1
|
Oliver BG, Wang J, Yarak RA, Hikasem T, Wang B, Feng M, Wang X, Gorrie CA, Yi C, Chen H. Exposure to third hand e-cigarette vapour impairs cognitive function in young mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117885. [PMID: 39954623 DOI: 10.1016/j.ecoenv.2025.117885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Indoor vaping can lead to third-hand vapour exposure, evidenced by the presence of nicotine and carcinogenic nitrosamines on indoor surfaces. Children are at high risk of such exposure. This study aimed to investigate the effects of third-hand vapour exposure on cognitive function in young mice. Male mice (Balb/c, 4 weeks) were exposed to cotton towels treated with e-cigarette vapour with and without nicotine (9 L chamber filled with 20 puffs of vapour for 2 hours) and changed daily for four weeks. Vapour was generated from tobacco-flavoured e-cigarette liquids (50 % propylene glycol, 50 % vegetable glycerine, 18 mg or 0 mg nicotine) using a human e-cigarette device. Mice exposed to nicotine-free vapour showed impaired short-term memory, while those exposed to nicotine-containing vapour exhibited significantly increased anxiety-like behaviours. Both exposure groups had reduced neuron numbers in the cortex and increased microglia numbers and pro-inflammatory cytokine expression in the brain. Third-hand exposure to vapour can impair memory function and increase anxiety, with some effects being nicotine-independent. These findings highlight the potential risks of indoor vaping, especially in environments frequented by younger people, including children and adolescents, and the need for further research to identify the underlying mechanisms. SYNOPSIS: This is the first study highlighting the risks of cognitive impairment due to third-hand exposure to e-cigarette residues in a mouse model.
Collapse
Affiliation(s)
- Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie Univerity, NSW 2113, Australia
| | - Jingyu Wang
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Rochelle A Yarak
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Tharathip Hikasem
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Baoming Wang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Min Feng
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Xichen Wang
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Catherine A Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
2
|
Green HJ, O'Shea OK, Cotter J, Philpott HL, Newland N. An exploratory, randomised, crossover study to investigate the effect of nicotine on cognitive function in healthy adult smokers who use an electronic cigarette after a period of smoking abstinence. Harm Reduct J 2024; 21:78. [PMID: 38582919 PMCID: PMC10998423 DOI: 10.1186/s12954-024-00993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/26/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND As well as being associated with serious negative health outcomes, smoking has been reported to have an array of physiological and psychological effects, including effects on mood and cognitive function. Post-cessation, loss of such effects (including temporary deficits in cognitive function) have been cited as reasons for resumption of smoking. The effects of e-cigarettes and nicotine delivered by e-cigarettes on these functions have not been widely researched but may play a role in the effectiveness of e-cigarettes as a satisfactory alternative to combustible cigarettes for people who smoke, and in encouraging individuals who would otherwise continue to smoke, to transition to e-cigarettes. METHODS The study was an exploratory, randomised, partially-blinded, single-centre, five-arm crossover trial that recruited 40 healthy male and female people who smoke. At 5 study sessions, following a 12-h period of nicotine abstinence, participants were randomly assigned to use either a combustible cigarette, an e-cigarette of three varying nicotine strengths (18 mg/mL, 12 mg/mL or 0 mg/mL respectively) or observe a no product usage session. Participants completed pre- and post-product usage assessments to examine the product usage effect on cognitive performance (using the Cambridge Neuropsychological Test Automated Battery (CANTAB)), subjective mood and smoking urges. RESULTS A significant improvement in sustained attention task performance was observed following use of both the nicotine containing e-cigarettes and combustible cigarette compared to no product use. Additionally, there were no significant differences between the nicotine containing products, indicating that nicotine use enhanced sustained attention regardless of delivery format. Nicotine containing e-cigarette and combustible cigarette use also significantly improved overall mood of participants compared to no product use, with no significant differences observed between the nicotine containing products. Nicotine containing e-cigarette and combustible cigarette use significantly reduced smoking urges compared to no product use, though combustible cigarette use elicited the greatest reduction in smoking urges. CONCLUSIONS Overall, the nicotine containing products improved sustained attention and mood while reducing smoking urges, with the studied e-cigarettes having comparable effects to combustible cigarettes across the assessed cognitive parameters and mood measures. These results demonstrate the potential role of e-cigarettes to provide an acceptable alternative for combustible cigarettes among people who would otherwise continue to smoke. Trial registration ISRCTN (identifier: ISRCTN35376793).
Collapse
Affiliation(s)
- Harry J Green
- Group Research and Development, British American Tobacco (Investments) Ltd, Regents Park Road, Southampton, SO15 8TL, UK.
| | - Olivia K O'Shea
- Group Research and Development, British American Tobacco (Investments) Ltd, Regents Park Road, Southampton, SO15 8TL, UK
| | - Jack Cotter
- Group Research and Development, British American Tobacco (Investments) Ltd, Regents Park Road, Southampton, SO15 8TL, UK
| | | | - Nik Newland
- Group Research and Development, British American Tobacco (Investments) Ltd, Regents Park Road, Southampton, SO15 8TL, UK
| |
Collapse
|
3
|
Boiangiu RS, Brinza I, Honceriu I, Mihasan M, Hritcu L. Insights into Pharmacological Activities of Nicotine and 6-Hydroxy-L-nicotine, a Bacterial Nicotine Derivative: A Systematic Review. Biomolecules 2023; 14:23. [PMID: 38254623 PMCID: PMC10813004 DOI: 10.3390/biom14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The purported cognitive benefits associated with nicotine and its metabolites in the brain are a matter of debate. In this review, the impact of the pharmacologically active metabolite of a nicotine derivative produced by bacteria named 6-hydroxy-L-nicotine (6HLN) on memory, oxidative stress, and the activity of the cholinergic system in the brain was examined. A search in the PubMed, Science Direct, Web of Science, and Google Scholar databases, limiting entries to those published between 1992 and 2023, was conducted. The search focused specifically on articles about nicotine metabolites, memory, oxidative stress, and cholinergic system activity, as well as enzymes or pathways related to nicotine degradation in bacteria. The preliminary search resulted in 696 articles, and following the application of exclusion criteria, 212 articles were deemed eligible for inclusion. This review focuses on experimental studies supporting nicotine catabolism in bacteria, and the chemical and pharmacological activities of nicotine and its metabolite 6HLN.
Collapse
Affiliation(s)
| | | | | | - Marius Mihasan
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| | - Lucian Hritcu
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| |
Collapse
|
4
|
Nicotine's effect on cognition, a friend or foe? Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110723. [PMID: 36736944 DOI: 10.1016/j.pnpbp.2023.110723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Tobacco smoking is a preventable cause of morbidity and mortality throughout the world. Smoking comes in form of absorption of many compounds, among which nicotine is the main psychoactive component of tobacco and its positive and negative reinforcement effects are proposed to be the key mechanism for the initiation and maintenance of smoking. Growing evidence suggests that the cognitive enhancement effects of nicotine may also contribute to the difficulty of quitting smoking, especially in individuals with psychiatric disorders. In this review, we first introduce the beneficial effect of nicotine on cognition including attention, short-term memory and long-term memory. We next summarize the beneficial effect of nicotine on cognition under pathological conditions, including Alzheimer's disease, Parkinson's disease, Schizophrenia, Stress-induced Anxiety, Depression, and drug-induced memory impairment. The possible mechanism underlying nicotine's effect is also explored. Finally, nicotine's detrimental effect on cognition is discussed, including in the prenatal and adolescent periods, and high-dose nicotine- and withdrawal-induced memory impairment is emphasized. Therefore, nicotine serves as both a friend and foe. Nicotine-derived compounds could be a promising strategy to alleviate neurological disease-associated cognitive deficit, however, due to nicotine's detrimental effect, continued educational programs and public awareness campaigns are needed to reduce tobacco use among pregnant women and smoking should be quitted even if it is e-cigarette, especially for the adolescents.
Collapse
|
5
|
A single bout of aerobic exercise modulates motor learning performance and cortical excitability in humans. Int J Clin Health Psychol 2023; 23:100333. [PMID: 36168600 PMCID: PMC9483626 DOI: 10.1016/j.ijchp.2022.100333] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/06/2022] [Indexed: 11/22/2022] Open
|
6
|
Sutherland BD, Sutherland MT, Trucco EM. Electronic Cigarette Use Intentions Mediate the Association between Low Self-Control and Future Use by Internalizing Symptoms. Subst Use Misuse 2022; 57:1797-1807. [PMID: 36041007 PMCID: PMC9560985 DOI: 10.1080/10826084.2022.2115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Background: Adolescent electronic (e-)cigarette use intentions are related to initiation. Low self-control is also a risk factor for early stages of substance use. Yet, the impact of low self-control on use through intentions may vary across individuals; depression and anxiety may affect this association. Methods: A sample of 200 adolescents who completed waves 1 and 2 of an ongoing longitudinal study were assessed. We hypothesized that high internalizing symptoms would moderate the indirect effect of low self-control on actual e-cigarette use through e-cigarette use intentions. Results: The mediation pathway was significant at high levels of internalizing symptoms, but not at low or moderate levels. Conclusion: Specifically, those with low self-control and high internalizing symptomatology endorsed the highest e-cigarette use intentions and were more likely to subsequently use e-cigarettes. Youth low in self-control and high in depression and anxiety might be at increased risk to initiate e-cigarette use compared to youth high in self-control and high in internalizing symptomatology.
Collapse
Affiliation(s)
- Benjelene D. Sutherland
- Center for Children and Families, Florida International University, 11200 SW 8th Street, AHC-1 Rm. 140, Miami, FL, 33199 USA
| | - Matthew T. Sutherland
- Center for Children and Families, Florida International University, 11200 SW 8th Street, AHC-1 Rm. 140, Miami, FL, 33199 USA
- Department of Psychology, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Elisa M. Trucco
- Center for Children and Families, Florida International University, 11200 SW 8th Street, AHC-1 Rm. 140, Miami, FL, 33199 USA
- Department of Psychology, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
- Addiction Center, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, USA
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Cao LX, Bing YH, Xu YH, Zhang GJ, Chu CP, Hong L, Qiu DL. Nicotine Facilitates Facial Stimulation-Evoked Mossy Fiber-Granule Cell Long-Term Potentiation in vivo in Mice. Front Cell Neurosci 2022; 16:905724. [PMID: 35860314 PMCID: PMC9289189 DOI: 10.3389/fncel.2022.905724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotine is a psychoactive component of tobacco that plays critical roles in the regulation of neuronal circuit function and neuroplasticity and contributes to the improvement of working memory performance and motor learning function via nicotinic acetylcholine receptors (nAChRs). Under in vivo conditions, nicotine enhances facial stimulation-evoked mossy fiber-granule cell (MF-GrC) synaptic transmission, which suggests that nicotine regulates MF-GrC synaptic plasticity in the mouse cerebellar cortex. In this study, we investigated the effects of nicotine on facial stimulation-induced long-term potentiation (LTP) of MF-GrC synaptic transmission in urethane-anesthetized mice. Our results showed that facial stimulation at 20 Hz induced an MF-GrC LTP in the mouse cerebellar granular layer that was significantly enhanced by the application of nicotine (1 μM). Blockade of α4β2 nAChRs, but not α7 nAChRs, during delivery of 20 Hz facial stimulation prevented the nicotine-induced facilitation of MF-GrC LTP. Notably, the facial stimulation-induced MF-GrC LTP was abolished by an N-methyl-D-aspartate (NMDA) receptor antagonist, but it was restored by additional application of nicotine during delivery of 20 Hz facial stimulation. Furthermore, antagonism of α4β2 nAChRs, but not α7 nAChRs, during delivery of 20 Hz facial stimulation prevented nicotine-induced MF-GrC LTP. Moreover, inhibition of nitric oxide synthase (NOS) abolished the facial stimulation-induced MF-GrC LTP, as well as the effect of nicotine on it. Our results indicated that 20 Hz facial stimulation induced MF-GrC LTP via an NMDA receptor/nitric oxide (NO) cascade, but MF-GrC LTP was enhanced by nicotine through the α4β2 AChR/NO signaling pathway. These results suggest that nicotine-induced facilitation of MF-GrC LTP may play a critical role in the improvement of working memory performance and motor learning function.
Collapse
Affiliation(s)
- Li-Xin Cao
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Yan-Hua Bing
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Yin-Hua Xu
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Guang-Jian Zhang
- Department of Pain, Affiliated Hospital of Yanbian University, Yanji, China
| | - Chun-Ping Chu
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, China
| | - Lan Hong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
- *Correspondence: Lan Hong,
| | - De-Lai Qiu
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, China
- De-Lai Qiu, ,
| |
Collapse
|
8
|
Salehinejad MA, Ghanavati E, Reinders J, Hengstler JG, Kuo MF, Nitsche MA. Sleep-dependent upscaled excitability, saturated neuroplasticity, and modulated cognition in the human brain. eLife 2022; 11:e69308. [PMID: 35666097 PMCID: PMC9225005 DOI: 10.7554/elife.69308] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Sleep strongly affects synaptic strength, making it critical for cognition, especially learning and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is not well understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation, (b) inducibility of long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory, and attention. The results suggest that sleep deprivation upscales cortical excitability due to enhanced glutamate-related cortical facilitation and decreases and/or reverses GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity (anodal) abolishes while the inhibitory LTD-like plasticity (cathodal) converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Finally, we show that learning and memory formation, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are impaired during sleep deprivation. Our data indicate that upscaled brain excitability and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance. Besides showing how brain physiology and cognition undergo changes (from neurophysiology to higher-order cognition) under sleep pressure, the findings have implications for variability and optimal application of noninvasive brain stimulation.
Collapse
Affiliation(s)
- Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany
- International Graduate School of Neuroscience, Ruhr-University BochumBochumGermany
| | - Elham Ghanavati
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University BochumBochumGermany
| | - Jörg Reinders
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany
- Department of Neurology, University Medical Hospital BergmannsheilBochumGermany
| |
Collapse
|
9
|
Antal A, Luber B, Brem AK, Bikson M, Brunoni AR, Cohen Kadosh R, Dubljević V, Fecteau S, Ferreri F, Flöel A, Hallett M, Hamilton RH, Herrmann CS, Lavidor M, Loo C, Lustenberger C, Machado S, Miniussi C, Moliadze V, Nitsche MA, Rossi S, Rossini PM, Santarnecchi E, Seeck M, Thut G, Turi Z, Ugawa Y, Venkatasubramanian G, Wenderoth N, Wexler A, Ziemann U, Paulus W. Non-invasive brain stimulation and neuroenhancement. Clin Neurophysiol Pract 2022; 7:146-165. [PMID: 35734582 PMCID: PMC9207555 DOI: 10.1016/j.cnp.2022.05.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Attempts to enhance human memory and learning ability have a long tradition in science. This topic has recently gained substantial attention because of the increasing percentage of older individuals worldwide and the predicted rise of age-associated cognitive decline in brain functions. Transcranial brain stimulation methods, such as transcranial magnetic (TMS) and transcranial electric (tES) stimulation, have been extensively used in an effort to improve cognitive functions in humans. Here we summarize the available data on low-intensity tES for this purpose, in comparison to repetitive TMS and some pharmacological agents, such as caffeine and nicotine. There is no single area in the brain stimulation field in which only positive outcomes have been reported. For self-directed tES devices, how to restrict variability with regard to efficacy is an essential aspect of device design and function. As with any technique, reproducible outcomes depend on the equipment and how well this is matched to the experience and skill of the operator. For self-administered non-invasive brain stimulation, this requires device designs that rigorously incorporate human operator factors. The wide parameter space of non-invasive brain stimulation, including dose (e.g., duration, intensity (current density), number of repetitions), inclusion/exclusion (e.g., subject's age), and homeostatic effects, administration of tasks before and during stimulation, and, most importantly, placebo or nocebo effects, have to be taken into account. The outcomes of stimulation are expected to depend on these parameters and should be strictly controlled. The consensus among experts is that low-intensity tES is safe as long as tested and accepted protocols (including, for example, dose, inclusion/exclusion) are followed and devices are used which follow established engineering risk-management procedures. Devices and protocols that allow stimulation outside these parameters cannot claim to be "safe" where they are applying stimulation beyond that examined in published studies that also investigated potential side effects. Brain stimulation devices marketed for consumer use are distinct from medical devices because they do not make medical claims and are therefore not necessarily subject to the same level of regulation as medical devices (i.e., by government agencies tasked with regulating medical devices). Manufacturers must follow ethical and best practices in marketing tES stimulators, including not misleading users by referencing effects from human trials using devices and protocols not similar to theirs.
Collapse
Key Words
- AD, Alzheimer’s Disease
- BDNF, brain derived neurotrophic factor
- Cognitive enhancement
- DARPA, Defense Advanced Research Projects Agency
- DIY stimulation
- DIY, Do-It-Yourself
- DLPFC, dorsolateral prefrontal cortex
- EEG, electroencephalography
- EMG, electromyography
- FCC, Federal Communications Commission
- FDA, (U.S.) Food and Drug Administration
- Home-stimulation
- IFCN, International Federation of Clinical Neurophysiology
- LTD, long-term depression
- LTP, long-term potentiation
- MCI, mild cognitive impairment
- MDD, Medical Device Directive
- MDR, Medical Device Regulation
- MEP, motor evoked potential
- MRI, magnetic resonance imaging
- NIBS, noninvasive brain stimulation
- Neuroenhancement
- OTC, Over-The-Counter
- PAS, paired associative stimulation
- PET, positron emission tomography
- PPC, posterior parietal cortex
- QPS, quadripulse stimulation
- RMT, resting motor threshold
- SAE, serious adverse event
- SMA, supplementary motor cortex
- TBS, theta-burst stimulation
- TMS, transcranial magnetic stimulation
- Transcranial brain stimulation
- rTMS, repetitive transcranial magnetic stimulation
- tACS
- tACS, transcranial alternating current stimulation
- tDCS
- tDCS, transcranial direct current stimulation
- tES, transcranial electric stimulation
- tRNS, transcranial random noise stimulation
Collapse
Affiliation(s)
- Andrea Antal
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna-Katharine Brem
- University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Marom Bikson
- Biomedical Engineering at the City College of New York (CCNY) of the City University of New York (CUNY), NY, USA
| | - Andre R. Brunoni
- Departamento de Clínica Médica e de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Veljko Dubljević
- Science, Technology and Society Program, College of Humanities and Social Sciences, North Carolina State University, Raleigh, NC, USA
| | - Shirley Fecteau
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, Centre intégré universitaire en santé et services sociaux de la Capitale-Nationale, Quebec City, Quebec, Canada
| | - Florinda Ferreri
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, 17475 Greifswald, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Roy H. Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Michal Lavidor
- Department of Psychology and the Gonda Brain Research Center, Bar Ilan University, Israel
| | - Collen Loo
- School of Psychiatry and Black Dog Institute, University of New South Wales; The George Institute; Sydney, Australia
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sergio Machado
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil
- Laboratory of Physical Activity Neuroscience, Neurodiversity Institute, Queimados-RJ, Brazil
| | - Carlo Miniussi
- Center for Mind/Brain Sciences – CIMeC and Centre for Medical Sciences - CISMed, University of Trento, Rovereto, Italy
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at TU, Dortmund, Germany
- Dept. Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Paolo M. Rossini
- Department of Neuroscience and Neurorehabilitation, Brain Connectivity Lab, IRCCS-San Raffaele-Pisana, Rome, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Margitta Seeck
- Department of Clinical Neurosciences, Hôpitaux Universitaires de Genève, Switzerland
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, EEG & Epolepsy Unit, University of Glasgow, United Kingdom
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | | | - Nicole Wenderoth
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | - Anna Wexler
- Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Walter Paulus
- Department of of Neurology, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
10
|
Spasova V, Mehmood S, Minhas A, Azhar R, Anand S, Abdelaal S, Sham S, Chauhan TM, Dragas D. Impact of Nicotine on Cognition in Patients With Schizophrenia: A Narrative Review. Cureus 2022; 14:e24306. [PMID: 35475247 PMCID: PMC9020415 DOI: 10.7759/cureus.24306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
Nicotine is the psychoactive component given tobacco has several main components and acts as an agonist for nicotinic acetylcholine receptors (nAChRs) in the nervous system. Although the ligand-gated cation channels known as nAChRs are found throughout the nervous system and body, this review focuses on neuronal nAChRs. Individuals with psychiatric diseases such as schizophrenia, comorbid substance use disorders, attention-deficit hyperactivity disorder, major depression, and bipolar disorder have increased rates of smoking. These psychiatric disorders are associated with various cognitive deficits, including working memory, deficits in attention, and response inhibition functions. The cognitive-enhancing effects of nicotine may be particularly relevant predictors of smoking initiation and continuation in this comorbid population. Individuals with schizophrenia make up a significant proportion of smokers. Literature suggests that patients smoke to alleviate cognitive deficiencies due to the stimulating effects of nicotine. This narrative review examines the role of nicotine on cognition in schizophrenia.
Collapse
|
11
|
Salehinejad MA, Wischnewski M, Ghanavati E, Mosayebi-Samani M, Kuo MF, Nitsche MA. Cognitive functions and underlying parameters of human brain physiology are associated with chronotype. Nat Commun 2021; 12:4672. [PMID: 34344864 PMCID: PMC8333420 DOI: 10.1038/s41467-021-24885-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/08/2021] [Indexed: 01/03/2023] Open
Abstract
Circadian rhythms have natural relative variations among humans known as chronotype. Chronotype or being a morning or evening person, has a specific physiological, behavioural, and also genetic manifestation. Whether and how chronotype modulates human brain physiology and cognition is, however, not well understood. Here we examine how cortical excitability, neuroplasticity, and cognition are associated with chronotype in early and late chronotype individuals. We monitor motor cortical excitability, brain stimulation-induced neuroplasticity, and examine motor learning and cognitive functions at circadian-preferred and non-preferred times of day in 32 individuals. Motor learning and cognitive performance (working memory, and attention) along with their electrophysiological components are significantly enhanced at the circadian-preferred, compared to the non-preferred time. This outperformance is associated with enhanced cortical excitability (prominent cortical facilitation, diminished cortical inhibition), and long-term potentiation/depression-like plasticity. Our data show convergent findings of how chronotype can modulate human brain functions from basic physiological mechanisms to behaviour and higher-order cognition.
Collapse
Affiliation(s)
- Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Miles Wischnewski
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Elham Ghanavati
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany.
| |
Collapse
|
12
|
Majdi A, Sadigh‐Eteghad S, Gjedde A. Effects of transdermal nicotine delivery on cognitive outcomes: A meta-analysis. Acta Neurol Scand 2021; 144:179-191. [PMID: 33899218 DOI: 10.1111/ane.13436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/11/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE By the association of nicotinic acetylcholine receptors in the brain, nicotine in the therapeutic window lowers neuronal damage and raises protective factors. These data, however, are contradicted by other findings. Here, we assessed the effects of transdermal nicotine administration on cognitive functions in healthy non-smoker adults by systematic review and meta-analysis of clinical trials. METHODS We included reports of clinical trials comparing the effects of nicotine patches with placebo in healthy non-smoking adults. The main outcome was the impact of nicotine patches on overall cognitive function with a focus on attention and memory. Standard meta-analytic and statistical methods measured the effect of transdermal nicotine compared with placebo patches. RESULTS We included 31 publications involving 978 subjects. Nicotine patches boosted cognitive function in healthy adults (0.233 SMD, 95%CI, 0.111-0.355, p < .001). Overall heterogeneity of the studies was found to be modest (ϰ2 = 68.24, T2 = 0.07, I2 = 50.17%, p < .001). Also, nicotine patches improved attention (0.231 SMD, 95%CI, 0.106-0.356, p < .001). We found the inter-study heterogeneity to be low (ϰ2 = 40.95, T2 = 0.03, I2 = 34.07%, p = .042). Further, the enhancement of memory by transdermal nicotine did not reach statistical significance in normal subjects (0.270 SMD, 95% CI, -0.293-0.833, p = .347). Also, high inter-study heterogeneity was found among studies (ϰ2 = 27.25, T2 = 0.43, I2 = 77.98%, p < .001). CONCLUSION The meta-analysis showed that transdermal nicotine had statistically significant positive effects on attention, and non-significant effects on memory, in healthy non-smoking adults. The results encourage further studies of the therapeutic potential of nicotine patches in disorders of cognition.
Collapse
Affiliation(s)
- Alireza Majdi
- Neurosciences Research Center Tabriz University of Medical Sciences Tabriz Iran
| | | | - Albert Gjedde
- Neurosciences Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Clinical Research Translational Neuropsychiatry Unit Aarhus University Aarhus Denmark
- Department of Neuroscience University of Copenhagen Copenhagen Denmark
- Department of Neurology and Neurosurgery McGill University Montreal QC Canada
| |
Collapse
|
13
|
Objective electrophysiological fatigability markers and their modulation through tDCS. Clin Neurophysiol 2021; 132:1721-1732. [PMID: 33867262 DOI: 10.1016/j.clinph.2021.02.391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Cognitive fatigability is a frequent symptom after sustained performance. Fatigability is evident in healthy subjects but is also often comorbid in several neuropsychiatric diseases. However, to date, clinical diagnostic almost solely relies on the self-reported subjective experience of fatigue. The goals of this present study were i) to complement the purely subjective fatigue diagnostic with objective electrophysiological fatigability parameters and ii) to prove the potential therapeutic application of transcranial direct current stimulation (tDCS) as a fatigability intervention. METHODS We performed a pseudo-randomized, sham-controlled, parallel-group trial. Forty healthy participants received either anodal or sham tDCS over the left dorsolateral prefrontal cortex (DLPFC) while they performed an exhaustive cognitive task to induce cognitive fatigability. To assess fatigability changes, we analyzed variations of prepulse inhibition (PPI) and P50 suppression as well as frontomedial theta and occipital alpha power with time-on-task. RESULTS The task reliably induced subjective exhaustion in all participants. Furthermore, we confirmed fatigability-related increases in frontomedial theta and occipital alpha power throughout the task. Additionally, fatigability significantly reduced PPI as well as P50 sensory gating. Anodal tDCS over the left DLPFC successfully counteracted fatigability and reduced the fatigability-related increase in alpha power as well as the decline in both gating parameters. CONCLUSION Occipital alpha and sensorimotor/sensory gating are suitable parameters to assess the severity of fatigability objectively. Anodal tDCS can counteract fatigability and has therapeutic potential for the treatment of fatigability in neuropsychiatric diseases. SIGNIFICANCE Fatigability can be objectively assessed by electrophysiological measures and attenuated by tDCS.
Collapse
|
14
|
Kuo HI, Qi FX, Paulus W, Kuo MF, Nitsche MA. Noradrenergic Enhancement of Motor Learning, Attention, and Working Memory in Humans. Int J Neuropsychopharmacol 2021; 24:490-498. [PMID: 33617635 PMCID: PMC8278798 DOI: 10.1093/ijnp/pyab006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/15/2020] [Accepted: 02/18/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Noradrenaline has an important role as a neuromodulator of the central nervous system. Noradrenergic enhancement was recently shown to enhance glutamate-dependent cortical facilitation and long term potentiation-like plasticity. As cortical excitability and plasticity are closely linked to various cognitive processes, here we aimed to explore whether these alterations are associated with respective cognitive performance changes. Specifically, we assessed the impact of noradrenergic enhancement on motor learning (serial reaction time task), attentional processes (Stroop interference task), and working memory performance (n-back letter task). METHODS The study was conducted in a cross-over design. Twenty-five healthy humans performed the respective cognitive tasks after a single dose of the noradrenaline reuptake inhibitor reboxetine or placebo administration. RESULTS The results show that motor learning, attentional processes, and working memory performance in healthy participants were improved by reboxetine application compared with placebo. CONCLUSIONS The results of the present study thus suggest that noradrenergic enhancement can improve memory formation and executive functions in healthy humans. The respective changes are in line with related effects of noradrenaline on cortical excitability and plasticity.
Collapse
Affiliation(s)
- Hsiao-I Kuo
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan,Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Feng-Xue Qi
- Key Laboratory of Sport Training of General Admission of Sport of China, Beijing Sport University, Xinxin Road, Haidian District, Beijing, China,Department of Sport Training, Sport Coaching College, Beijing Sport University, Beijing, China
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Min-Fang Kuo
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Michael A Nitsche
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany,Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany,Correspondence: M. A. Nitsche, MD, Department Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Ardeystrasse 67, 44139 Dortmund, Germany ()
| |
Collapse
|
15
|
de Miquel C, Pross B, Papazova I, Güler D, Hasan A. The two-way relationship between nicotine and cortical activity: a systematic review of neurobiological and treatment aspects. Eur Arch Psychiatry Clin Neurosci 2021; 271:157-180. [PMID: 32594235 DOI: 10.1007/s00406-020-01155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/16/2020] [Indexed: 11/29/2022]
Abstract
Nicotine intake and cortical activity are closely related, as they can influence each other. Nicotine is implicated in the induction and modification of cortical plasticity and excitability, whereas a change on cortical plasticity and excitability can also lead to a modification of the smoking behaviour of an individual. The aim of this systematic review was, on the one hand, to evaluate the effects of nicotinergic modulation on cortical excitability and plasticity, and, on the other hand, to assess if modifying the brain's excitability and plasticity could influence one's smoking behaviour. Two systematic literature searches in the PubMed/MEDLINE and PsycINFO databases were conducted. Studies focusing either on the impact of nicotinergic modulation on cortical activity or the treatment effect of non-invasive brain stimulation techniques (NIBS) on smoking behaviour were included. A total of 22 studies for the first systematic search and 35 studies for the second one were included after full-text screening. Nicotine's effect on cortical activity appeared to depend on smoking status of the individual. While deprived smokers seem to generally profit from nicotine consumption in terms of cortical excitability and plasticity, the contrary was true for non-smokers. Regarding the questions of how changes in cortical excitability can influence smoking behaviour, a trend points towards NIBS being a potential intervention technique for smoking cessation.
Collapse
Affiliation(s)
- Carlota de Miquel
- Department of Psychiatry and Psychotherapy, University Medical Hospital, LMU, Nußbaumstr. 7, 80336, Munich, Germany. .,Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.
| | - Benjamin Pross
- Department of Psychiatry and Psychotherapy, University Medical Hospital, LMU, Nußbaumstr. 7, 80336, Munich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Irina Papazova
- Department of Psychiatry and Psychotherapy, University Medical Hospital, LMU, Nußbaumstr. 7, 80336, Munich, Germany
| | - Duygu Güler
- Department of Psychiatry and Psychotherapy, University Medical Hospital, LMU, Nußbaumstr. 7, 80336, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Medical Hospital, LMU, Nußbaumstr. 7, 80336, Munich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| |
Collapse
|
16
|
Wardhani I, Mathôt S, Boehler C, Laeng B. Effects of nicotine on pupil size and performance during multiple-object tracking in non-nicotine users. Int J Psychophysiol 2020; 158:45-55. [DOI: 10.1016/j.ijpsycho.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
|
17
|
Thams F, Kuzmina A, Backhaus M, Li SC, Grittner U, Antonenko D, Flöel A. Cognitive training and brain stimulation in prodromal Alzheimer's disease (AD-Stim)-study protocol for a double-blind randomized controlled phase IIb (monocenter) trial. Alzheimers Res Ther 2020; 12:142. [PMID: 33160420 PMCID: PMC7648990 DOI: 10.1186/s13195-020-00692-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/16/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Given the growing older population worldwide, and the associated increase in age-related diseases, such as Alzheimer's disease (AD), investigating non-invasive methods to ameliorate or even prevent cognitive decline in prodromal AD is highly relevant. Previous studies suggest transcranial direct current stimulation (tDCS) to be an effective method to boost cognitive performance, especially when applied in combination with cognitive training in healthy older adults. So far, no studies combining tDCS concurrent with an intense multi-session cognitive training in prodromal AD populations have been conducted. METHODS The AD-Stim trial is a monocentric, randomized, double-blind, placebo-controlled study, including a 3-week tDCS-assisted cognitive training with anodal tDCS over left DLPFC (target intervention), compared to cognitive training plus sham (control intervention). The cognitive training encompasses a letter updating task and a three-stage Markov decision-making task. Forty-six participants with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) will be randomized block-wise to either target or control intervention group and participate in nine interventional visits with additional pre- and post-intervention assessments. Performance in the letter updating task after training and anodal tDCS compared to sham stimulation will be analyzed as primary outcome. Further, performance on the second training task and transfer tasks will be investigated. Two follow-up visits (at 1 and 7 months post-training) will be performed to assess possible maintenance effects. Structural and functional magnetic resonance imaging (MRI) will be applied before the intervention and at the 7-month follow-up to identify possible neural predictors for successful intervention. SIGNIFICANCE With this trial, we aim to provide evidence for tDCS-induced improvements of multi-session cognitive training in participants with SCD and MCI. An improved understanding of tDCS effects on cognitive training performance and neural predictors may help to develop novel approaches to counteract cognitive decline in participants with prodromal AD. TRIAL REGISTRATION ClinicalTrials.gov , NCT04265378 . Registered on 07 February 2020. Retrospectively registered. Protocol version: Based on BB 004/18 version 1.2 (May 17, 2019). SPONSOR University Medicine Greifswald.
Collapse
Affiliation(s)
- Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Anna Kuzmina
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Malte Backhaus
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TU Dresden, Zellescher Weg 17, 01062 Dresden, Germany
- Centre for Tactile Internet with Human-in-the-Loop, TU Dresden, 01062 Dresden, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| |
Collapse
|
18
|
Do Nicotinic Receptors Modulate High-Order Cognitive Processing? Trends Neurosci 2020; 43:550-564. [DOI: 10.1016/j.tins.2020.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
|
19
|
Lesage E, Sutherland MT, Ross TJ, Salmeron BJ, Stein EA. Nicotine dependence (trait) and acute nicotinic stimulation (state) modulate attention but not inhibitory control: converging fMRI evidence from Go-Nogo and Flanker tasks. Neuropsychopharmacology 2020; 45:857-865. [PMID: 31995811 PMCID: PMC7075893 DOI: 10.1038/s41386-020-0623-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/29/2019] [Accepted: 01/17/2020] [Indexed: 12/29/2022]
Abstract
Cognitive deficits during nicotine withdrawal may contribute to smoking relapse. However, interacting effects of chronic nicotine dependence and acute nicotine withdrawal on cognitive control are poorly understood. Here we examine the effects of nicotine dependence (trait; smokers (n = 24) vs. non-smoking controls; n = 20) and acute nicotinic stimulation (state; administration of nicotine and varenicline, two FDA-approved smoking cessation aids, during abstinence), on two well-established tests of inhibitory control, the Go-Nogo task and the Flanker task, during fMRI scanning. We compared performance and neural responses between these four pharmacological manipulations in a double-blind, placebo-controlled crossover design. As expected, performance in both tasks was modulated by nicotine dependence, abstinence, and pharmacological manipulation. However, effects were driven entirely by conditions that required less inhibitory control. When demand for inhibitory control was high, abstinent smokers showed no deficits. By contrast, acutely abstinent smokers showed performance deficits in easier conditions and missed more trials. Go-Nogo fMRI results showed decreased inhibition-related neural activity in right anterior insula and right putamen in smokers and decreased dorsal anterior cingulate cortex activity on nicotine across groups. No effects were found on inhibition-related activity during the Flanker task or on error-related activity in either task. Given robust nicotinic effects on physiology and behavioral deficits in attention, we are confident that pharmacological manipulations were effective. Thus findings fit a recent proposal that abstinent smokers show decreased ability to divert cognitive resources at low or intermediate cognitive demand, while performance at high cognitive demand remains relatively unaffected, suggesting a primary attentional deficit during acute abstinence.
Collapse
Affiliation(s)
- E Lesage
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Department of Experimental Psychology, Gent University, Ghent, Belgium
| | - M T Sutherland
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Department of Psychology, Florida International University, Miami, FL, USA
| | - T J Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - B J Salmeron
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - E A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
20
|
Nardone N, Shahid M, Strasser AA, Dempsey DA, Benowitz NL. The influence of nicotine metabolic rate on working memory over 6 hours of abstinence from nicotine. Pharmacol Biochem Behav 2020; 188:172836. [PMID: 31812759 PMCID: PMC7009742 DOI: 10.1016/j.pbb.2019.172836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/11/2019] [Accepted: 12/04/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND A faster rate of nicotine metabolism has been associated with smoking more cigarettes, greater nicotine withdrawal symptoms, and lower smoking quit rates. However, the association between nicotine metabolic rate (NMR) and cognitive functioning during withdrawal has not been determined. METHODS We compared cognitive function in 121 fast or slow nicotine metabolizers after smoking, and at 3 and 6 h of nicotine abstinence. Cognitive functioning was assessed using N-back working memory tests with outcomes of accuracy and processing speed. Participants smoked two cigarettes and then abstained from smoking for 6 h. N-back tests were administered after smoking (0 h) and at 3 and 6 h of nicotine abstinence. RESULTS An effect of processing speed was found over time on the 2-back, in that participants had significantly longer average reaction times when the stimuli presented did not match the target letter. NMR was not significantly associated with the processing speed change over time. Within-race differences in working memory were evident in that Caucasian fast metabolizers had significantly poorer accuracy and processing speed. CONCLUSIONS Minimal change in working memory over 6 h of nicotine abstinence was observed. Overall, NMR was not significantly associated with the change in processing speed, however Caucasian fast metabolizers displayed poorer accuracy and processing speed at discrete time points.
Collapse
Affiliation(s)
- Natalie Nardone
- Clinical Pharmacology Research Program, Division of Cardiology, Department of Medicine, University of California, San Francisco, 3130 20(th) Street Suite 308, San Francisco, CA 94110, USA.
| | - Marian Shahid
- Department of Neurology, Stanford University, 300 Pasteur Dr. Room H3144, MC 5235, Stanford, CA 94305, USA.
| | - Andrew A Strasser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street Suite 4100, Philadelphia, PA 19104, USA.
| | - Delia A Dempsey
- Clinical Pharmacology Research Program, Division of Cardiology, Department of Medicine, University of California, San Francisco, 3130 20(th) Street Suite 308, San Francisco, CA 94110, USA; Department of Pediatrics, University of California, San Francisco, 550 16(th) Street, Box 0110, San Francisco, CA 94143, USA.
| | - Neal L Benowitz
- Center for Tobacco Control Research and Education, University of California, San Francisco, 530 Parnassus Avenue, San Francisco, CA 94143, USA; Division of Clinical Pharmacology and Experiment Therapeutics, Departments of Medicine and Biopharmaceutical Sciences, University of California, San Francisco, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
| |
Collapse
|
21
|
Reinhart RMG, Nguyen JA. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci 2019; 22:820-827. [PMID: 30962628 PMCID: PMC6486414 DOI: 10.1038/s41593-019-0371-x] [Citation(s) in RCA: 360] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/21/2019] [Indexed: 12/22/2022]
Abstract
Understanding normal brain aging and developing methods to maintain or improve cognition in older adults are major goals of fundamental and translational neuroscience. Here we show a core feature of cognitive decline-working-memory deficits-emerges from disconnected local and long-range circuits instantiated by theta-gamma phase-amplitude coupling in temporal cortex and theta phase synchronization across frontotemporal cortex. We developed a noninvasive stimulation procedure for modulating long-range theta interactions in adults aged 60-76 years. After 25 min of stimulation, frequency-tuned to individual brain network dynamics, we observed a preferential increase in neural synchronization patterns and the return of sender-receiver relationships of information flow within and between frontotemporal regions. The end result was rapid improvement in working-memory performance that outlasted a 50 min post-stimulation period. The results provide insight into the physiological foundations of age-related cognitive impairment and contribute to groundwork for future non-pharmacological interventions targeting aspects of cognitive decline.
Collapse
Affiliation(s)
- Robert M G Reinhart
- Department of Psychological & Brain Sciences, Center for Systems Neuroscience, Cognitive Neuroimaging Center, Center for Research in Sensory Communication & Emerging Neural Technology, Boston University, Boston, MA, USA.
| | - John A Nguyen
- Department of Psychological & Brain Sciences, Center for Systems Neuroscience, Cognitive Neuroimaging Center, Center for Research in Sensory Communication & Emerging Neural Technology, Boston University, Boston, MA, USA
| |
Collapse
|
22
|
Butler K, Le Foll B. Impact of Substance Use Disorder Pharmacotherapy on Executive Function: A Narrative Review. Front Psychiatry 2019; 10:98. [PMID: 30881320 PMCID: PMC6405638 DOI: 10.3389/fpsyt.2019.00098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Substance use disorders are chronic, relapsing, and harmful conditions characterized by executive dysfunction. While there are currently no approved pharmacotherapy options for stimulant and cannabis use disorders, there are several evidence-based options available to help reduce symptoms during detoxification and aid long-term cessation for those with tobacco, alcohol and opioid use disorders. While these medication options have shown clinical efficacy, less is known regarding their potential to enhance executive function. This narrative review aims to provide a brief overview of research that has investigated whether commonly used pharmacotherapies for these substance use disorders (nicotine, bupropion, varenicline, disulfiram, acamprosate, nalmefene, naltrexone, methadone, buprenorphine, and lofexidine) effect three core executive function components (working memory, inhibitory control and cognitive flexibility). While pharmacotherapy-induced enhancement of executive function may improve cessation outcomes in dependent populations, there are limited and inconsistent findings regarding the effects of these medications on executive function. We discuss possible reasons for the mixed findings and suggest some future avenues of work that may enhance the understanding of addiction pharmacotherapy and cognitive training interventions and lead to improved patient outcomes.
Collapse
Affiliation(s)
- Kevin Butler
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Alcohol Research and Treatment Clinic, Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Grundey J, Barlay J, Batsikadze G, Kuo MF, Paulus W, Nitsche M. Nicotine modulates human brain plasticity via calcium-dependent mechanisms. J Physiol 2018; 596:5429-5441. [PMID: 30218585 DOI: 10.1113/jp276502] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/13/2018] [Indexed: 01/30/2023] Open
Abstract
KEY POINTS Nicotine (NIC) modulates cognition and memory function by targeting the nicotinic ACh receptor and releasing different transmitter systems postsynaptically. With both NIC-generated mechanisms, calcium influx and calcium permeability can be regulated, which is a key requirement for the induction of long-term potentiation, comprising the physiological basis of learning and memory function. We attempt to unmask the underlying mechanism of nicotinic effects on anodal transcranial direct current stimulation (tDCS)-induced long-term potentiation-like plasticity based on the hypothesis of calcium-dependency. Abolished tDCS-induced neuroplasticity as a result of NIC administration is reversed by calcium channel blockade with flunarizine in a dose-dependent manner. The results of the present study suggest that there is a dose determination of NIC/NIC agonists in therapeutical settings when treating cognitive dysfunction, which partially explains the heterogeneous results on cognition observed in subjects in different experimental settings. ABSTRACT Nicotine (NIC) modulates neuroplasticity and improves cognitive performance in animals and humans mainly by increased calcium permeability and modulation of diverse transmitter systems. NIC administration impairs calcium-dependent plasticity induced by non-invasive brain stimulation with transcranial direct current stimulation (tDCS) in non-smoking participants probably as a result of intracellular calcium overflow. To test this hypothesis, we analysed the effect of calcium channel blockade with flunarizine (FLU) on anodal tDCS-induced cortical excitability changes in healthy non-smokers under NIC. We applied anodal tDCS combined with NIC patch and FLU at three different doses (2.5, 5 and 10 mg) or with placebo medication. NIC abolished anodal tDCS-induced neuroplasticity. Under medium dosage (but not under low and high dosage) of FLU combined with NIC, plasticity was re-established. For FLU alone, the lowest dosage weakened long-term potentiation (LTP)-like plasticity, whereas the highest dosage again abolished tDCS-induced plasticity. The medium dosage turned LTP-like plasticity in long-term depression-like plasticity. The results of the present study suggest a key role of calcium influx and calcium levels in nicotinic effects on LTP-like plasticity in humans. This knowledge might be relevant for the development of new therapeutic strategies in cognitive dysfunction.
Collapse
Affiliation(s)
- Jessica Grundey
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Jerick Barlay
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Giorgi Batsikadze
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany.,Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Michael Nitsche
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany.,Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,University Medical Hospital Bergmannscheil, Bochum, Germany
| |
Collapse
|
24
|
Moser DA, Doucet GE, Ing A, Dima D, Schumann G, Bilder RM, Frangou S. An integrated brain-behavior model for working memory. Mol Psychiatry 2018; 23:1974-1980. [PMID: 29203849 PMCID: PMC5988862 DOI: 10.1038/mp.2017.247] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/01/2017] [Accepted: 10/16/2017] [Indexed: 11/08/2022]
Abstract
Working memory (WM) is a central construct in cognitive neuroscience because it comprises mechanisms of active information maintenance and cognitive control that underpin most complex cognitive behavior. Individual variation in WM has been associated with multiple behavioral and health features including demographic characteristics, cognitive and physical traits and lifestyle choices. In this context, we used sparse canonical correlation analyses (sCCAs) to determine the covariation between brain imaging metrics of WM-network activation and connectivity and nonimaging measures relating to sensorimotor processing, affective and nonaffective cognition, mental health and personality, physical health and lifestyle choices derived from 823 healthy participants derived from the Human Connectome Project. We conducted sCCAs at two levels: a global level, testing the overall association between the entire imaging and behavioral-health data sets; and a modular level, testing associations between subsets of the two data sets. The behavioral-health and neuroimaging data sets showed significant interdependency. Variables with positive correlation to the neuroimaging variate represented higher physical endurance and fluid intelligence as well as better function in multiple higher-order cognitive domains. Negatively correlated variables represented indicators of suboptimal cardiovascular and metabolic control and lifestyle choices such as alcohol and nicotine use. These results underscore the importance of accounting for behavioral-health factors in neuroimaging studies of WM and provide a neuroscience-informed framework for personalized and public health interventions to promote and maintain the integrity of the WM network.
Collapse
Affiliation(s)
- D A Moser
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G E Doucet
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Ing
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neurosciences, King's College, London, UK
| | - D Dima
- Department of Psychology, City University of London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College, London, UK
| | - G Schumann
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neurosciences, King's College, London, UK
| | - R M Bilder
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - S Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
25
|
Talanow T, Ettinger U. Effects of task repetition but no transfer of inhibitory control training in healthy adults. Acta Psychol (Amst) 2018; 187:37-53. [PMID: 29772392 DOI: 10.1016/j.actpsy.2018.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 03/21/2018] [Accepted: 04/24/2018] [Indexed: 02/04/2023] Open
Abstract
Executive functions (EFs) comprise the updating, shifting and inhibition dimensions. According to the Unity and Diversity Model, the inhibition dimension is fully accounted for by a general EFs factor. This suggests that training of inhibition should transfer, in part, to updating and shifting. Therefore, we tested the effectiveness of a three-week inhibition training (high-conflict Stroop task) and explored near transfer effects to an untrained inhibition task (antisaccade task) and far transfer effects to untrained tasks demanding task-set shifting (number-letter-task), working memory updating (n-back task) and planning abilities (Stockings of Cambridge task). We employed a randomized pretest/treatment/posttest study design in n = 102 healthy young adults, assigned to an intensive Stroop training (n = 38), an active control condition (n = 34) or no training intervention (n = 30). In the Stroop training group, Stroop performance improved with practice, while performance in the active control group remained unchanged. The Stroop training group showed improvements in overall Stroop task performance from pretest to posttest, but we observed neither near nor far transfer effects. Additionally, specifically stronger gains on incongruent Stroop trials compared to congruent trials were observed in the Stroop training group when color bar trials were excluded from the pretest-posttest-analysis. Generally, there were substantial improvements from pretest to posttest independent of training condition in all transfer tasks. In sum, our data do not support the existence of transfer effects from inhibition training in healthy young adults.
Collapse
|
26
|
Grundey J, Thirugnasambandam N, Amu R, Paulus W, Nitsche MA. Nicotinic Restoration of Excitatory Neuroplasticity Is Linked to Improved Implicit Motor Learning Skills in Deprived Smokers. Front Neurol 2018; 9:367. [PMID: 29892258 PMCID: PMC5985290 DOI: 10.3389/fneur.2018.00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/07/2018] [Indexed: 12/27/2022] Open
Abstract
Nicotine has been shown to modulate neuroplasticity, cognition, and learning processes in smokers and non-smokers. A possible mechanism for its effect on learning and memory formation is its impact on long-term depression and long-term potentiation (LTP). Nicotine abstinence in smokers is often correlated with impaired cognitive performance. As neuroplasticity is closely connected to learning and memory formation, we aimed to explore the effect of nicotine spray administration in deprived smokers on paired-associative stimulation (PAS25)-induced neuroplasticity and on performance of the serial reaction time task (SRTT), a sequential motor learning paradigm. Deprived smokers (n = 12) under placebo medication displayed reduced excitatory neuroplasticity induced by PAS25. Plasticity was restored by nicotine spray administration. Likewise, SRTT-performance improved after nicotine spray administration compared to placebo administration (n = 19). The results indicate a restitutional effect of nicotine spray in deprived smokers on both: LTP-like neuroplasticity and motor learning. These results present a possible explanation for persistence of nicotine addiction and probability of relapse.
Collapse
Affiliation(s)
- Jessica Grundey
- Clinical Neurophysiology, Georg-August-Universität Göttingen, Göttingen, Germany
| | | | - Rosa Amu
- Clinical Neurophysiology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Walter Paulus
- Clinical Neurophysiology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael A Nitsche
- Clinical Neurophysiology, Georg-August-Universität Göttingen, Göttingen, Germany.,Forschungsbereich Psychologie und Neurowissenschaften, Leibniz Research Centre for Working Environment and Human Factors (LG), Dortmund, Germany
| |
Collapse
|
27
|
Almomani F, Al-sheyab NA, Al-momani MO, Alqhazo M. Memory and potential correlates among children in Jordan. BMC Psychiatry 2018; 18:127. [PMID: 29751832 PMCID: PMC5948811 DOI: 10.1186/s12888-018-1727-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 05/04/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cognitive functioning hugely affects the performance of tasks of different complexity. Memory, one of the most important cognitive skills, allows children to practice and acquire necessary skills and knowledge and interact with the surrounding environment. Therefore, it is crucial to study the factors that influence the memory of children. The main purpose of his study was to investigate different variables related to memory in school aged children (5-9 years, N = 434). METHODS Parents of the participants provided information about child's daily behavior, child's school academic achievement, work and family income data and demographics. Memory skills in children were assessed by using the Leiter International Performance Scale -Revised. RESULTS The score of memory increased 2.53 points with upsurge in maternal occupation level, 3.08 points when the child ate breakfast and 4.51 points when the child daily slept nine hours and more. By contrast, increased family income and smoking by father resulted in decreased scores in memory. CONCLUSION Screening for and understanding of memory and relevant factors are vital for broad understanding of children's capabilities and weaknesses as well as for developing appropriate interventions.
Collapse
Affiliation(s)
- Fidaa Almomani
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Nihaya A. Al-sheyab
- 0000 0001 0097 5797grid.37553.37Faculty of Nursing, Jordan University of Science and Technology, Irbid, 22110 Jordan
| | - Murad O. Al-momani
- 0000 0004 1773 5396grid.56302.32Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mazin Alqhazo
- 0000 0001 0097 5797grid.37553.37Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110 Jordan
| |
Collapse
|
28
|
Pujol CN, Paasche C, Laprevote V, Trojak B, Vidailhet P, Bacon E, Lalanne L. Cognitive effects of labeled addictolytic medications. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:306-332. [PMID: 28919445 DOI: 10.1016/j.pnpbp.2017.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Alcohol, tobacco, and illegal drug usage is pervasive throughout the world, and abuse of these substances is a major contributor to the global disease burden. Many pharmacotherapies have been developed over the last 50years to target addictive disorders. While the efficacy of these pharmacotherapies is largely recognized, their cognitive impact is less known. However, all substance abuse disorders are known to promote cognitive disorders like executive dysfunction and memory impairment. These impairments are critical for the maintenance of addictive behaviors and impede cognitive behavioral therapies that are regularly administered in association with pharmacotherapies. It is also unknown if addictolytic medications have an impact on preexisting cognitive disorders, and if this impact is modulated by the indication of prescription, i.e. abstinence, reduction or substitution, or by the specific action of the medication. METHOD We reviewed the cognitive effects of labeled medications for tobacco addiction (varenicline, bupropion, nicotine patch and nicotine gums), alcohol addiction (naltrexone, nalmefene, baclofen, disulfiram, sodium oxybate, acamprosate), and opioid addiction (methadone, buprenorphine) in human studies. Studies were selected following MOOSE guidelines for systematic reviews of observational studies, using the keywords [Cognition] and [Cognitive disorders] and [treatment] for each medication. RESULTS 971 articles were screened and 77 studies met the inclusion criteria and were reported in this review (for alcohol abuse, n=21, for tobacco n=22, for opioid n=34. However, very few comparative clinical trials have explored the chronic effects of addictolytic medications on cognition in addictive behaviors, and there are no clinical trials on the cognitive impact of nalmefene in patients suffering from alcohol use disorders. DISCUSSION Although some medications seem to enhance cognition in patients suffering from cognitive disorders, others could promote cognitive impairments, and our work highlights a lack of literature on this subject. In conclusion, more comparative clinical trials are needed to better understand the cognitive impact of addictolytic medications.
Collapse
Affiliation(s)
- Camille Noélie Pujol
- Department of Neurosciences, Institute for Functional Genomics, INSERM U-661, CNRS UMR-5203, 34094 Montpellier, France
| | - Cecilia Paasche
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France
| | - Vincent Laprevote
- Centre Psychothérapique de Nancy, Laxou, F-54520, France.; EA 7298, INGRES, Université de Lorraine, Vandoeuvre-lès-, Nancy F-54000, France; CHU Nancy, Maison des Addictions, Nancy, F-54000, France.
| | - Benoit Trojak
- Department of Psychiatry and Addictology, University Hospital of Dijon, France; EA 4452, LPPM, University of Burgundy, France.
| | - Pierre Vidailhet
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France; Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France..
| | - Elisabeth Bacon
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - Laurence Lalanne
- INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France; Department of Psychiatry and Addictology, University Hospital of Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France..
| |
Collapse
|
29
|
Lugon MDMV, Batsikadze G, Fresnoza S, Grundey J, Kuo MF, Paulus W, Nakamura-Palacios EM, Nitsche MA. Mechanisms of Nicotinic Modulation of Glutamatergic Neuroplasticity in Humans. Cereb Cortex 2018; 27:544-553. [PMID: 26494801 DOI: 10.1093/cercor/bhv252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The impact of nicotine (NIC) on plasticity is thought to be primarily determined via calcium channel properties of nicotinic receptor subtypes, and glutamatergic plasticity is likewise calcium-dependent. Therefore glutamatergic plasticity is likely modulated by the impact of nicotinic receptor-dependent neuronal calcium influx. We tested this hypothesis for transcranial direct current stimulation (tDCS)-induced long-term potentiation-like plasticity, which is abolished by NIC in nonsmokers. To reduce calcium influx under NIC, we blocked N-methyl-d-aspartate (NMDA) receptors. We applied anodal tDCS combined with 15 mg NIC patches and the NMDA-receptor antagonist dextromethorphan (DMO) in 3 different doses (50, 100, and 150 mg) or placebo medication. Corticospinal excitability was monitored by single-pulse transcranial magnetic stimulation-induced motor-evoked potential amplitudes after plasticity induction. NIC abolished anodal tDCS-induced motor cortex excitability enhancement, which was restituted under medium dosage of DMO. Low-dosage DMO did not affect the impact of NIC on tDCS-induced plasticity and high-dosage DMO abolished plasticity. For DMO alone, the low dosage had no effect, but medium and high dosages abolished tDCS-induced plasticity. These results enhance our knowledge about the proposed calcium-dependent impact of NIC on plasticity in humans and might be relevant for the development of novel nicotinic treatments for cognitive dysfunction.
Collapse
Affiliation(s)
- Marcelo Di Marcello Valladão Lugon
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Program of Post-Graduation in Physiological Sciences, Federal University of Espírito Santo, Vitória-ES, Brazil.,Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen 37075, Germany
| | - Giorgi Batsikadze
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen 37075, Germany
| | - Shane Fresnoza
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen 37075, Germany
| | - Jessica Grundey
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen 37075, Germany
| | - Min-Fang Kuo
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen 37075, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen 37075, Germany
| | - Ester Miyuki Nakamura-Palacios
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Program of Post-Graduation in Physiological Sciences, Federal University of Espírito Santo, Vitória-ES, Brazil
| | - Michael A Nitsche
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen 37075, Germany.,Leibniz Research Centre for Working Environment and Human Resources, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
30
|
Valentine G, Sofuoglu M. Cognitive Effects of Nicotine: Recent Progress. Curr Neuropharmacol 2018; 16:403-414. [PMID: 29110618 PMCID: PMC6018192 DOI: 10.2174/1570159x15666171103152136] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/11/2017] [Accepted: 07/30/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Cigarette smoking is the main cause of preventable death in developed countries. While the direct positive behavioral reinforcing effect of nicotine has historically been considered the primary mechanism driving the development of TUD, accumulating contemporary research suggests that the cognitive-enhancing effects of nicotine may also significantly contribute to the initiation and maintenance of TUD, especially in individuals with pre-existing cognitive deficits. METHODS We provide a selective overview of recent advances in understanding nicotine's effects on cognitive function, a discussion of the role of cognitive function in vulnerability to TUD, followed by an overview of the neurobiological mechanisms underlying the cognitive effects of nicotine. RESULTS Preclinical models and human studies have demonstrated that nicotine has cognitiveenhancing effects. Attention, working memory, fine motor skills and episodic memory functions are particularly sensitive to nicotine's effects. Recent studies have demonstrated that the α4, β2, and α7 subunits of the nicotinic acetylcholine receptor (nAChR) participate in the cognitive-enhancing effects of nicotine. Imaging studies have been instrumental in identifying brain regions where nicotine is active, and research on the dynamics of large-scale networks after activation by, or withdrawal from, nicotine hold promise for improved understanding of the complex actions of nicotine on human cognition. CONCLUSION Because poor cognitive performance at baseline predicts relapse among smokers who are attempting to quit smoking, studies examining the potential efficacy of cognitive-enhancement as strategy for the treatment of TUD may lead to the development of more efficacious interventions.
Collapse
Affiliation(s)
| | - Mehmet Sofuoglu
- Address correspondence to this author at the Yale University School of Medicine, Department of Psychiatry, New Haven, CT 06510, USA; Tel: 1 203 737 4882; Fax: 1 203 737 3591; E-mail:
| |
Collapse
|
31
|
Grundey J, Amu R, Batsikadze G, Paulus W, Nitsche MA. Diverging effects of nicotine on motor learning performance: Improvement in deprived smokers and attenuation in non-smokers. Addict Behav 2017; 74:90-97. [PMID: 28600927 DOI: 10.1016/j.addbeh.2017.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 11/29/2022]
Abstract
Nicotine modulates cognition and neuroplasticity in smokers and non-smokers. A possible mechanism for its effect on learning and memory performance is its impact on long-term potentiation (LTP) and long-term depression (LTD). As neuroplasticity is closely connected to learning processes, we aimed to explore the effect of nicotine in healthy, young smokers and non-smokers on performance of the serial reaction time task (SRTT), a sequential motor learning paradigm. 20 nicotine-deprived smokers and 20 non-smokers participated in the study and were exposed to nicotine or placebo medication. Deprived smokers under placebo medication displayed reduced performance in terms of reaction time and error rates compared to the non-smoking group. After application of nicotine, performance in smokers improved while it deteriorated in non-smokers. These results indicate a restituting effect of nicotine in smokers in terms of cognitive parameters. This sheds further light on the proposed mechanism of nicotine on learning processes, which might be linked to the addictive component of nicotine, the probability of relapse and thus needs also be addressed in cessation treatment.
Collapse
Affiliation(s)
- J Grundey
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany.
| | - R Amu
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - G Batsikadze
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - W Paulus
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - M A Nitsche
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany; Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
32
|
Compromised neuroplasticity in cigarette smokers under nicotine withdrawal is restituted by the nicotinic α 4β 2-receptor partial agonist varenicline. Sci Rep 2017; 7:1387. [PMID: 28469204 PMCID: PMC5431184 DOI: 10.1038/s41598-017-01428-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/29/2017] [Indexed: 11/08/2022] Open
Abstract
Nicotine modulates neuroplasticity and improves cognitive functions in animals and humans. In the brain of smoking individuals, calcium-dependent plasticity induced by non-invasive brain stimulation methods such as transcranial direct current stimulation (tDCS) and paired associative stimulation (PAS) is impaired by nicotine withdrawal, but partially re-established after nicotine re-administration. In order to investigate the underlying mechanism further, we tested the impact of the α4β2-nicotinic receptor partial agonist varenicline on focal and non-focal plasticity in smokers during nicotine withdrawal, induced by PAS and tDCS, respectively. We administered low (0.3 mg) and high (1.0 mg) single doses of varenicline or placebo medication before stimulation over the left motor cortex of 20 healthy smokers under nicotine withdrawal. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation-induced motor evoked potential amplitudes for 36 hours after plasticity induction. Stimulation-induced plasticity was absent under placebo medication, whereas it was present in all conditions under high dose. Low dose restituted only tDCS-induced non-focal plasticity, producing no significant impact on focal plasticity. High dose varenicline also prolonged inhibitory plasticity. These results are comparable to the impact of nicotine on withdrawal-related impaired plasticity in smokers and suggest that α4β2 nicotinic receptors are relevantly involved in plasticity deficits and restitution in smokers.
Collapse
|
33
|
Hernaus D, Casales Santa MM, Offermann JS, Van Amelsvoort T. Noradrenaline transporter blockade increases fronto-parietal functional connectivity relevant for working memory. Eur Neuropsychopharmacol 2017; 27:399-410. [PMID: 28291572 DOI: 10.1016/j.euroneuro.2017.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/20/2017] [Accepted: 02/21/2017] [Indexed: 11/28/2022]
Abstract
Experimental animal work has demonstrated that dopamine and noradrenaline play an essential role in modulating prefrontal cortex-mediated networks underlying working memory performance. Studies of functional connectivity have been instrumental in extending such notions to humans but, so far, have almost exclusively focussed on pharmacological agents with a predominant dopaminergic mechanism of action. Here, we investigate the effect of a single dose of atomoxetine 60mg, a noradrenaline transporter inhibitor, on working memory performance and associated functional connectivity during an n-back task in 19 healthy male volunteers. Atomoxetine increased functional connectivity between right anterior insula and dorsolateral prefrontal cortex, precentral gyrus, posterior parietal cortex and precuneus during the high-working memory load condition of the n-back task. Increased atomoxetine-induced insula-dorsolateral prefrontal cortex functional connectivity during this condition correlated with decreased reaction time variability and was furthermore predicted by working memory capacity. These results show for the first time that noradrenaline transporter blockade-induced increases in cortical catecholamines accentuate fronto-parietal working memory-related network integrity. The observation of significant inter-subject variability in response to atomoxetine has implications for inverted-U frameworks of dopamine and noradrenaline function, which could be useful to predict drug effects in clinical disorders with variable treatment response.
Collapse
Affiliation(s)
- Dennis Hernaus
- University of Maryland School of Medicine, Department of Psychiatry; Maryland Psychiatric Research Center, MD, USA.
| | - Marta Ma Casales Santa
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| | - Jan Stefan Offermann
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| | - Thérèse Van Amelsvoort
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
34
|
Hayase T. Putative Epigenetic Involvement of the Endocannabinoid System in Anxiety- and Depression-Related Behaviors Caused by Nicotine as a Stressor. PLoS One 2016; 11:e0158950. [PMID: 27404492 PMCID: PMC4942073 DOI: 10.1371/journal.pone.0158950] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 06/26/2016] [Indexed: 01/01/2023] Open
Abstract
Like various stressors, the addictive use of nicotine (NC) is associated with emotional symptoms such as anxiety and depression, although the underlying mechanisms have not yet been fully elucidated due to the complicated involvement of target neurotransmitter systems. In the elicitation of these emotional symptoms, the fundamental involvement of epigenetic mechanisms such as histone acetylation has recently been suggested. Furthermore, among the interacting neurotransmitter systems implicated in the effects of NC and stressors, the endocannabinoid (ECB) system is considered to contribute indispensably to anxiety and depression. In the present study, the epigenetic involvement of histone acetylation induced by histone deacetylase (HDAC) inhibitors was investigated in anxiety- and depression-related behavioral alterations caused by NC and/or immobilization stress (IM). Moreover, based on the contributing roles of the ECB system, the interacting influence of ECB ligands on the effects of HDAC inhibitors was evaluated in order to examine epigenetic therapeutic interventions. Anxiety-like (elevated plus-maze test) and depression-like (forced swimming test) behaviors, which were observed in mice treated with repeated (4 days) NC (subcutaneous 0.8 mg/kg) and/or IM (10 min), were blocked by the HDAC inhibitors sodium butyrate (SB) and valproic acid (VA). The cannabinoid type 1 (CB1) agonist ACPA (arachidonylcyclopropylamide; AC) also antagonized these behaviors. Conversely, the CB1 antagonist SR 141716A (SR), which counteracted the effects of AC, attenuated the anxiolytic-like effects of the HDAC inhibitors commonly in the NC and/or IM groups. SR also attenuated the antidepressant-like effects of the HDAC inhibitors, most notably in the IM group. From these results, the combined involvement of histone acetylation and ECB system was shown in anxiety- and depression-related behaviors. In the NC treatment groups, the limited influence of SR against the HDAC inhibitor-induced antidepressant-like effects may reflect the characteristic involvement of histone acetylation within the NC-related neurotransmitter systems other than the ECB system.
Collapse
Affiliation(s)
- Tamaki Hayase
- Department of Legal Medicine, Kyoto University, Kyoto 606–8501, Japan
- * E-mail:
| |
Collapse
|