1
|
Smail MA, Lenz KM. Developmental functions of microglia: Impact of psychosocial and physiological early life stress. Neuropharmacology 2024; 258:110084. [PMID: 39025401 PMCID: PMC12051134 DOI: 10.1016/j.neuropharm.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Microglia play numerous important roles in brain development. From early embryonic stages through adolescence, these immune cells influence neuronal genesis and maturation, guide connectivity, and shape brain circuits. They also interact with other glial cells and structures, influencing the brain's supportive microenvironment. While this central role makes microglia essential, it means that early life perturbations to microglia can have widespread effects on brain development, potentially resulting in long-lasting behavioral impairments. Here, we will focus on the effects of early life psychosocial versus physiological stressors in rodent models. Psychosocial stress refers to perceived threats that lead to stress axes activation, including prenatal stress, or chronic postnatal stress, including maternal separation and resource scarcity. Physiological stress refers to physical threats, including maternal immune activation, postnatal infection, and traumatic brain injury. Differing sources of early life stress have varied impacts on microglia, and these effects are moderated by factors such as developmental age, brain region, and sex. Overall, these stressors appear to either 1) upregulate basal microglia numbers and activity throughout the lifespan, while possibly blunting their responsivity to subsequent stressors, or 2) shift the developmental curve of microglia, resulting in differential timing and function, impacting the critical periods they govern. Either could contribute to behavioral dysfunctions that occur after the resolution of early life stress. Exploring how different stressors impact microglia, as well as how multiple stressors interact to alter microglia's developmental functions, could deepen our understanding of how early life stress changes the brain's developmental trajectory. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Psychology, Ohio State University, Columbus, OH, USA.
| | - Kathryn M Lenz
- Department of Psychology, Ohio State University, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Pavlova IV, Broshevitskaya ND, Potekhina AA, Shvadchenko AM. The Effect of Chronic Overcrowding on Social Behavior and Expression of Neuroinflammation-Associated Genes in Rats. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1582-1594. [PMID: 39418517 DOI: 10.1134/s0006297924090050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 10/19/2024]
Abstract
The effect of chronic overcrowding on the social behavior of adult male Wistar rats was studied. From postnatal day 30 (P30) to P180, the rats lived under standard (STND) or overcrowded (CRWD) conditions. Starting from P100, rat behavior was studied in the social preference and tube dominance tests, and aggressive behavior was investigated in the resident-intruder test. After decapitation of rats on P180, amygdala, dorsal hippocampus, ventromedial hypothalamus, and medial prefrontal cortex were collected and analyzed for expression of the IL-1β, TNF, TGF-β1, and IL-6 mRNAs by quantitative polymerase chain reaction. Compared to the STND group, rats from the CRWD group demonstrated shorter interaction time with a social object in the social preference test. They also had more wins in the tube test and initiated more attacks in the resident-intruder test. Expression of the IL1β gene in the hippocampus and medial prefrontal cortex and of the TGFβ1 gene in the hippocampus, amygdala, and prefrontal cortex was increased in the CRWD group. The stress induced by overcrowding increased social dominance and aggressiveness and decreased social motivation in rats. The changes in the social behavior of CRWD rats were accompanied by upregulation of expression of genes for the proinflammatory cytokine IL-1β and the anti-inflammatory cytokine TGF-β1 in a number of brain structures, which can be considered as manifestations of neuroinflammation and compensatory processes, respectively.
Collapse
Affiliation(s)
- Irina V Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| | - Nadezhda D Broshevitskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Anastasiya A Potekhina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Anastasiya M Shvadchenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| |
Collapse
|
3
|
Qin Z, He X, Gao Q, Li Y, Zhang Y, Wang H, Qin N, Wang C, Huang B, Shi Y, Liu C, Wang S, Zhang H, Li Y, Shi H, Tian X, Song L. Postweaning sodium citrate exposure induces long-lasting and sex-dependent effects on social behaviours in mice. Pharmacol Biochem Behav 2024; 242:173807. [PMID: 38925482 DOI: 10.1016/j.pbb.2024.173807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Postweaning is a pivotal period for brain development and individual growth. As an important chemical used in medicines, foods and beverages, sodium citrate (SC) is commonly available. Although some effects of SC exposure on individual physiology have been demonstrated, the potential long-lasting effects of postweaning dietary SC exposure on social behaviours are still elusive. METHODS Both postweaning male and female C57BL/6 mice were exposed to SC through drinking water for a total of 3 weeks. A series of behavioural tests, including social dominance test (SDT), social interaction test (SIT), bedding preference test (BPT) and sexual preference test (SPT), were performed in adolescence and adulthood. After these tests, serum oxytocin (OT) levels and gut microbiota were detected. RESULTS The behavioural results revealed that postweaning SC exposure decreased the social dominance of male mice in adulthood and female mice in both adolescence and adulthood. SC exposure also reduced the sexual preference rates of both males and females, while it had no effect on social interaction behaviour. ELISA results indicated that SC exposure decreased the serum OT levels of females but not males. 16S rRNA sequencing analysis revealed a significant difference in β-diversity after SC exposure in both males and females. The correlation coefficient indicated the correlation between social behaviours, OT levels and dominant genera of gut microbiota. CONCLUSION Our findings suggest that postweaning SC exposure may have enduring and sex-dependent effects on social behaviours, which may be correlated with altered serum OT levels and gut microbiota composition.
Collapse
Affiliation(s)
- Zihan Qin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Xinyue He
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Qiang Gao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Yuxin Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yue Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Huajian Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Na Qin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Chen Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Congcong Liu
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Huifeng Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Youdong Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoyu Tian
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, China.
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China.
| |
Collapse
|
4
|
Parvin Z, Jaafari Suha A, Afarinesh MR, Hosseinmardi N, Janahmadi M, Behzadi G. Social hierarchy differentially influences the anxiety-like behaviors and dendritic spine density in prefrontal cortex and limbic areas in male rats. Behav Brain Res 2024; 469:115043. [PMID: 38729219 DOI: 10.1016/j.bbr.2024.115043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Social hierarchy is a fundamental feature of social organization that can influence brain and emotional processing regarding social ranks. Several areas, including the medial prefrontal cortex (mPFC), the hippocampus, and the basolateral nucleus of the amygdala (BLA), are recognized to be involved in the regulation of emotional processing. However, its delicate structural correlates in brain regions are poorly understood. To address this issue, social hierarchy in home-caged sibling Wistar rats (three male rats/cage) was determined by employing a social confrontation tube test (postnatal weeks 9-12). Then, locomotor activity and anxiety-like behaviors were evaluated using an open-field test (OFT) and elevated plus-maze (EPM) at 13 weeks of age. The rapid Golgi impregnation method was conducted to quantify the spine density of the first secondary branch of the primary dendrite in 20 µm length. The results indicated that dominant rats had significantly higher anxiety-like behaviors compared to subordinates, as was evident by lower open-arm entries and time spent in the EPM and lower entries and time spent in the center of OFT. The spine density analysis revealed a significantly higher number of spines in subordinates compared to the dominant rats in dmPFC pyramidal neurons and the apical and basal dendrites of hippocampal CA1 pyramidal neurons. However, the spine density of pyramidal-like neurons in the BLA was higher in dominant rats. Our findings suggest that dominant social rank is associated with higher anxiety and differential density of the dendritic spine in the prefrontal cortex and limbic regions of the brain in male rats.
Collapse
Affiliation(s)
- Zeinab Parvin
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Jaafari Suha
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Shi MM, Xu XF, Sun QM, Luo M, Liu DD, Guo DM, Chen L, Zhong XL, Xu Y, Cao WY. Betaine prevents cognitive dysfunction by suppressing hippocampal microglial activation in chronic social isolated male mice. Phytother Res 2023; 37:4755-4770. [PMID: 37846157 DOI: 10.1002/ptr.7944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 10/18/2023]
Abstract
Chronic social isolation (SI) stress, which became more prevalent during the COVID-19 pandemic, contributes to abnormal behavior, including mood changes and cognitive impairment. Known as a functional nutrient, betaine has potent antioxidant and anti-inflammatory properties in vivo. However, whether betaine can alleviate the abnormal behavior induced by chronic SI in mice remains unknown. In this study, we investigated the efficacy of betaine in the treatment of behavioral changes and its underlying mechanism. Three-week-old male mice were randomly housed for 8 weeks in either group housing (GH) or SI. The animals were divided into normal saline-treated GH, normal saline-treated SI, and betaine-treated SI groups in the sixth week. The cognitive and depression-like behavior was determined in the eighth week. We found that long-term betaine administration improved cognitive behavior in SI mice but failed to prevent depression-like behavior. Moreover, long-term betaine administration inhibited hippocampal microglia over-activation and polarized microglia toward the M2 phenotype, which effectively inhibited the expression of inflammatory factors in SI mice. Finally, the protective effect of betaine treatment in SI mice might not be due to altered activity of the hypothalamic-pituitary-adrenal axis. Collectively, our findings reveal that betaine can improve SI-induced cognitive impairment, thus providing an alternative natural source for the prevention of memory loss caused by SI or loneliness.
Collapse
Affiliation(s)
- Meng Meng Shi
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao Fan Xu
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qiu Min Sun
- Department of Nursing, Yiyang Medical College, Yiyang, Hunan, China
| | - Mingying Luo
- Department of Anatomy and Histology and Embryology, Kunming Medical University, Kunming, Yunnan, China
| | - Dan Dan Liu
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Dong Min Guo
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ling Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Xiao Lin Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wen Yu Cao
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
6
|
Rebik A, Broshevitskaya N, Kuzhuget S, Aleksandrov P, Abbasova K, Zaichenko M, Midzyanovskaya I. Audiogenic Seizures and Social Deficits: No Aggravation Found in Krushinsky-Molodkina Rats. Biomedicines 2023; 11:2566. [PMID: 37761007 PMCID: PMC10526393 DOI: 10.3390/biomedicines11092566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Epilepsy or epileptic syndromes affect more than 70 million people, often comorbid with autism spectrum disorders (ASD). Seizures are concerned as a factor for social regression in ASD. A stepwise experimental approach to this problem requires an animal model to provoke seizures and monitor subsequent behavior. We used rats of the Krushinsky-Molodkina (KM) strain as a validated inbred genetic model for human temporal lobe epilepsy, with recently described social deficiency and hypolocomotion. Generalized tonic-clonic seizures in KM rats are sound-triggered, thus being controlled events in drug-naïve animals. We studied whether seizure experience would aggravate contact deficits in these animals. Locomotor and contact parameters were registered in "the elevated plus maze", "socially enriched open field", and "social novelty/social preference tests" before and after sound-provoked seizures. The triple seizure provocations minimally affected the contact behavior. The lack of social drive in KM rats was not accompanied by a submissive phenotype, as tested in "the tube dominance test", but featured with a poor contact repertoire. Here, we confirmed our previous findings on social deficits in KM rats. The contact deficiency was dissociated from hypolocomotion and anxiety and did not correlate with seizure experience. It was established that experience of rare, generalized tonic-clonic convulsions did not lead to an impending regress in contact motivation, as seen in an animal model of genetic epilepsy and comorbid social deficiency. One of the oldest animal models for epilepsy has a translational potential to study mechanisms of social behavioral deficits in future neurophysiological and pharmacological research.
Collapse
Affiliation(s)
- Anastasiya Rebik
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (A.R.); (M.Z.)
| | - Nadezda Broshevitskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (A.R.); (M.Z.)
| | - Syldys Kuzhuget
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia (K.A.)
| | - Pavel Aleksandrov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (A.R.); (M.Z.)
| | - Kenul Abbasova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia (K.A.)
| | - Maria Zaichenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (A.R.); (M.Z.)
| | - Inna Midzyanovskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (A.R.); (M.Z.)
| |
Collapse
|
7
|
Xue B, Ma YY, Zhu JY, Mu Y, Li YH, Shen F, Liang J, Zhang JJ. Chronic social comparison elicits depression- and anxiety-like behaviors and alterations in brain-derived neurotrophic factor expression in male rats. Anim Cogn 2023; 26:1505-1519. [PMID: 37302101 DOI: 10.1007/s10071-023-01798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
Social comparison is a fundamental human characteristic; however, long-term social comparison may induce psychological stress and can lead to depression and anxiety. Recent studies have shown that nonhuman primates compare themselves with others; however, no studies have investigated whether social comparisons exist among rodents. In the present study, we established a rat model of social comparison. This model was subsequently used to examine the effects of the differential environment of a partner on depression- and anxiety-like behaviors in male rats, as well as to assess the changes in serum, medial prefrontal cortex (mPFC), and dorsal hippocampus brain-derived neurotrophic factor (BDNF) levels induced by long-term social comparison. Compared to rats whose partners were exposed to the same environment, rats whose partners were exposed to two combined enriched environmental stimuli for 14 days showed significantly decreased social novelty preference and sucrose consumption. No anxiety-like behaviors were observed. Rats whose partners were exposed to one enriched environment for 31 days showed significantly increased immobility time in the forced swimming test, and significantly decreased time spent in the center area in the open-field test. Further, rats whose partners were exposed to one enriched environment for 31 days showed lower BDNF levels in the mPFC and dorsal hippocampus, but not following partner exposure for 14 days. These results suggest that social comparisons exist in rats and can induce psychosocial stress and other negative affect. This model will not only provide the possibility to reveal the neurobiological basis of the emotional impact of social comparison, but could also be used to confirm the conservative evolutionary characteristics of social comparison as a behavioral attribute.
Collapse
Affiliation(s)
- Bing Xue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yin-Yan Ma
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jie-Ying Zhu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Mu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Hui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Bozkurt S, Lannin NA, Mychasiuk R, Semple BD. Environmental modifications to rehabilitate social behavior deficits after acquired brain injury: What is the evidence? Neurosci Biobehav Rev 2023; 152:105278. [PMID: 37295762 DOI: 10.1016/j.neubiorev.2023.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/22/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
Social behavior deficits are a common, debilitating consequence of traumatic brain injury and stroke, particularly when sustained during childhood. Numerous factors influence the manifestation of social problems after acquired brain injuries, raising the question of whether environmental manipulations can minimize or prevent such deficits. Here, we examine both clinical and preclinical evidence addressing this question, with a particular focus on environmental enrichment paradigms and differing housing conditions. We aimed to understand whether environmental manipulations can ameliorate injury-induced social behavior deficits. In summary, promising data from experimental models supports a beneficial role of environmental enrichment on social behavior. However, limited studies have considered social outcomes in the chronic setting, and few studies have addressed the social context specifically as an important component of the post-injury environment. Clinically, limited high-caliber evidence supports the use of specific interventions for social deficits after acquired brain injuries. An improved understanding of how the post-injury environment interacts with the injured brain, particularly during development, is needed to validate the implementation of rehabilitative interventions that involve manipulating an individuals' environment.
Collapse
Affiliation(s)
- Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Natasha A Lannin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia; School of Allied Health (Occupational Therapy), La Trobe University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
9
|
Jing P, Shan Q. Exogenous oxytocin microinjection into the nucleus accumbens shell attenuates social dominance in group-housed male mice. Physiol Behav 2023:114253. [PMID: 37270150 DOI: 10.1016/j.physbeh.2023.114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
The nucleus accumbens (NAc), a part of the brain's limbic system, is involved in a variety of brain functions, including reward motivation and social hierarchy. Here, the study investigated the effect of intra-NAc different subregions microinjections of oxytocin on social hierarchy regulation. The hierarchical ranking of group-housed male mice in laboratory settings was determined through the tube test, and a new reliable and robust behavior assay-the mate competition test-was proposed. The mice were randomly divided into two groups, and the bilateral guide cannula was implanted into the shell and core of the NAc, respectively. After social dominance stabilized, changes in social hierarchy were determined through the tube test, warm spot, and mate competition tests. Intra-NAc shell microinjections of oxytocin (0.5 μg/site), but not the core (0.5 μg/site), significantly reduced the social dominance of mice. In addition, oxytocin microinjection into both the shell and core of the NAc significantly increased locomotor ability without affecting anxious behaviors. These findings are tremendously important in understanding the functions of the NAc subregions for social dominance and are more likely to indicate the potential of an oxytocin therapeutic strategy for psychiatric disorders and social impairments.
Collapse
Affiliation(s)
- Pengbo Jing
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China.
| |
Collapse
|
10
|
Wang J, Sun R, Xia L, Zhu X, Zhang Q, Ye Y. Potential Therapeutic Effects of NAMPT-Mediated NAD Biosynthesis in Depression In Vivo. Brain Sci 2022; 12:brainsci12121699. [PMID: 36552159 PMCID: PMC9775136 DOI: 10.3390/brainsci12121699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate the potential therapeutic effects of nicotinamide phosphoribosyltransferase (NAMPT)-mediated adenine dinucleotide (NAD) biosynthesis in depression models in vivo. Namptflox/flox mice were used to evaluate the role of NAMPT in depression. NAMPT and NAD levels in the prefrontal cortex (PFC) were measured, and depression-associated behavior, cognitive function, and social interaction were evaluated. The expression levels of BDNF, pCREB, CREB, monoamine neurotransmitters, and corticosterone (CORT) were also detected in the PFC. The contents of NAMPT and NAD decreased in the PFC in Namptflox/flox mice. Namptflox/flox mice showed depression-like behaviors, cognitive function deterioration, decreased social ability, and decreased dominance. Meanwhile, there were decreased expression levels of the pCREB/CREB ratio, but not BDNF, in the PFC. Levels of DA, 5-HT, and NE were decreased, and CORT was activated in the PFC of Namptflox/flox mice. Additionally, the role of NAMPT-NAD was examined in rats treated with nicotinamide riboside (NR) after being exposed to chronic unexpected mild stress (CUMS). NR reversed the decreased NAMPT expression in the PFC and HIP, and the NAD content in the PFC, but not HIP in rats with CUMS-induced depression. NR also improved depressive- and anxiolytic-like behaviors, locomotor activity, and cognitive function. BDNF expression and the pCREB/CREB ratio were significantly increased in both the PFC and HIP after NR treatment. The activation of CORT and decreased content of DA were reversed after NR treatment in the PFC. There was no difference in the 5-HT content among groups in both the PFC and HIP. Taken together, NAD synthesis induced by NAMPT could be associated with depression-like behaviors in mice, and the elevated NAD level by NR improved depression in rats.
Collapse
Affiliation(s)
- Jue Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Runxuan Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Linhan Xia
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Xinying Zhu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, China
| | - Qi Zhang
- College of Medicine, Jiaxing University, Jiaxing 314001, China
- Correspondence: (Q.Z.); (Y.Y.)
| | - Yilu Ye
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
- Correspondence: (Q.Z.); (Y.Y.)
| |
Collapse
|
11
|
|
12
|
Environmental enrichment ameliorates high-fat diet induced olfactory deficit and decrease of parvalbumin neurons in the olfactory bulb in mice. Brain Res Bull 2021; 179:13-24. [PMID: 34848271 DOI: 10.1016/j.brainresbull.2021.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022]
Abstract
Overweight induced by high-fat diet (HFD) represents one of the major health concerns in modern societies, which can cause lasting peripheral and central metabolic disorders in all age groups. Specifically, childhood obesity could lead to life-long impact on brain development and functioning. On the other hand, environmental enrichment (EE) has been demonstrated to be beneficial for learning and memory. Here, we explored the impact of high-fat diet on olfaction and organization of olfactory bulb cells in adolescent mice, and the effect of EE intervention thereon. Puberty mice (3-week-old) fed with HFD for 10 weeks exhibited poorer odor sensitivity and olfactory memory relative to controls consuming standard chows. The behavioral deficits were rescued in the HFD group with EE intervention. Neuroanatomically, parvalbumin (PV) interneurons in the olfactory bulb (OB) were reduced in the HFD-fed animals relative to control, while EE intervention also normalized this alteration. In contrast, cells expressing calbindin (CB), doublecortin (DCX) in the OB were not altered. Our findings suggest that PV interneurons may play a crucial role in mediating the HFD-induced olfactory deficit in adolescent mice, and can also serve a protective effect of EE against the functional deficit.
Collapse
|
13
|
Borba LA, Broseghini LDR, Manosso LM, de Moura AB, Botelho MEM, Arent CO, Behenck JP, Hilsendeger A, Kammer LH, Valvassori SS, Quevedo J, Réus GZ. Environmental enrichment improves lifelong persistent behavioral and epigenetic changes induced by early-life stress. J Psychiatr Res 2021; 138:107-116. [PMID: 33848966 PMCID: PMC10494235 DOI: 10.1016/j.jpsychires.2021.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023]
Abstract
This study aimed to evaluate the effects of environmental enrichment (EE) in Wistar rats subjected to maternal deprivation (MD). MD was performed in the first post-natal days (PND) ten for 3 h/day. The groups were: control; deprived without EE; and deprived with EE. The EE was applied for 3 h/day. Forced swimming test (FST) and open field test were performed, and histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activities in the prefrontal cortex (PFC) and hippocampus were evaluated on 31, 41, and 61 PND. MD altered spontaneous locomotor activity and immobility time in FST, but the effects were sex- and developmental period dependent. In deprived females at PND 31, 41, and 61, HDAC and DNMT increased in the PFC and hippocampus. In females exposed to EE for 20 days, there was a decrease of HDAC in the hippocampus and DNMT in the PFC and hippocampus. Exposure of females to EE for 40 days can reverse HDAC and DNMT increase in all brain areas. In deprived males at PND 31, 41, and 61, HDAC and DNMT increased in the hippocampus, and in the group exposed to EE for 40 days, there was a decrease in hippocampal activity. In PFC of male deprived rats at PND 61 and EE for 40 days, there was a reduction of HDAC and DNMT. MD induced lifelong persistent behavioral and epigenetic changes, and such effects were more evident in female than male rats. EE can be considered an essential non-pharmacological strategy to treat long-term trauma-induced early life changes.
Collapse
Affiliation(s)
- Laura A Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Lia D R Broseghini
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Airam B de Moura
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Maria Eduarda M Botelho
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Camila O Arent
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - João Paulo Behenck
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Amanda Hilsendeger
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Letícia H Kammer
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil.
| |
Collapse
|
14
|
de França Malheiros MAS, Castelo-Branco R, de Medeiros PHS, de Lima Marinho PE, da Silva Rodrigues Meurer Y, Barbosa FF. Conspecific Presence Improves Episodic-Like Memory in Rats. Front Behav Neurosci 2021; 14:572150. [PMID: 33519391 PMCID: PMC7844209 DOI: 10.3389/fnbeh.2020.572150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
A number of studies have provided evidence that animals, including rats, remember past episodes. However, few experiments have addressed episodic-like memory from a social perspective. In the present study, we evaluated Wistar rats in the WWWhen/ELM task as single setups and in dyads, applying a long retention interval. We also investigated behaviors that could subserve the emergence of this type of memory. We found that only rats tested in the social setting were able to recollect an integrated episodic-like memory that lasted 24 h. Additionally, rats in dyads presented higher levels of exploration during the task. When exposed to the testing environment, the dyads exhibited affiliative behavior toward each other and presented fewer anxiety-like responses. Our findings indicate that the presence of a conspecific could act as a facilitating factor in memory evaluations based on spontaneous exploration of objects and provide empirical support for applying more naturalistic settings in investigations of episodic-like memory in rats.
Collapse
Affiliation(s)
- Maria Augustta Sobral de França Malheiros
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Rochele Castelo-Branco
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Paulo Henrique Santos de Medeiros
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Pedro Emmílio de Lima Marinho
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Ywlliane da Silva Rodrigues Meurer
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Flávio Freitas Barbosa
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
15
|
Mesa-Gresa P, Ramos-Campos M, Redolat R. Behavioral impact of experience based on environmental enrichment: Influence of age and duration of exposure in male NMRI mice. Dev Psychobiol 2021; 63:1071-1081. [PMID: 33452673 DOI: 10.1002/dev.22093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 01/22/2023]
Abstract
Prior studies have suggested that short periods of exposure to environmental enrichment (EE) in rodents induce physiological and behavioral effects. In the present study, our aim was to evaluate if the impact of experiences based on EE could be modulated by the age of onset and the developmental period of exposure. NMRI male mice (n = 64) were exposed to EE or standard environment (SE) and behavioral changes (anxiety, exploration, memory and social interaction) were evaluated. Groups compared were: (a) SE: exposure to SE on post-natal day (PND) 28 and lasting 6 months; (b) EE-6: exposure to EE on PND 28 and lasting 6 months; (c) EE-4: exposure to EE on PND 91 and lasting 4 months; (d) EE-2: exposure to EE on PND 154 and lasting 2 months. Results indicated that in the hole-board task the decrease in exploratory behavior reached significance when EE was initiated at adolescence whereas anxiolytic effects in the elevated plus-maze tend to diminish after a longer period of EE. No significant effects of EE on aggressive behavior or novel object recognition were obtained. Taking these results into account, further studies are needed in order to determine the possible modulating role of age and duration of exposure to enriched environments on behavior. Results obtained could explain some discrepancies reported in previous studies, providing new evidence that could contribute to the design of future research related to the benefits of complex and enriched environments.
Collapse
Affiliation(s)
- Patricia Mesa-Gresa
- Departamento Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Marta Ramos-Campos
- Departamento Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Rosa Redolat
- Departamento Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| |
Collapse
|
16
|
Duan Q, Huang FL, Li SJ, Chen KZ, Gong L, Qi J, Yang ZH, Yang TL, Li F, Li CQ. BET proteins inhibitor JQ-1 impaired the extinction of remote auditory fear memory: An effect mediated by insulin like growth factor 2. Neuropharmacology 2020; 177:108255. [DOI: 10.1016/j.neuropharm.2020.108255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/10/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
|
17
|
Niu L, Luo SS, Xu Y, Wang Z, Luo D, Yang H, Li W, He J, Zhong XL, Liu ZH, Zeng JY, Cao WY, Wan W. The critical role of the hippocampal NLRP3 inflammasome in social isolation-induced cognitive impairment in male mice. Neurobiol Learn Mem 2020; 175:107301. [PMID: 32882398 DOI: 10.1016/j.nlm.2020.107301] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
Early life stress exerts detrimental effects on cognitive function, but the mechanism by which this occurs is unknown. The NLRP3 inflammasome-mediated inflammatory response has emerged as a prominent contributor to cognitive impairment induced by chronic stress. In the present study, we showed that 8-week chronic social isolation (SI) led to cognitive impairment in mice, remarkably increasing expression of the hippocampal NLRP3 inflammasome. Furthermore, the 8-week SI procedure significantly increased the levels of hippocampal IL-1β and IL-18 without significant alteration of the level of serum IL-1β, suggesting a central mechanism for IL-1β-related CNS inflammation. Moreover, inflammatory microglial and expression of AMPAR were reduced in the hippocampus of SI mice. Minocycline is an antibiotic that limits microglia responses, and previous study also showed that minocycline could prevent stress-induced pro-inflammatory cytokine expression in the brain. Our experiment found that minocycline improved cognitive behavior in SI mice. Minocycline also prevented expression of the hippocampal NLRP3 inflammasome, indicating that microglia might be the primary contributor to SI-induced hippocampal NLRP3 inflammasome activation. Furthermore, alterations in SI mice were also restored by chronic treatment with the NLRP3 inhibitor MCC950. These results indicate that the microglia-derived NLRP3 inflammasome may be primarily involved in the inflammatory response to social isolation and that specific NLRP3 inflammasome inhibition using MCC950 may represent a promising therapeutic approach for early stress induced cognitive impairment.
Collapse
Affiliation(s)
- Lei Niu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Liuyang Traditional Chinese Medicine Hospital, 421001 Liuyang, Hunan, China
| | - Shi Shi Luo
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Zhen Wang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Dan Luo
- Department of Pathology, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Hui Yang
- Department of Pathology, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Wei Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Jie He
- Department of Pathology, In Tropical Environment Of Hainan Province, Hainan Medical University, Haikou 571199, China; Department of Pathology, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Xiao Lin Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Zheng Hai Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Jia Yu Zeng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Wen Yu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| | - Wei Wan
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Key Laboratory Of Brain Science Research & Transformation In Tropical Environment Of Hainan Province, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
18
|
Maternal Separation Early in Life Alters the Expression of Genes Npas4 and Nr1d1 in Adult Female Mice: Correlation with Social Behavior. Behav Neurol 2020; 2020:7830469. [PMID: 32190129 PMCID: PMC7072106 DOI: 10.1155/2020/7830469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022] Open
Abstract
Early-life stress affects neuronal plasticity of the brain regions participating in the implementation of social behavior. Our previous studies have shown that brief and prolonged separation of pups from their mothers leads to enhanced social behavior in adult female mice. The goal of the present study was to characterize the expression of genes (which are engaged in synaptic plasticity) Egr1, Npas4, Arc, and Homer1 in the prefrontal cortex and dorsal hippocampus of adult female mice with a history of early-life stress. In addition, we evaluated the expression of stress-related genes: glucocorticoid and mineralocorticoid receptors (Nr3c1 and Nr3c2) and Nr1d1, which encodes a transcription factor (also known as REVERBα) modulating sociability and anxiety-related behavior. C57Bl/6 mice were exposed to either maternal separation (MS, 3 h once a day) or handling (HD, 15 min once a day) on postnatal days 2 through 14. In adulthood, the behavior of female mice was analyzed by some behavioral tests, and on the day after the testing of social behavior, we measured the gene expression. We found increased Npas4 expression only in the prefrontal cortex and higher Nr1d1 expression in both the prefrontal cortex and dorsal hippocampus of adult female mice with a history of MS. The expression of the studied genes did not change in HD female mice. The expression of stress-related genes Nr3c1 and Nr3c2 was unaltered in both groups. We propose that the upregulation of Npas4 and Nr1d1 in females with a history of early-life stress and the corresponding enhancement of social behavior may be regarded as an adaptation mechanism reversing possible aberrations caused by early-life stress.
Collapse
|
19
|
Wang Z, Zhong XL, Xu Y, He J, Liu ZH, Nai AT, Niu L, Luo SS, Yang H, Zeng JY, He SY, Chen X, Wan W, Cao WY. Irradiation increases brain-derived neurotrophic factor precursor signaling in the mouse hippocampus. Neurobiol Learn Mem 2020; 171:107186. [PMID: 32084558 DOI: 10.1016/j.nlm.2020.107186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Zhen Wang
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, 421001 Hengyang, Hunan, China
| | - Xiao Lin Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Medical College, University of South China, 421001 Hengyang, Hunan, China
| | - Jie He
- Department of Pathology, Medical College, University of South China, 421001 Hengyang, Hunan, China
| | - Zheng Hai Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, 421001 Hengyang, Hunan, China
| | - Ai Tao Nai
- Department of Radiation Oncology, The First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Lei Niu
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, 421001 Hengyang, Hunan, China
| | - Shi Shi Luo
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, 421001 Hengyang, Hunan, China
| | - Hui Yang
- Department of Pathology, Medical College, University of South China, 421001 Hengyang, Hunan, China
| | - Jia Yu Zeng
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, 421001 Hengyang, Hunan, China
| | - Shu Ya He
- School of Public Health, University of South China, 421001 Hengyang, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, 421001 Hengyang, Hunan, China
| | - Wei Wan
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, 421001 Hengyang, Hunan, China; Key Laboratory of Brain Science Research & Transformation In Tropical Environment of Hainan Province, Hainan Medical University, 571199 Haikou, China.
| | - Wen Yu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, 421001 Hengyang, Hunan, China.
| |
Collapse
|
20
|
Gubert C, Hannan AJ. Environmental enrichment as an experience-dependent modulator of social plasticity and cognition. Brain Res 2019; 1717:1-14. [DOI: 10.1016/j.brainres.2019.03.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/11/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
|
21
|
Tu BX, Wang LF, Zhong XL, Hu ZL, Cao WY, Cui YH, Li SJ, Zou GJ, Liu Y, Zhou SF, Zhang WJ, Su JZ, Yan XX, Li F, Li CQ. Acute restraint stress alters food-foraging behavior in rats: Taking the easier Way while suffered. Brain Res Bull 2019; 149:184-193. [DOI: 10.1016/j.brainresbull.2019.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/12/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
|
22
|
Fan Z, Zhu H, Zhou T, Wang S, Wu Y, Hu H. Using the tube test to measure social hierarchy in mice. Nat Protoc 2019; 14:819-831. [DOI: 10.1038/s41596-018-0116-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/17/2018] [Indexed: 11/09/2022]
|