1
|
Goldberg LR, Yao EJ, Kelliher JC, Reed ER, Cox JW, Parks C, Kirkpatrick SL, Beierle JA, Chen MM, Johnson WE, Homanics GE, Williams RW, Bryant CD, Mulligan MK. A quantitative trait variant in Gabra2 underlies increased methamphetamine stimulant sensitivity. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12774. [PMID: 34677900 PMCID: PMC9083095 DOI: 10.1111/gbb.12774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
Psychostimulant (methamphetamine, cocaine) use disorders have a genetic component that remains mostly unknown. We conducted genome-wide quantitative trait locus (QTL) analysis of methamphetamine stimulant sensitivity. To facilitate gene identification, we employed a Reduced Complexity Cross between closely related C57BL/6 mouse substrains and examined maximum speed and distance traveled over 30 min following methamphetamine (2 mg/kg, i.p.). For maximum methamphetamine-induced speed following the second and third administration, we identified a single genome-wide significant QTL on chromosome 11 that peaked near the Cyfip2 locus (LOD = 3.5, 4.2; peak = 21 cM [36 Mb]). For methamphetamine-induced distance traveled following the first and second administration, we identified a genome-wide significant QTL on chromosome 5 that peaked near a functional intronic indel in Gabra2 coding for the alpha-2 subunit of the GABA-A receptor (LOD = 3.6-5.2; peak = 34-35 cM [66-67 Mb]). Striatal cis-expression QTL mapping corroborated Gabra2 as a functional candidate gene underlying methamphetamine-induced distance traveled. CRISPR/Cas9-mediated correction of the mutant intronic deletion on the C57BL/6J background to the wild-type C57BL/6NJ allele was sufficient to reduce methamphetamine-induced locomotor activity toward the wild-type C57BL/6NJ-like level, thus validating the quantitative trait variant (QTV). These studies show the power and efficiency of Reduced Complexity Crosses in identifying causal variants underlying complex traits. Functionally restoring Gabra2 expression decreased methamphetamine stimulant sensitivity and supports preclinical and human genetic studies implicating the GABA-A receptor in psychostimulant addiction-relevant traits. Importantly, our findings have major implications for studying psychostimulants in the C57BL/6J strain-the gold standard strain in biomedical research.
Collapse
Affiliation(s)
- Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
- NIGMS T32 Ph.D. Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Emily J. Yao
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - Julia C. Kelliher
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - Eric R. Reed
- Ph.D. Program in Bioinformatics, Boston University, Boston, Massachusetts, USA
| | - Jiayi Wu Cox
- Program in Biomedical Sciences, Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Cory Parks
- Department of Agricultural, Biology, and Health Sciences, Cameron University, Lawton, Oklahoma, USA
| | - Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - Jacob A. Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
- NIGMS T32 Ph.D. Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Melanie M. Chen
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - William E. Johnson
- Department of Medicine, Computational Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gregg E. Homanics
- Departments of Anesthesiology, Neurobiology, and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Mitchell SJ, Maguire EP, Cunningham L, Gunn BG, Linke M, Zechner U, Dixon CI, King SL, Stephens DN, Swinny JD, Belelli D, Lambert JJ. Early-life adversity selectively impairs α2-GABA A receptor expression in the mouse nucleus accumbens and influences the behavioral effects of cocaine. Neuropharmacology 2018; 141:98-112. [PMID: 30138693 PMCID: PMC6178871 DOI: 10.1016/j.neuropharm.2018.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/02/2018] [Accepted: 08/19/2018] [Indexed: 01/20/2023]
Abstract
Haplotypes of the Gabra2 gene encoding the α2-subunit of the GABAA receptor (GABAAR) are associated with drug abuse, suggesting that α2-GABAARs may play an important role in the circuitry underlying drug misuse. The genetic association of Gabra2 haplotypes with cocaine addiction appears to be evident primarily in individuals who had experienced childhood trauma. Given this association of childhood trauma, cocaine abuse and the Gabra2 haplotypes, we have explored in a mouse model of early life adversity (ELA) whether such events influence the behavioral effects of cocaine and if, as suggested by the human studies, α2-GABAARs in the nucleus accumbens (NAc) are involved in these perturbed behaviors. In adult mice prior ELA caused a selective decrease of accumbal α2-subunit mRNA, resulting in a selective decrease in the number and size of the α2-subunit (but not the α1-subunit) immunoreactive clusters in NAc core medium spiny neurons (MSNs). Functionally, in adult MSNs ELA decreased the amplitude and frequency of GABAAR-mediated miniature inhibitory postsynaptic currents (mIPSCs), a profile similar to that of α2 "knock-out" (α2-/-) mice. Behaviourally, adult male ELA and α2-/- mice exhibited an enhanced locomotor response to acute cocaine and blunted sensitisation upon repeated cocaine administration, when compared to their appropriate controls. Collectively, these findings reveal a neurobiological mechanism which may relate to the clinical observation that early trauma increases the risk for substance abuse disorder (SAD) in individuals harbouring haplotypic variations in the Gabra2 gene.
Collapse
Affiliation(s)
- Scott J Mitchell
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Edward P Maguire
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Linda Cunningham
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Benjamin G Gunn
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Matthias Linke
- Institute of Human Genetics, Mainz University, Medical Center, Mainz, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, Mainz University, Medical Center, Mainz, Germany
| | - Claire I Dixon
- School of Psychology, University of Sussex, Falmer, Brighton, BN 9QG, United Kingdom
| | - Sarah L King
- School of Psychology, University of Sussex, Falmer, Brighton, BN 9QG, United Kingdom
| | - David N Stephens
- School of Psychology, University of Sussex, Falmer, Brighton, BN 9QG, United Kingdom
| | - Jerome D Swinny
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom.
| | - Delia Belelli
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom.
| | - Jeremy J Lambert
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom.
| |
Collapse
|
3
|
Olsen RW, Liang J. Role of GABA A receptors in alcohol use disorders suggested by chronic intermittent ethanol (CIE) rodent model. Mol Brain 2017; 10:45. [PMID: 28931433 PMCID: PMC5605989 DOI: 10.1186/s13041-017-0325-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/05/2017] [Indexed: 11/10/2022] Open
Abstract
GABAergic inhibitory transmission is involved in the acute and chronic effects of ethanol on the brain and behavior. One-dose ethanol exposure induces transient plastic changes in GABAA receptor subunit levels, composition, and regional and subcellular localization. Rapid down-regulation of early responder δ subunit-containing GABAA receptor subtypes mediating ethanol-sensitive tonic inhibitory currents in critical neuronal circuits corresponds to rapid tolerance to ethanol's behavioral responses. Slightly slower, α1 subunit-containing GABAA receptor subtypes mediating ethanol-insensitive synaptic inhibition are down-regulated, corresponding to tolerance to additional ethanol behaviors plus cross-tolerance to other GABAergic drugs including benzodiazepines, anesthetics, and neurosteroids, especially sedative-hypnotic effects. Compensatory up-regulation of synaptically localized α4 and α2 subunit-containing GABAA receptor subtypes, mediating ethanol-sensitive synaptic inhibitory currents follow, but exhibit altered physio-pharmacology, seizure susceptibility, hyperexcitability, anxiety, and tolerance to GABAergic positive allosteric modulators, corresponding to heightened alcohol withdrawal syndrome. All these changes (behavioral, physiological, and biochemical) induced by ethanol administration are transient and return to normal in a few days. After chronic intermittent ethanol (CIE) treatment the same changes are observed but they become persistent after 30 or more doses, lasting for at least 120 days in the rat, and probably for life. We conclude that the ethanol-induced changes in GABAA receptors represent aberrant plasticity contributing critically to ethanol dependence and increased voluntary consumption. We suggest that the craving, drug-seeking, and increased consumption in the rat model are tied to ethanol-induced plastic changes in GABAA receptors, importantly the development of ethanol-sensitive synaptic GABAA receptor-mediating inhibitory currents that participate in maintained positive reward actions of ethanol on critical neuronal circuits. These probably disinhibit nerve endings of inhibitory GABAergic neurons on dopamine reward circuit cells, and limbic system circuits mediating anxiolysis in hippocampus and amygdala. We further suggest that the GABAA receptors contributing to alcohol dependence in the rat and presumably in human alcohol use disorders (AUD) are the ethanol-induced up-regulated subtypes containing α4 and most importantly α2 subunits. These mediate critical aspects of the positive reinforcement of ethanol in the dependent chronic user while alleviating heightened withdrawal symptoms experienced whenever ethanol is absent. The speculative conclusions based on firm observations are readily testable.
Collapse
Affiliation(s)
- Richard W. Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
| | - Jing Liang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
4
|
Stephens DN, King SL, Lambert JJ, Belelli D, Duka T. GABAAreceptor subtype involvement in addictive behaviour. GENES BRAIN AND BEHAVIOR 2016; 16:149-184. [DOI: 10.1111/gbb.12321] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | - S. L. King
- School of Psychology; University of Sussex; Brighton UK
| | - J. J. Lambert
- Division of Neuroscience; University of Dundee; Dundee UK
| | - D. Belelli
- Division of Neuroscience; University of Dundee; Dundee UK
| | - T. Duka
- School of Psychology; University of Sussex; Brighton UK
| |
Collapse
|
5
|
Surface expression of GABAA receptors in the rat nucleus accumbens is increased in early but not late withdrawal from extended-access cocaine self-administration. Brain Res 2016; 1642:336-343. [PMID: 27060767 DOI: 10.1016/j.brainres.2016.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 02/08/2023]
Abstract
It is well established that cocaine-induced changes in glutamate receptor expression in the nucleus accumbens (NAc) play a significant role in animal models of cocaine addiction. Far less is known about cocaine-induced changes in GABA transmission, despite its importance in regulating NAc output via local interneurons and medium spiny neuron (MSN) axon collaterals (GABA 'microcircuit'). Here we investigated whether GABAA receptor surface or total expression is altered following an extended-access cocaine self-administration regimen that produces a time-dependent intensification (incubation) of cue-induced cocaine craving in association with strengthening of AMPA receptor (AMPAR) transmission onto MSN. Rats self-administered cocaine or saline (control condition) 6h/day for 10 days. NAc tissue was obtained and surface proteins biotinylated on three withdrawal days (WD) chosen to span incubation of craving and associated AMPAR plasticity: WD2, WD25 and WD48. Immunoblotting was used to measure total and surface expression of three GABAA receptor subunits (α1, α2, and α4) that are strongly expressed in the NAc. We found a transient increase in surface, but not total, expression of the α2 subunit on WD2 from cocaine self-administration, an effect that was no longer observed by WD25. The expression of α1 and α4 subunits was not altered at these withdrawal times. On WD48, when AMPAR transmission is significantly potentiated, we did not find any alteration in GABAA receptor surface or total expression. Our findings suggest that the strengthening of AMPAR-mediated glutamate transmission in the NAc is not accompanied by compensatory strengthening of GABAergic transmission through insertion of additional GABAA receptors.
Collapse
|
6
|
Duka T, Dixon CI, Trick L, Crombag HS, King SL, Stephens DN. Motivational Effects of Methylphenidate are Associated with GABRA2 Variants Conferring Addiction Risk. Front Behav Neurosci 2015; 9:304. [PMID: 26635556 PMCID: PMC4649050 DOI: 10.3389/fnbeh.2015.00304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/29/2015] [Indexed: 12/02/2022] Open
Abstract
Background: Variations in the GABRA2 gene, encoding α2 subunits of GABAA receptors, have been associated with risk for addiction to several drugs, but the mechanisms by which variations in non-coding regions of GABRA2 increase risk for addictions are not understood. Mice with deletion of GABRA2 show deficits in the ability of psychostimulants to facilitate responding for conditioned reinforcers, offering a potential explanation. Methods: We report human and mouse studies investigating a potential endophenotype underlying this association. Healthy human volunteers carrying either cocaine-addiction “risk” or “protective” GABRA2 single nucleotide polymorphism (SNPs) were tested for their subjective responses to methylphenidate, and methylphenidate’s ability to facilitate conditioned reinforcement (CRf) for visual stimuli (CS+) associated with monetary reward. In parallel, methylphenidate’s ability to facilitate responding for a visual CRf was studied in wildtype and α2 knockout (α2−/−) mice. Results: Methylphenidate increased the number of CS+ presentations obtained by human subjects carrying protective, but not risk SNPs. In mice, methylphenidate increased responding for a CS+ in wildtype, but not α2−/− mice. Human subjects carrying protective SNPs felt stimulated, aroused and restless following methylphenidate, while individuals carrying risk SNPs did not. Conclusion: Human risk SNP carriers were insensitive to methylphenidate’s effects on mood or in facilitating CRf. That mice with the gene deletion were also insensitive to methylphenidate’s ability to increase responding for CRf, suggests a potential mechanism whereby low α2-subunit levels increase risk for addictions. Circuits employing GABAA-α2 subunit-containing receptors may protect against risk for addictions.
Collapse
Affiliation(s)
- Theodora Duka
- School of Psychology, University of Sussex, Falmer Brighton, UK
| | - Claire I Dixon
- School of Psychology, University of Sussex, Falmer Brighton, UK
| | - Leanne Trick
- School of Psychology, University of Sussex, Falmer Brighton, UK
| | - Hans S Crombag
- School of Psychology, University of Sussex, Falmer Brighton, UK
| | - Sarah L King
- School of Psychology, University of Sussex, Falmer Brighton, UK
| | | |
Collapse
|
7
|
Heitzeg MM, Villafuerte S, Weiland BJ, Enoch MA, Burmeister M, Zubieta JK, Zucker RA. Effect of GABRA2 genotype on development of incentive-motivation circuitry in a sample enriched for alcoholism risk. Neuropsychopharmacology 2014; 39:3077-86. [PMID: 24975023 PMCID: PMC4229579 DOI: 10.1038/npp.2014.161] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 01/10/2023]
Abstract
Heightened reactivity of the incentive-motivation system has been proposed to underlie adolescent-typical risky behaviors, including problem alcohol involvement. However, even in adolescence considerable individual variation in these behaviors exists, which may have genetic underpinnings and be related to variations in risk for later alcohol use disorder (AUD). Variants in GABRA2 have been associated with adult alcohol dependence as well as phenotypic precursors, including impulsiveness and externalizing behaviors. We investigated the impact of GABRA2 on the developmental trajectory of nucleus accumbens (NAcc) activation during anticipation of monetary reward from childhood to young adulthood. Functional MRI during a monetary incentive delay task was collected in 175 participants, with the majority (n = 151) undergoing repeated scanning at 1- to 2-year intervals. One group entered the study at age 8-13 years (n = 76) and another entered at age 18-23 years (n = 99). Most participants were children of alcoholics (79%) and thus at heightened risk for AUD. A total of 473 sessions were completed, covering ages 8-27 years. NAcc activation was heightened during adolescence compared with childhood and young adulthood. GABRA2 genotype (SNP rs279858) was associated with individual differences in NAcc activation specifically during adolescence, with the minor allele (G) associated with greater activation. Furthermore, NAcc activation mediated an effect of genotype on alcohol problems (n = 104). This work demonstrates an impact of GABRA2 genotype on incentive-motivation neurocircuitry in adolescence, with implications for vulnerability to alcoholism. These findings represent an important step toward understanding the genetic and neural basis of individual differences in how risk for addiction unfolds across development.
Collapse
Affiliation(s)
- Mary M Heitzeg
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA,Addiction Research Center, University of Michigan, Ann Arbor, MI, USA,Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109-2700, USA, Tel: +734 232 0267, Fax: +734 998 7992, E-mail:
| | - Sandra Villafuerte
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Barbara J Weiland
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA,Addiction Research Center, University of Michigan, Ann Arbor, MI, USA,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Margit Burmeister
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jon-Kar Zubieta
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Robert A Zucker
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA,Addiction Research Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Guerin GF, Schmoutz CD, Goeders NE. The extra-adrenal effects of metyrapone and oxazepam on ongoing cocaine self-administration. Brain Res 2014; 1575:45-54. [PMID: 24887642 DOI: 10.1016/j.brainres.2014.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/20/2014] [Accepted: 05/25/2014] [Indexed: 11/30/2022]
Abstract
Investigation of the role of stress in cocaine addiction has yielded an efficacious combination of metyrapone and oxazepam, hypothesized to decrease relapse to cocaine use by reducing stress-induced craving. However, recent data suggest an extra-adrenal role for metyrapone in mediating stress- and addiction-related behaviors. The interactions between the physiological stress response and cocaine self-administration were characterized in rodents utilizing surgical adrenalectomy and pharmacological treatment. Male Wistar rats were trained to self-administer cocaine (0.25mg/kg/infusion) and food pellets under a concurrent alternating fixed-ratio schedule of reinforcement. Surgical removal of the adrenal glands resulted in a significant decrease in plasma corticosterone and a consequent increase in ACTH, as expected. However, adrenalectomy did not significantly affect ongoing cocaine self-administration. Pretreatment with metyrapone, oxazepam and their combinations in intact rats resulted in a significant decrease in cocaine-reinforced responses. These same pharmacological treatments were still effective in reducing cocaine- and food-reinforced responding in adrenalectomized rats. The results of these experiments demonstrate that adrenally-derived steroids are not necessary to maintain cocaine-reinforced responding in cocaine-experienced rats. These results also demonstrate that metyrapone may produce effects outside of the adrenal gland, presumably in the central nervous system, to affect cocaine-related behaviors.
Collapse
Affiliation(s)
- Glenn F Guerin
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Box 33932, Shreveport, LA 71130, USA
| | - Christopher D Schmoutz
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Box 33932, Shreveport, LA 71130, USA.
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Box 33932, Shreveport, LA 71130, USA
| |
Collapse
|