1
|
Hu S, Wang Y, Han X, Dai M, Zhang Y, Ma Y, Weng S, Xiao L. Activation of oxytocin receptors in mouse GABAergic amacrine cells modulates retinal dopaminergic signaling. BMC Biol 2022; 20:205. [PMID: 36127701 PMCID: PMC9490981 DOI: 10.1186/s12915-022-01405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background Oxytocin, secreted by oxytocin neurons in the hypothalamus, is an endogenous neuropeptide involved in modulating multiple sensory information processing pathways, and its roles in the brain have been associated with prosocial, maternal, and feeding-related behaviors. Visual information is necessary for initiating these behaviors, with the retina consisting of the first stage in the visual system mediating external stimulus perception. Oxytocin has been detected in the mammalian retina; however, the expression and possible function of oxytocin receptors (OxtR) in the retina remain unknown. Here, we explore the role of oxytocin in regulating visual information processing in the retina. Results We observed that OxtR mRNA and protein are expressed in the mouse retina. With Oxtr-Cre transgenic mice, immunostaining, and fluorescence in situ hybridization, we found that OxtRs are mainly expressed in GABAergic amacrine cells (ACs) in both the inner nuclear layer (INL) and ganglion cell layer (GCL). Further immunoreactivity studies showed that GABAergic OxtR+ neurons are mainly cholinergic and dopaminergic neurons in the INL and are cholinergic and corticotrophin-releasing hormone neurons in the GCL. Surprisingly, a high level of Oxtr mRNAs was detected in retinal dopaminergic neurons, and exogenous oxytocin application activated dopaminergic neurons to elevate the retinal dopamine level. Relying on in vivo electroretinographic recording, we found that activating retinal OxtRs reduced the activity of bipolar cells via OxtRs and dopamine receptors. Conclusions These data indicate the functional expression of OxtRs in retinal GABAergic ACs, especially dopaminergic ACs, and expand the interactions between oxytocinergic and dopaminergic systems. This study suggests that visual perception, from the first stage of information processing in the retina, is modulated by hypothalamic oxytocin signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01405-0.
Collapse
Affiliation(s)
- Songhui Hu
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yurong Wang
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xu Han
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Min Dai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongxing Zhang
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Ma
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shijun Weng
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Lei Xiao
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
McDougall SA, Robinson JAM, Gleason DC, Cotter LL. Reciprocal cross-sensitization between cocaine and RU 24969 in male and female preweanling rats. Pharmacol Biochem Behav 2021; 209:173265. [PMID: 34437872 DOI: 10.1016/j.pbb.2021.173265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Neuronal adaptations involving dopaminergic, glutamatergic, and serotonergic neurotransmitter systems are responsible for behavioral sensitization. Because of common underlying mechanisms, cross-sensitization between compounds of different drug classes can be observed. The purpose of the present study was to determine whether a one- or four-day pretreatment regimen of RU 24969 (a 5-HT1A/1B receptor agonist) would reciprocally cross-sensitize with cocaine or methamphetamine in male and female preweanling rats. Rats were pretreated with RU 24969 (0 or 5 mg/kg) for 4 days (PD 17-20) and then challenged with cocaine (10 or 20 mg/kg) or methamphetamine (1 or 2 mg/kg) on PD 22. Reciprocal cross-sensitization was also assessed (i.e., rats were pretreated with psychostimulants and tested with RU 24969). In a follow-up experiment, the ability of RU 24969 and cocaine to reciprocally cross-sensitize was assessed using a one-day pretreatment regimen. Reciprocal cross-sensitization between cocaine and RU 24969 was evident in preweanling rats, whereas methamphetamine and RU 24969 did not cross-sensitize. When a one-trial pretreatment regimen was used, cross-sensitization was only detected when rats were pretreated with RU 24969 and tested with cocaine, but not the reverse. In sum, the present results show that the nonselective 5-HT1A/1B receptor agonist RU 24969 cross-sensitizes with cocaine, but not methamphetamine, in preweanling rats. This dichotomy may be a function of cocaine having a greater affinity for the serotonin transporter than methamphetamine.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA 92407, USA.
| | - Jasmine A M Robinson
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA 92407, USA
| | - Devon C Gleason
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA 92407, USA
| | - Laura L Cotter
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA 92407, USA
| |
Collapse
|
3
|
McDougall SA, Montejano NR, Park GI, Robinson JAM. Importance of dopaminergic neurotransmission for the RU 24969-induced locomotor activity of male and female rats during the preweanling period. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:903-913. [PMID: 33205248 DOI: 10.1007/s00210-020-02011-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Abstract
There is disagreement about whether the locomotor activity produced by serotonin (5-HT) 1A/1B receptor agonists is ultimately mediated through a dopaminergic mechanism or is independent of dopamine (DA) system functioning. Using a developing rat model, we examined whether DA neurotransmission is necessary for the locomotor activity produced by 5-HT1A/1B receptor stimulation. Depending on experiment, male and female preweanling rats were pretreated with vehicle, the monoamine-depleting agent reserpine, the 5-HT synthesis inhibitor 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), the DA synthesis inhibitor ∝-methyl-DL-p-tyrosine (AMPT), or the D1 and D2 receptor antagonists SCH 23390 and raclopride, respectively. After completing the pretreatment regimen, the behavioral effects of saline and the 5-HT1A/1B receptor agonist RU 24969 were assessed during a 2-h test session. Locomotor activity in the center and margin of the testing chamber was recorded. RU 24969's locomotor activating effects were sensitive to blockade of the D2 receptor, but not the D1 receptor. The DA synthesis inhibitor (AMPT) significantly attenuated the RU 24969-induced locomotor activity of preweanling rats, as did the 5-HT synthesis inhibitor PCPA. The latter result suggests that presynaptic 5-HT1A/1B receptors may have a role in mediating RU 24969-induced locomotion during the preweanling period. DA neurotransmission, especially involving D2 receptors, is necessary for the 5-HT1A/1B-mediated locomotor activity of preweanling rats. The actions of PCPA, reserpine, and SCH 23390 differ substantially between preweanling and adult rats, suggesting that the neural mechanisms underlying these DA/5-HT interactions vary across ontogeny.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA.
| | - Nazaret R Montejano
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Ginny I Park
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Jasmine A M Robinson
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| |
Collapse
|
4
|
Rowson SA, Foster SL, Weinshenker D, Neigh GN. Locomotor sensitization to cocaine in adolescent and adult female Wistar rats. Behav Brain Res 2018; 349:158-162. [PMID: 29704596 DOI: 10.1016/j.bbr.2018.04.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 01/04/2023]
Abstract
Adolescent stress exposure is a risk factor for drug abuse, and sex differences contribute to psychostimulant responses. Although many studies have utilized the Wistar rat strain in adolescent stress paradigms, the impact of adolescent stress exposure on addiction-like outcomes has not been rigorously tested in female Wistar rats. In this study, locomotor sensitization was assessed in adolescent and adult female Wistar rats following either chronic stress during adolescence (CAS) or no stress (NS). Adolescent, but not adult, female Wistar rats developed locomotor sensitization to 15 mg/kg cocaine over 5 days of treatment, regardless of stress history. CAS reduced the initial locomotor response to novelty in both adolescent and adult rats compared to NS controls but had no effect on locomotor sensitization to cocaine in adolescents or adult female rats. These studies expand our understanding of age and adolescent stress on cocaine-induced behavioral plasticity in female Wistar rats.
Collapse
Affiliation(s)
- Sydney A Rowson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, United States; Molecular and Systems Pharmacology Graduate Program, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Stephanie L Foster
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, United States; Neuroscience Graduate Program, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, United States.
| | - Gretchen N Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, 23284, United States; Department of Physiology, Emory University, Atlanta, GA, 30322, United States.
| |
Collapse
|
5
|
McDougall SA, Rudberg KN, Veliz A, Dhargalkar JM, Garcia AS, Romero LC, Gonzalez AE, Mohd-Yusof A, Crawford CA. Importance of D1 and D2 receptor stimulation for the induction and expression of cocaine-induced behavioral sensitization in preweanling rats. Behav Brain Res 2017; 326:226-236. [PMID: 28284952 DOI: 10.1016/j.bbr.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 12/29/2022]
Abstract
The behavioral manifestations of psychostimulant-induced sensitization vary markedly between young and adult rats, suggesting that the neural mechanisms mediating this phenomenon differ across ontogeny. In this project we examined the importance of D1 and D2 receptors for the induction and expression of cocaine-induced behavioral sensitization during the preweanling period. In the behavioral experiments, rats were injected with reversible D1 and/or D2 antagonists (SCH23390 and/or raclopride) or an irreversible receptor antagonist (EEDQ) either before cocaine administration on the pretreatment day (induction) or before cocaine challenge on the test day (expression). In the EEDQ experiments, receptor specificity was assessed by using selective dopamine antagonists to protect D1 and/or D2 receptors from inactivation. Receptor binding assays showed that EEDQ caused substantial reductions in dorsal striatal D1 and D2 binding sites, while SCH23390 and raclopride fully protected D1 and D2 receptors from EEDQ-induced alkylation. Behavioral results showed that neither D1 nor D2 receptor stimulation was necessary for the induction of cocaine sensitization in preweanling rats. EEDQ disrupted the sensitization process, suggesting that another receptor type sensitive to EEDQ alkylation was necessary for the induction process. Expression of the sensitized response was prevented by an acute injection of a D1 receptor antagonist. The pattern of DA antagonist-induced effects described for preweanling rats is, with few exceptions, similar to what is observed when the same drugs are administered to adult rats. Thus, it appears that maturational changes in D1 and D2 receptor systems are not responsible for ontogenetic differences in the behavioral manifestation of cocaine sensitization.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, California State University, San Bernardino, CA, USA.
| | - Krista N Rudberg
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Ana Veliz
- Department of Psychology, California State University, San Bernardino, CA, USA
| | | | - Aleesha S Garcia
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Loveth C Romero
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Ashley E Gonzalez
- Department of Psychology, California State University, San Bernardino, CA, USA; Neuroscience Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Alena Mohd-Yusof
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Cynthia A Crawford
- Department of Psychology, California State University, San Bernardino, CA, USA
| |
Collapse
|
6
|
Shinohara F, Kamii H, Minami M, Kaneda K. The Role of Dopaminergic Signaling in the Medial Prefrontal Cortex for the Expression of Cocaine-Induced Conditioned Place Preference in Rats. Biol Pharm Bull 2017; 40:1983-1989. [DOI: 10.1248/bpb.b17-00614] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fumiya Shinohara
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University
| | - Hironori Kamii
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University
| | - Katsuyuki Kaneda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
7
|
Mohd-Yusof A, Veliz A, Rudberg KN, Stone MJ, Gonzalez AE, McDougall SA. Effects of D2 or combined D1/D2 receptor antagonism on the methamphetamine-induced one-trial and multi-trial behavioral sensitization of preweanling rats. Psychopharmacology (Berl) 2016; 233:893-903. [PMID: 26650612 PMCID: PMC4752886 DOI: 10.1007/s00213-015-4170-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/22/2015] [Indexed: 11/30/2022]
Abstract
RATIONALE There is suggestive evidence that the neural mechanisms mediating one-trial and multi-trial behavioral sensitization differ, especially when the effects of various classes of dopamine (DA) agonists are examined. OBJECTIVE The purpose of the present study was to determine the role of the D2 receptor for the induction of one-trial and multi-trial methamphetamine sensitization in preweanling rats. METHODS In a series of experiments, rats were injected with saline or raclopride (a selective D2 receptor antagonist), either alone or in combination with SCH23390 (a selective D1 receptor antagonist), 15 min prior to treatment with the indirect DA agonist methamphetamine. Acute control groups were given two injections of saline. This pretreatment regimen occurred on either postnatal days (PD) 13-16 (multi-trial) or PD 16 (one-trial). On PD 17, rats were challenged with methamphetamine and locomotor sensitization was determined. RESULTS Blockade of D2 or D1/D2 receptors reduced or prevented, respectively, the induction of multi-trial methamphetamine sensitization in young rats, while the same manipulations had minimal effects on one-trial behavioral sensitization. CONCLUSIONS DA antagonist treatment differentially affected the methamphetamine-induced sensitized responding of preweanling rats depending on whether a one-trial or multi-trial procedure was used. The basis for this effect is uncertain, but there was some evidence that repeated DA antagonist treatment caused nonspecific changes that produced a weakened sensitized response. Importantly, DA antagonist treatment did not prevent the one-trial behavioral sensitization of preweanling rats. The latter result brings into question whether DA receptor stimulation is necessary for the induction of psychostimulant-induced behavioral sensitization during early ontogeny.
Collapse
Affiliation(s)
- Alena Mohd-Yusof
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA, 92407, USA
| | - Ana Veliz
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA, 92407, USA
| | - Krista N Rudberg
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA, 92407, USA
| | - Michelle J Stone
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA, 92407, USA
| | - Ashley E Gonzalez
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA, 92407, USA
- Present address: A.E. Gonzalez, Neurosciences Program, Stanford University School of Medicine, 1215 Welch Road Modular B, #42, Stanford, CA, 94305-5400, USA
| | - Sanders A McDougall
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA, 92407, USA.
| |
Collapse
|