- Department of Biology, Valdosta State University, Valdosta, Georgia, USA
| | - Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, Paris, France
| |
Collapse
|