1
|
Calvo F, Dos Anjos-Garcia T, Paschoalin-Maurin T, Bazaglia-de-Sousa G, de Paula Rodrigues BM, Lobão-Soares B, Almada RC, Wotjak CT, Coimbra NC. Kappa-opioid receptor blockade in the inferior colliculus of prey threatened by pit vipers decreases anxiety and panic-like behaviour. Acta Neuropsychiatr 2024:1-13. [PMID: 39370934 DOI: 10.1017/neu.2024.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The dorsal midbrain comprises dorsal columns of the periaqueductal grey matter and corpora quadrigemina. These structures are rich in beta-endorphinergic and leu-enkephalinergic neurons and receive GABAergic inputs from substantia nigra pars reticulata. Although the inferior colliculus (IC) is mainly involved in the acoustic pathways, the electrical and chemical stimulation of central and pericentral nuclei of the IC elicits a vigorous defensive behaviour. The defensive immobility and escape elicited by IC activation is commonly related to panic-like emotional states. To investigate the role of κ-opioid receptor of the IC in the antiaversive effects of endogenous opioid receptor blockade in a dangerous situation, male Wistar rats were pretreated in the IC with the κ-opioid receptor-selective antagonist nor-binaltorphimine at different concentrations and submitted to the non-enriched polygonal arena for a snake panic test in the presence of a rattlesnake and, after 24 h, prey were resubmitted to the experimental context. The snakes elicited in prey a set of antipredatory behaviours, such as the anxiety-like responses of defensive attention and risk assessment, and the panic-like reactions of defensive immobility and either escape or active avoidance during the elaboration of unconditioned and conditioned fear-related responses. Pretreatment of the IC with microinjections of nor-binaltorphimine at higher concentrations significantly decreased the frequency and duration of both anxiety- and panic-attack-like behaviours. These findings suggest that κ-opioid receptor blockade in the IC causes anxiolytic- and panicolytic-like responses in threatening conditions, and that kappa-opioid receptor-selective antagonists can be a putative coadjutant treatment for panic syndrome treatment.
Collapse
Affiliation(s)
- Fabrício Calvo
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Tayllon Dos Anjos-Garcia
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Department Physiological Sciences, Institute for Biomedical Sciences, Alfenas Federal University (ICB-UNIFAL), Alfenas, Minas Gerais, Brazil
| | - Tatiana Paschoalin-Maurin
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Guilherme Bazaglia-de-Sousa
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Bruno Mangili de Paula Rodrigues
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Bruno Lobão-Soares
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal (RN), Brazil
| | - Rafael Carvalho Almada
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Science, Humanities and Languages, São Paulo State University (UNESP), Assis, São Paulo, Brazil
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Laboratory of Neuronal Plasticity, Munich, Germany
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals Gesellschaft mit Beschränkter Haftung & Compagnie Kommanditgesellschaft, Biberach an der Riß, Germany
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Neostriatum neuronal TRPV 1-signalling mediates striatal anandamide at high concentration facilitatory influence on neostriato-nigral dishinhibitory GABAergic connections. Brain Res Bull 2023; 192:128-141. [PMID: 36414159 DOI: 10.1016/j.brainresbull.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
RATIONALE Several lines of evidence have demonstrated that the cannabinoid type 1 receptor (CB1) is found in the caudate nucleus and putamen (CPu) in addition to the substantia nigra pars reticulata (SNpr). Here, we investigated the role of endocannabinoid neuromodulation of striato-nigral disinhibitory projections on the activity of nigro-collicular GABAergic pathways that control the expression of unconditioned fear-related behavioural responses elicited by microinjections of the GABAA receptor selective antagonist bicuculline (BIC) in the deep layers of the superior colliculus (dlSC). METHODS Fluorescent neural tract tracers were deposited in either CPu or in SNpr. Wistar rats received injection of vehicle, anandamide (AEA), either at low (50 pmol) or high (100 pmol) concentrations in CPu followed by bicuculline microinjections in dlSC. RESULTS Connections between CPu, the SNpr and dlSC were demonstrated. The GABAA receptor blockade in dlSC elicited panic-like behaviour. AEA at the lowest concentration caused a panicolytic-like effect that was antagonised by the CPu pretreatment with AM251 at 100 pmol. AEA at the highest concentration caused a panicogenic-like effect that was antagonised by the CPu pretreatment with 6-iodonordihydrocapsaicin (6-I-CPS) at different concentrations (0.6, 6, 60 nmol). CONCLUSION These findings suggest that while pre-synaptic CB1-signalling subserves an indirect facilitatory effect of AEA on striato-nigral pathways causing panicolytic-like responses through midbrain tectum enhanced activity, post-synaptic TRPV1-signalling in CPu mediates AEA direct activation of striato-nigral disinhibitory pathways resulting in increasing dlSC neurons activity and a panicogenic-like response. All these actions seem to depend on the interface with the nigro-collicular inhibitory GABAergic pathways.
Collapse
|
3
|
Almada RC, Falconi-Sobrinho LL, da Silva JA, Wotjak CT, Coimbra NC. Augmented anandamide signalling in the substantia nigra pars reticulata mediates panicolytic-like effects in mice confronted by Crotalus durissus terrificus pit vipers. Psychopharmacology (Berl) 2022; 239:2753-2769. [PMID: 35650304 DOI: 10.1007/s00213-022-06127-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 03/26/2022] [Indexed: 12/30/2022]
Abstract
RATIONALE The endocannabinoid modulation of fear and anxiety due to the on-demand synthesis and degradation is supported by a large body of research. Although it has been proposed that anandamide (AEA) in the substantia nigra pars reticulata (SNpr) seems to be important for the organisation of innate fear-related behaviours, a role for endogenous AEA has yet to be clarified. METHODS Mice were treated with the fatty acid amide hydrolase (FAAH) selective inhibitor URB597 at different concentrations (0.01, 0.1, 1 nmol/0.1 µL) in the SNpr and confronted by rattlesnakes (Crotalus durissus terrificus). The most effective dose of URB597 (1 nmol) was also preceded by microinjections of the CB1 receptor antagonist AM251 (0.1 nmol) into the SNpr, and mice were then confronted by the venomous snake. RESULTS URB597 (0.1 and 1 nmol) in the SNpr decreased the expression of defensive behaviours such as defensive attention, escape, and time spent inside the burrow of mice confronted by rattlesnakes. Moreover, pretreatment of SNpr with AM251 suppressed these antiaversive effects of URB597 in this midbrain structure. CONCLUSION Overall, these data clearly indicate that the panicolytic consequences of endogenous AEA enhancement in the SNpr are mediated by CB1 receptor signalling.
Collapse
Affiliation(s)
- Rafael C Almada
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Department of Biological Sciences, School of Science, Humanities and Languages, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Behavioural Neurosciences Institute (INeC), São Paulo, Ribeirão Preto, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana A da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Behavioural Neurosciences Institute (INeC), São Paulo, Ribeirão Preto, Brazil
| | - Carsten T Wotjak
- Laboratory of Neuronal Plasticity, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals Gesellschaft Mit Beschränkter Haftung & Compagnie Kommanditgesellschaft, Biberach an der Riß, Germany
| | - Norberto C Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,Behavioural Neurosciences Institute (INeC), São Paulo, Ribeirão Preto, Brazil. .,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil. .,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
4
|
Almada RC, Dos Anjos-Garcia T, da Silva JA, Pigatto GR, Wotjak CT, Coimbra NC. The modulation of striatonigral and nigrotectal pathways by CB1 signalling in the substantia nigra pars reticulata regulates panic elicited in mice by urutu-cruzeiro lancehead pit vipers. Behav Brain Res 2020; 401:112996. [PMID: 33171147 DOI: 10.1016/j.bbr.2020.112996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/08/2023]
Abstract
Cannabinoid receptor type 1 (CB1R) is widely distributed in the substantia nigra pars reticulata (SNpr). However, the role of CB1R at the SNpr level in threatening situations is poorly understood. We investigated the role of CB1R in the SNpr on the expression of fear responses in mice confronted with urutu-cruzeiro pit vipers. First, a bidirectional neurotracer was injected into the SNpr; then, immunostaining of the vesicular GABA transporter was conducted at the levels of the striatum (CPu) and deep layers of the superior colliculus (dlSC). In addition, CB1R immunostaining and GABA labelling were performed in the SNpr. Using a prey-versus-snake paradigm, mice were pretreated with the CB1R antagonist AM251 (100 pmol) and treated with the endocannabinoid anandamide (AEA, 5 pmol) in the SNpr, followed by bicuculline (40 ng) in the dlSC, and were then confronted with a snake. Bidirectional neural tract tracers associated with immunofluorescence showed the GABAergic striatonigral disinhibitory and nigrotectal inhibitory pathways. Furthermore, we showed that CB1R labelling was restricted to axonal fibres surrounding SNpr GABAergic cells. We also demonstrated a decrease in the defensive behaviours of mice treated with AEA in the SNpr, but this effect was blocked by pre-treatment with AM251 in this structure. Taken together, our results show that the panicolytic consequences of the AEA enhancement in the SNpr are signalled by CB1R, suggesting that CB1R localised in axon terminals of CPu GABAergic neurons in the SNpr modulates the activity of the nigrotectal GABAergic pathway during the expression of defensive behaviours in threatening situations.
Collapse
Affiliation(s)
- Rafael Carvalho Almada
- School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto, 14049-900, São Paulo, Brazil; Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Laboratory of Neuronal Plasticity, Kraepelinstrasse 2-10, 80804, Munich, Germany; Behavioural Neuroscience Institute (INeC), Av. do Café, 2450, Ribeirão Preto, 14050-220, São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Tayllon Dos Anjos-Garcia
- School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto, 14049-900, São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Juliana Almeida da Silva
- School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neuroscience Institute (INeC), Av. do Café, 2450, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - Glauce Regina Pigatto
- School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Laboratory of Neuronal Plasticity, Kraepelinstrasse 2-10, 80804, Munich, Germany
| | - Norberto Cysne Coimbra
- School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neuroscience Institute (INeC), Av. do Café, 2450, Ribeirão Preto, 14050-220, São Paulo, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), School of Medicine of Ribeirão Preto of the University of São Paulo, Ribeirão Preto, 14049-900, São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| |
Collapse
|
5
|
Rahman N, Mihalkovic A, Geary O, Haffey R, Hamilton J, Thanos PK. Chronic aerobic exercise: Autoradiographic assessment of GABA(a) and mu-opioid receptor binding in adult rats. Pharmacol Biochem Behav 2020; 196:172980. [PMID: 32593790 DOI: 10.1016/j.pbb.2020.172980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
Exercise programs have shown great potential for both the prevention and treatment of substance use disorder (SUD). As exercise has been shown to have potent effects on physical and psychological health, it is reasonable to examine the mechanism of how exercise can be used as an adjunct treatment for addiction. The present study examined the effects of chronic aerobic (treadmill) exercise on both GABA(a) and mu-opioid receptor levels in the brains of male and female rats. GABA(a) receptor binding, measured by [3H] Flunitrazepam, was increased in the cingulate cortex following exercise, but only in females. Mu-opioid receptor expression, measured by [3H] ([D-Ala2, N-MePhe4, Gly-ol]-enkephalin) (DAMGO), showed no effect of exercise while showing an effect of sex, with increased [3H] DAMGO binding in the brains of sedentary males compared to that of sedentary females. Our findings support the potential role for GABA(a) signaling in the cingulate cortex as part of the mechanism of action of aerobic exercise. These data, along with prior reports, aid our understanding of the neurochemical impact and mechanism of chronic aerobic exercise on neuropsychiatric disease, particularly regarding addiction.
Collapse
Affiliation(s)
- Nabeel Rahman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America
| | - Abrianna Mihalkovic
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America; Department of Psychology, University at Buffalo, Buffalo, NY 14203, United States of America
| | - Olivia Geary
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America
| | - Rylee Haffey
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America; Department of Psychology, University at Buffalo, Buffalo, NY 14203, United States of America
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States of America; Department of Psychology, University at Buffalo, Buffalo, NY 14203, United States of America.
| |
Collapse
|
6
|
Endocannabinoid neuromodulation in the neostriatum decreases the GABAergic striato-nigral disinhibitory function and increases the nigro-collicular inhibitory pathway activity. J Neural Transm (Vienna) 2020; 127:1199-1208. [DOI: 10.1007/s00702-020-02217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
7
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
8
|
Calvo F, Almada RC, Dos Anjos-Garcia T, Falconi-Sobrinho LL, Paschoalin-Maurin T, Bazaglia-de-Sousa G, Medeiros P, Silva JAD, Lobão-Soares B, Coimbra NC. Panicolytic-like effect of µ 1-opioid receptor blockade in the inferior colliculus of prey threatened by Crotalus durissus terrificus pit vipers. J Psychopharmacol 2019; 33:577-588. [PMID: 30663473 DOI: 10.1177/0269881118822078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The endogenous opioid peptide system has been implicated in the neural modulation of fear and anxiety organised by the dorsal midbrain. Furthermore, previous results indicate a fundamental role played by inferior colliculus (IC) opioid mechanisms during the expression of defensive behaviours, but the involvement of the IC µ1-opioid receptor in the modulation of anxiety- and panic attack-related behaviours remains unclear. Using a prey-versus-snake confrontation paradigm, we sought to investigate the effects of µ1-opioid receptor blockade in the IC on the defensive behaviour displayed by rats in a dangerous situation. METHODS Specific pathogen-free Wistar rats were treated with microinjection of the selective µ1-opioid receptor antagonist naloxonazine into the IC at different concentrations (1.0, 3.0 and 5.0 µg/0.2 µL) and then confronted with rattlesnakes ( Crotalus durissus terrificus). The defensive behavioural repertoire, such as defensive attention, flat back approach (FBA), startle, defensive immobility, escape or active avoidance, displayed by rats either during the confrontations with wild snakes or during re-exposure to the experimental context without the predator was analysed. RESULTS The blockade of µ1-opioid receptors in the IC decreased the expression of both anxiety-related behaviours (defensive attention, FBA) and panic attack-related responses (startle, defensive immobility and escape) during the confrontation with rattlesnakes. A significant decrease in defensive attention was also recorded during re-exposure of the prey to the experimental apparatus context without the predator. CONCLUSION Taken together, these results suggest that a decrease in µ1-opioid receptor signalling activity within the IC modulates anxiety- and panic attack-related behaviours in dangerous environments.
Collapse
Affiliation(s)
- Fabrício Calvo
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,2 Department of Pharmacology, São Lucas College, Porto Velho (RO), Brazil.,3 Aparício Carvalho Integrative College (FIMCA), Porto Velho (RO), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil
| | - Rafael Carvalho Almada
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil
| | - Tayllon Dos Anjos-Garcia
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,6 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Luiz Luciano Falconi-Sobrinho
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil.,6 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Tatiana Paschoalin-Maurin
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil
| | - Guilherme Bazaglia-de-Sousa
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil.,6 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Priscila Medeiros
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil
| | - Juliana Almeida da Silva
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil.,6 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Bruno Lobão-Soares
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil.,7 Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal (RN), Brazil
| | - Norberto Cysne Coimbra
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil.,6 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| |
Collapse
|
9
|
Brandão ML, Coimbra NC. Understanding the role of dopamine in conditioned and unconditioned fear. Rev Neurosci 2019; 30:325-337. [DOI: 10.1515/revneuro-2018-0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/10/2018] [Indexed: 12/14/2022]
Abstract
Abstract
Pharmacological and molecular imaging studies in anxiety disorders have primarily focused on the serotonin system. In the meantime, dopamine has been known as the neurotransmitter of reward for 60 years, particularly for its action in the nervous terminals of the mesocorticolimbic system. Interest in the mediation by dopamine of the well-known brain aversion system has grown recently, particularly given recent evidence obtained on the role of D2 dopamine receptors in unconditioned fear. However, it has been established that excitation of the mesocorticolimbic pathway, originating from dopaminergic (DA) neurons from the ventral tegmental area (VTA), is relevant for the development of anxiety. Among the forebrain regions innervated by this pathway, the amygdala is an essential component of the neural circuitry of conditioned fear. Current findings indicate that the dopamine D2 receptor-signaling pathway connecting the VTA to the basolateral amygdala modulates fear and anxiety, whereas neural circuits in the midbrain tectum underlie the expression of innate fear. The A13 nucleus of the zona incerta is proposed as the origin of these DA neurons projecting to caudal structures of the brain aversion system. In this article we review data obtained in studies showing that DA receptor-mediated mechanisms on ascending or descending DA pathways play opposing roles in fear/anxiety processes. Dopamine appears to mediate conditioned fear by acting at rostral levels of the brain and regulate unconditioned fear at the midbrain level.
Collapse
|
10
|
Calvo F, Lobão-Soares B, de Freitas RL, Paschoalin-Maurin T, Dos Anjos-Garcia T, Medeiros P, da Silva JA, Lovick TA, Coimbra NC. The endogenous opioid system modulates defensive behavior evoked by Crotalus durissus terrificus: Panicolytic-like effect of intracollicular non-selective opioid receptors blockade. J Psychopharmacol 2019; 33:51-61. [PMID: 30407114 DOI: 10.1177/0269881118806301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND There is a controversy regarding the key role played by opioid peptide neurotransmission in the modulation of panic-attack-related responses. AIMS Using a prey versus rattlesnakes paradigm, the present work investigated the involvement of the endogenous opioid peptide-mediated system of the inferior colliculus in the modulation of panic attack-related responses. METHODS Wistar rats were pretreated with intracollicular administration of either physiological saline or naloxone at different concentrations and confronted with rattlesnakes ( Crotalus durissus terrificus). The prey versus rattlesnake confrontations were performed in a polygonal arena for snakes. The defensive behaviors displayed by prey (defensive attention, defensive immobility, escape response, flat back approach and startle) were recorded twice: firstly, over a period of 15 min the presence of the predator and a re-exposure was performed 24 h after the confrontation, when animals were exposed to the experimental enclosure without the rattlesnake. RESULTS The intramesencephalic non-specific blockade of opioid receptors with microinjections of naloxone at higher doses decreased both anxiety- (defensive attention and flat back approach) and panic attack-like (defensive immobility and escape) behaviors, evoked in the presence of rattlesnakes and increased non-defensive responses. During the exposure to the experimental context, there was a decrease in duration of defensive attention. CONCLUSIONS These findings suggest a panicolytic-like effect of endogenous opioid receptors antagonism in the inferior colliculus on innate (panic attack) and conditioned (anticipatory anxiety) fear in rats threatened by rattlesnakes.
Collapse
Affiliation(s)
- Fabrício Calvo
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,3 Department of Pharmacology, São Lucas College, Porto Velho (RO), Brazil.,4 Aparício Carvalho Integrative College, Porto Velho (RO), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Bruno Lobão-Soares
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,5 Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal (RN), Brazil.,6 Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Renato Leonardo de Freitas
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,7 Laboratory of Neurobiology of Pain and Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto (SP), Brazil.,10 Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL-MG), Alfenas (MG), Brazil
| | - Tatiana Paschoalin-Maurin
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,6 Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Tayllon Dos Anjos-Garcia
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Priscila Medeiros
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Juliana Almeida da Silva
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Thelma Anderson Lovick
- 2 School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.,6 Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto (SP), Brazil
| | - Norberto Cysne Coimbra
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,6 Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto (SP), Brazil.,7 Laboratory of Neurobiology of Pain and Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto (SP), Brazil.,8 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| |
Collapse
|
11
|
Zhao B, Hu T. JTC-801 inhibits the proliferation and metastasis of the Hep G2 hepatoblastoma cell line by regulating the phosphatidylinositol 3-kinase/protein kinase B signalling pathway. Oncol Lett 2018; 17:1939-1945. [PMID: 30675258 DOI: 10.3892/ol.2018.9780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
The increased worldwide mortality rate due to liver cancer may be attributed to the aggressive nature of the disease. Signal transduction through G-protein-coupled receptors (GPCRs) can affect a number of aspects of cancer biology, including invasion, migration and vascular remodelling. JTC-801, a novel GPCR antagonist, has demonstrated promising anticancer effects in adenocarcinoma and osteosarcoma cells. In the present study, the effect of JTC-801 on the proliferation and migration of hepatoblastoma Hep G2 cells was investigated. The Cell Counting Kit-8 assay revealed that JTC-801 markedly suppressed the growth of the Hep G2 cells. Additionally, JTC-801 significantly inhibited cell invasion and migration in a Transwell assay. Furthermore, the expression of anti-apoptotic protein B-cell lymphoma 2 decreased and the expression of the pro-apoptotic proteins active caspase-3 and apoptosis regulator BAX increased in the Hep G2 cells following JTC-801 treatment. Additionally, JTC-801 suppressed the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling pathway in the Hep G2 cells. Therefore, the present study revealed that JTC-801 can induce the apoptosis of Hep G2 cells by regulating the PI3K/AKT signalling pathway, which suggests that JTC-801 may be a potential novel drug target for clinical liver cancer treatment.
Collapse
Affiliation(s)
- Bufei Zhao
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Beihua University, Jilin 132001, P.R. China
| | - Ting Hu
- Department of Oncology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
12
|
Blockade of synaptic activity in the neostriatum and activation of striatal efferent pathways produce opposite effects on panic attack-like defensive behaviours evoked by GABAergic disinhibition in the deep layers of the superior colliculus. Physiol Behav 2018; 196:104-111. [DOI: 10.1016/j.physbeh.2018.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
|
13
|
Paschoalin-Maurin T, dos Anjos-Garcia T, Falconi-Sobrinho LL, de Freitas RL, Coimbra JPC, Laure CJ, Coimbra NC. The Rodent-versus-wild Snake Paradigm as a Model for Studying Anxiety- and Panic-like Behaviors: Face, Construct and Predictive Validities. Neuroscience 2018; 369:336-349. [DOI: 10.1016/j.neuroscience.2017.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022]
|