1
|
Dexter TD, Roberts BZ, Ayoub SM, Noback M, Barnes SA, Young JW. Cross-species translational paradigms for assessing positive valence system as defined by the RDoC matrix. J Neurochem 2025; 169:e16243. [PMID: 39463161 PMCID: PMC11996045 DOI: 10.1111/jnc.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Functions associated with processing reward-related information are fundamental drivers of motivation, learning, and goal-directed behavior. Such functions have been classified as the positive valence system under the Research Domain and Criteria (RDoC) criteria and are negatively impacted across a range of psychiatric disorders and mental illnesses. The positive valence system is composed of three comprehensive categories containing related but dissociable functions that are organized into either Reward Responsiveness, Reward Learning, or Reward Valuation. The presence of overlapping behavioral dysfunction across diagnostic mental disorders is in-part what motivated the RDoC initiative, which emphasized that the study of mental illness focus on investigating relevant behavior and cognitive functions and their underlying mechanisms, rather than separating efforts on diagnostic categories (i.e., transdiagnostic). Moreover, the RDoC approach is well-suited for preclinical neuroscience research, as the rise in genetic toolboxes and associated neurotechnologies enables researchers to probe specific cellular targets with high specificity. Thus, there is an opportunity to dissect whether behaviors and cognitive functions are supported by shared or distinct neural mechanisms. For preclinical research to effectively inform our understandings of human behavior however, the cognitive and behavioral paradigms should have predictive, neurobiological, and pharmacological predictive validity to the human test. Touchscreen-based testing systems provide a further advantage for this endeavor enabling tasks to be presented to animals using the same media and task design as in humans. Here, we outline the primary categories of the positive valence system and review the work that has been done cross-species to investigate the neurobiology and neurochemistry underlying reward-related functioning. Additionally, we provide clinical tasks outlined by RDoC, along with validity and/or need for further validation for analogous rodent paradigms with a focus on implementing the touchscreen-based cognitive testing systems.
Collapse
Affiliation(s)
- Tyler D. Dexter
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | | | - Samantha M. Ayoub
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Michael Noback
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Samuel A. Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Jared W. Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA
- Research Service, VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
2
|
Schneider E, Spetter MS, Martin E, Sapey E, Yip KP, Manolopoulos KN, Tahrani AA, Thomas JM, Lee M, Hallschmid M, Rotshtein P, Dourish CT, Higgs S. The effect of intranasal insulin on appetite and mood in women with and without obesity: an experimental medicine study. Int J Obes (Lond) 2022; 46:1319-1327. [PMID: 35397638 PMCID: PMC9239904 DOI: 10.1038/s41366-022-01115-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES Intranasal (IN) administration of insulin decreases appetite in humans, but the underlying mechanisms are unclear, and it is unknown whether IN insulin affects the food intake of women with obesity. SUBJECTS/METHODS In a double-blind, placebo-controlled, crossover design, participants (35 lean women and 17 women with obesity) were randomized to receive 160 IU/1.6 mL of IN insulin or placebo in a counterbalanced order in the post prandial state. The effects of IN insulin on cookie intake, appetite, mood, food reward, cognition and neural activity were assessed. RESULTS IN insulin in the post prandial state reduced cookie intake, appetite and food reward relative to placebo and these effects were more pronounced for women with obesity compared with lean women. IN insulin also improved mood in women with obesity. In both BMI groups, IN insulin increased neural activity in the insula when viewing food pictures. IN insulin did not affect cognitive function. CONCLUSIONS These results suggest that IN insulin decreases palatable food intake when satiated by reducing food reward and that women with obesity may be more sensitive to this effect than lean women. Further investigation of the therapeutic potential of IN insulin for weight management in women with obesity is warranted.
Collapse
Affiliation(s)
- Elizabeth Schneider
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maartje S Spetter
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Elizabeth Martin
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham, UK
| | - Kay Por Yip
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham, UK
- University of Birmingham Institute of Inflammation and Ageing, Birmingham, UK
| | - Konstantinos N Manolopoulos
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Abd A Tahrani
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | | | - Michelle Lee
- Department of Psychology, Swansea University, Swansea, UK
| | - Manfred Hallschmid
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen, Germany
| | - Pia Rotshtein
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Colin T Dourish
- P1vital Ltd., Wallingford, UK
- P1vital Products Ltd, Wallingford, UK
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Schneider E, Dourish CT, Higgs S. Utility of an experimental medicine model to evaluate efficacy, side-effects and mechanism of action of novel treatments for obesity and binge-eating disorder. Appetite 2022; 176:106087. [PMID: 35588993 DOI: 10.1016/j.appet.2022.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 05/12/2022] [Indexed: 11/02/2022]
Abstract
Obesity and Binge Eating Disorder (BED) are prevalent conditions that are associated with increased risk of morbidity and mortality. There is evidence that the use of pharmacotherapy alongside behavioural treatments can improve quality of life and reduce disease risk for patients with these disorders. However, there are few approved drug therapies for obesity, and these are limited by poor efficacy and/or side effects and only one drug has been approved for the treatment of BED. There is considerable potential to use experimental medicine models to identify new drug treatments for obesity and BED, with greater efficacy and an improved side effect profile, at an early stage of development. Here, we present a model developed in our laboratory that incorporates both behavioural and neuroimaging measures which can be used to facilitate drug development for obesity and BED. The results from validation studies conducted to date using our model suggest that it is sensitive to the effects of agents with behavioural, neurophysiological and neuropharmacological mechanisms of action known to be associated with weight loss and reductions in binge eating. Future studies using the model will be valuable to evaluate the potential efficacy and side-effects of new candidate drugs at an early stage in the development pipeline for both obesity and BED.
Collapse
Affiliation(s)
- Elizabeth Schneider
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | - Colin T Dourish
- P1vital Ltd, Howbery Park, Wallingford, OX10 8BA, United Kingdom; P1vital Products Ltd, Howbery Park, Wallingford, OX10 8BA, United Kingdom
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
4
|
Simão AY, Antunes M, Cabral E, Oliveira P, Rosendo LM, Brinca AT, Alves E, Marques H, Rosado T, Passarinha LA, Andraus M, Barroso M, Gallardo E. An Update on the Implications of New Psychoactive Substances in Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4869. [PMID: 35457736 PMCID: PMC9028227 DOI: 10.3390/ijerph19084869] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023]
Abstract
The emergence of new psychoactive substances has earned a great deal of attention, and several reports of acute poisoning and deaths have been issued involving, for instance, synthetic opiates. In recent years, there have been profound alterations in the legislation concerning consumption, marketing, and synthesis of these compounds; rapid alert systems have also been subject to changes, and new substances and new markets, mainly through the internet, have appeared. Their effects and how they originate in consumers are still mostly unknown, primarily in what concerns chronic toxicity. This review intends to provide a detailed description of these substances from the point of view of consumption, toxicokinetics, and health consequences, including case reports on intoxications in order to help researchers and public health agents working daily in this area.
Collapse
Affiliation(s)
- Ana Y. Simão
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| | - Mónica Antunes
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, 1150-219 Lisboa, Portugal
| | - Emanuel Cabral
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Patrik Oliveira
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Luana M. Rosendo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Ana Teresa Brinca
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Estefânia Alves
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Hernâni Marques
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| | - Luís A. Passarinha
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, NOVA School of Science and Technology, Universidade NOVA, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA, 2819-516 Caparica, Portugal
| | | | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, 1150-219 Lisboa, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| |
Collapse
|
5
|
Campos A, Port JD, Acosta A. Integrative Hedonic and Homeostatic Food Intake Regulation by the Central Nervous System: Insights from Neuroimaging. Brain Sci 2022; 12:431. [PMID: 35447963 PMCID: PMC9032173 DOI: 10.3390/brainsci12040431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Food intake regulation in humans is a complex process controlled by the dynamic interaction of homeostatic and hedonic systems. Homeostatic regulation is controlled by appetitive signals from the gut, adipose tissue, and the vagus nerve, while conscious and unconscious reward processes orchestrate hedonic regulation. On the one hand, sight, smell, taste, and texture perception deliver potent food-related feedback to the central nervous system (CNS) and influence brain areas related to food reward. On the other hand, macronutrient composition stimulates the release of appetite signals from the gut, which are translated in the CNS into unconscious reward processes. This multi-level regulation process of food intake shapes and regulates human ingestive behavior. Identifying the interface between hormones, neurotransmitters, and brain areas is critical to advance our understanding of conditions like obesity and develop better therapeutical interventions. Neuroimaging studies allow us to take a glance into the central nervous system (CNS) while these processes take place. This review focuses on the available neuroimaging evidence to describe this interaction between the homeostatic and hedonic components in human food intake regulation.
Collapse
Affiliation(s)
- Alejandro Campos
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - John D. Port
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
6
|
The effects of lisdexamfetamine dimesylate on eating behaviour and homeostatic, reward and cognitive processes in women with binge-eating symptoms: an experimental medicine study. Transl Psychiatry 2022; 12:9. [PMID: 35013131 PMCID: PMC8744047 DOI: 10.1038/s41398-021-01770-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 02/01/2023] Open
Abstract
Lisdexamfetamine dimesylate (LDX) is the only drug currently approved by the FDA for the treatment of Binge-Eating Disorder (BED), but little is known about the behavioural mechanisms that underpin the efficacy of LDX in treating BED. We examined the behavioural and neural effects of an acute dose of LDX (50 mg) in 22 women with binge-eating symptomatology using a randomised, crossover, double-blind, placebo-controlled experimental medicine design. LDX reduced self-reported appetite ratings and intake of both a pasta meal and a palatable cookie snack. LDX also decreased the eating rate of pasta but not of cookies and reduced self-reported liking ratings for pasta at the end of the meal. When viewing food pictures during an fMRI scan, LDX reduced activity bilaterally in the thalamus. LDX enhanced sustained attention and reduced impulsive responding in a continuous performance task but had no effect on emotional bias or working memory. These results suggest the observed effects of LDX on food intake (and by implication the efficacy of LDX in treating BED) may be related to the actions of the drug to enhance satiety, reduce food-related reward responding when full and/or increase cognitive control. Novel pharmacotherapies for BED might be most effective if they have a broad spectrum of effects on appetite, reward and cognition.
Collapse
|
7
|
Millan MJ. Agomelatine for the treatment of generalized anxiety disorder: focus on its distinctive mechanism of action. Ther Adv Psychopharmacol 2022; 12:20451253221105128. [PMID: 35795687 PMCID: PMC9251978 DOI: 10.1177/20451253221105128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Generalized anxiety disorder (GAD), the most frequently diagnosed form of anxiety, is usually treated by cognitive-behavioural approaches or medication; in particular, benzodiazepines (acutely) and serotonin or serotonin/noradrenaline reuptake inhibitors (long term). Efficacy, compliance, and acceptability are, however, far from ideal, reinforcing interest in alternative options. Agomelatine, clinically employed in the treatment of major depression, expresses anxiolytic properties in rodents and was effective in the treatment of GAD (including severely ill patients) in several double-blind, short-term (12 weeks) and relapse-prevention (6 months) studies. At active doses, the incidence of adverse effects was no higher than for placebo. Agomelatine possesses a unique binding profile, behaving as a melatonin (MT1/MT2) receptor agonist and 5-HT2C receptor antagonist, yet recognizing neither monoamine transporters nor GABAA receptors. Extensive evidence supports a role for 5-HT2C receptors in the induction of anxious states, and their blockade likely plays a primary role in mediating the anxiolytic actions of agomelatine, including populations in the amygdala and bed nucleus of stria terminalis, as well as the hippocampus. Recruitment of MT receptors in the suprachiasmatic nucleus, thalamic reticular nucleus, and hippocampus appears to fulfil a complimentary role. Downstream of 5-HT2C and MT receptors, modulation of stress-sensitive glutamatergic circuits and altered release of the anxiogenic neuropeptides, corticotrophin-releasing factor, and vasopressin, may be implicated in the actions of agomelatine. To summarize, agomelatine exerts its anxiolytic actions by mechanisms clearly distinct from those of other agents currently employed for the management of GAD. PLAIN LANGUAGE SUMMARY How agomelatine helps in the treatment of anxiety disorders. INTRODUCTION • Anxiety disorders have a significant negative impact on quality of life.• The most common type of anxiety disorder, called generalized anxiety disorder (GAD), is associated with nervousness and excessive worry.• These symptoms can lead to additional symptoms like tiredness, sleeplessness, irritability, and poor attention.• GAD is generally treated through either cognitive-behavioural therapy or medication. However, widely used drugs like benzodiazepines and serotonin reuptake inhibitors have adverse effects.• Agomelatine, a well-established antidepressant drug, has shown anxiety-lowering ('anxiolytic') properties in rats and has been shown to effectively treat GAD with minimal side effects.• However, exactly how it acts on the brain to manage GAD is not yet clear.• Thus, this review aims to shed light on agomelatine's mechanism of action in treating GAD. METHODS • The authors reviewed studies on how agomelatine treats anxiety in animals.• They also looked at clinical studies on the effects of agomelatine in people with GAD. RESULTS • The study showed that agomelatine 'blocks' a receptor in nerve cells, which plays a role in causing anxiety, called the 5-HT2C receptor.• Blocking this receptor, especially in specific brain regions such as nerve cells of the amygdala, bed nucleus of stria terminalis, and hippocampus, produced the anxiety reduction seen during agomelatine treatment.• Agomelatine also activates the melatonin (MT) receptor, which is known to keep anxiety in check, promote sleep, and maintain the sleep cycle.• Agomelatine should thus tackle sleep disturbances commonly seen in patients with GAD.• Beyond 5-HT2C and MT receptors, signalling molecules in nerve cells that are known to be involved in anxiety disorders (called 'neurotransmitters' and 'neuropeptides') are also affected by agomelatine. CONCLUSION • Agomelatine's anxiolytic effects are caused by mechanisms that are distinct from those of other medications currently used to treat GAD.• This explains its therapeutic success and minimal adverse side effects.
Collapse
Affiliation(s)
- Mark J Millan
- Institute of Neuroscience and Psychology, College of Medicine, Vet and Life Sciences, Glasgow University, 28 Hillhead Street, Glasgow G12 8QB, UK
| |
Collapse
|
8
|
Rapid Targeted Method of Detecting Abused Piperazine Designer Drugs. J Clin Med 2021; 10:jcm10245813. [PMID: 34945109 PMCID: PMC8704057 DOI: 10.3390/jcm10245813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/24/2023] Open
Abstract
Piperazine derivatives belong to the popular psychostimulating compounds from the group of designer drugs. They are an alternative to illegal drugs such as ecstasy and amphetamines. They are being searched by consumers for recreational use due to their stimulating and hallucinogenic effects. Many NPS-related poisonings and deaths have been reported where piperazines have been found. However, a major problem is the potential lack of laboratory confirmation of the involvement of piperazine derivatives in the occurrence of poisoning. Although many methods have been published, piperazine derivatives are not always included in a routine analytical approach or targeted toxicological analysis. There is an increasing need to provide qualitative evidence for the presence of piperazine derivatives and to ensure reproducible quantification. This article describes a new rapid method of detecting piperazine derivatives in biological material, using LC-MS. All target analytes were separated in a 15 min run time and identified based on the precursor ion, at least two product ions, and the retention time. Stable isotopically labeled (SIL) internal standards: BZP-D7, mCPP-D8 and TFMPP-D4 were used for analysis, obtaining the highest level of confidence in the results. The proposed detection method provides the analytical confirmation of poisoning with piperazine designer drugs.
Collapse
|
9
|
Lisdexamfetamine and binge-eating disorder: A systematic review and meta-analysis of the preclinical and clinical data with a focus on mechanism of drug action in treating the disorder. Eur Neuropsychopharmacol 2021; 53:49-78. [PMID: 34461386 DOI: 10.1016/j.euroneuro.2021.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022]
Abstract
Binge-Eating Disorder (BED) is the most common eating disorder in the United States. Lisdexamfetamine (LDX) was approved in 2015 by the FDA for treatment of BED and is the only drug approved for treating the disorder. There has been no systematic evaluation of the published clinical and preclinical evidence for efficacy of LDX in treating BED and the mechanisms responsible for the therapeutic action of the drug. To address this gap, we conducted a systematic review and meta-analysis using PRISMA guidelines. Fourteen clinical and seven preclinical articles were included. There is consistent evidence from clinical studies that LDX is an effective treatment for BED and that the drug reduces the BED symptoms and body weight of patients with the disorder. There is also consistent evidence from preclinical studies that LDX reduces food intake but no consistent evidence for a preferential reduction of palatable food consumption by the drug in rodents. The evidence on mechanism of action is more limited and suggests LDX may reduce binge eating by a combination of effects on appetite/satiety, reward, and cognitive processes, including attention and impulsivity/inhibition, that are mediated by catecholamine and serotonin mechanisms in the brain. There is an urgent need for adequately powered, placebo-controlled, behavioural and neuroimaging studies with LDX (recruiting patients and/or individuals with subclinical BED symptoms) to further investigate the mechanism of action of the drug in treating BED. An improved understanding of the behavioural and neurochemical mechanisms of action of LDX could lead to the development of improved drug therapies to treat BED.
Collapse
|
10
|
Piperazine derivatives as dangerous abused compounds. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:423-441. [PMID: 32412428 DOI: 10.2478/acph-2020-0035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 01/19/2023]
Abstract
Piperazine derivatives are a group of compounds with a psychostimulant effect. They are an alternative to illegal drugs. They are being searched for recreational use due to their psychoactive and hallucinogenic effects. The high popularity of these compounds can be noticed all over the world due to easy purchase, lack of legal regulations and incorrect assessment of the safety of use. The recreational use of piperazine derivatives can often result in chronic and acute health problems and additionally with unpredictable remote effects. It is also common to take mixtures of psychoactive compounds. This hinders the correct diagnosis and treatment of patients with poisoning. The presented work is an illustration of the wide problem of piperazine derivatives abuse. The health effects and the possibility of identifying these compounds in preparations and biological material are described.
Collapse
|
11
|
Higgins GA, Fletcher PJ, Shanahan WR. Lorcaserin: A review of its preclinical and clinical pharmacology and therapeutic potential. Pharmacol Ther 2020; 205:107417. [DOI: 10.1016/j.pharmthera.2019.107417] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
|
12
|
Lacerda DC, Manhães-de-Castro R, Gouveia HJCB, Tourneur Y, Costa de Santana BJ, Assunção Santos RE, Olivier-Coq J, Ferraz-Pereira KN, Toscano AE. Treatment with the essential amino acid L-tryptophan reduces masticatory impairments in experimental cerebral palsy. Nutr Neurosci 2019; 24:927-939. [PMID: 31766953 DOI: 10.1080/1028415x.2019.1695360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose Children with cerebral palsy (CP) often exhibit difficulties in feeding resulting from deficits in chewing. This study investigates the therapeutic potential of L-tryptophan (TRI) to reduce deficits in chewing in rats subjected to an experimental model of CP.Methods A total of 80 Wistar albino rats were used. Pups were randomly assigned to 4 experimental groups: Control Saline, Control TRI, CP Saline, and CP TRI groups. The experimental model of CP was based on the combination of perinatal anoxia associated with postnatal sensorimotor restriction of the hind limbs. TRI was administered subcutaneously during the lactation period. Anatomical and behavioral parameters were evaluated during maturation, including body weight gain, food intake, chewing movements, relative weight and the distribution of the types of masseter muscle fibers.Results The induction of CP limited body weight gain, decreased food intake and led to impairment in the morphological and functional parameters of chewing. Moreover, for a comparable amount of food ingested, CP TRI animals grew the most. In addition, supplementation with TRI improved the number of chewing movements, and increased the weight and proportion of type IIB fibers of the masseter in rats subjected to CP.Conclusion These results demonstrate that experimental CP impaired the development of mastication and that TRI supplementation increased masticatory maturation in animals subjected to CP.
Collapse
Affiliation(s)
- Diego Cabral Lacerda
- Post Graduate Program in Nutrition, Federal University of Pernambuco Recife, Brazil
| | | | | | | | | | | | - Jacques Olivier-Coq
- Institut de Neuroscience de la Timone (INT), UMR 7289, CNRS Aix Marseille Université, Marseille, France
| | | | - Ana Elisa Toscano
- Department of Nursing, CAV, Federal University of Pernambuco Recife, Brazil
| |
Collapse
|
13
|
Campbell DLM, Taylor PS, Hernandez CE, Stewart M, Belson S, Lee C. An attention bias test to assess anxiety states in laying hens. PeerJ 2019; 7:e7303. [PMID: 31333910 PMCID: PMC6626526 DOI: 10.7717/peerj.7303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/17/2019] [Indexed: 11/20/2022] Open
Abstract
Fear is a response to a known threat, anxiety is a response to a perceived threat. Both of these affective states can be detrimental to animal welfare in modern housing environments. In comparison to the well-validated tests for assessing fear in laying hens, tests for measuring anxiety are less developed. Perception of a threat can result in an attention bias that may indicate anxious affective states in individual hens following playback of an alarm call. In Experiment 1, an attention bias test was applied to hens that differed in their range access to show that hens that never ranged were more vigilant (stretching of the neck and looking around: P < 0.001) and slower to feed following the second alarm call playback (P = 0.01) compared with hens that ranged daily. All hens showed a reduction in comb temperature following the first alarm call (P < 0.001). In Experiment 2, an open field test was used to determine an effective dose of 2 mg/kg for the anxiogenic drug meta-Chlorophenylpiperazine (m-CPP) in adult laying hens. Hens dosed with 2 mg/kg showed reduced locomotion compared with a saline solution (P < 0.05). In Experiment 3, 2 mg/kg m-CPP or saline was administered to adult hens previously habituated to the open field arena to pharmacologically validate an attention bias test as a measure of anxiety. Hens dosed with m-CPP were slower to feed (P = 0.02) and faster to vocalize following a second alarm call playback (P = 0.03) but these hens did not exhibit the same vigilance behavior as documented in Experiment 1. The m-CPP hens also spent more time stepping and vocalizing (both P < 0.001) than the saline hens. An attention bias test could be used to assess anxiety. However, behavioral responses of hens may vary depending on their age or test environment familiarity, thus further refinement of the test is required. In these tests, 2 mg/kg of m-CPP resulted in motionless behavior when the environment was novel, but more movement and vocalizing when the environment was familiar. The extreme behavioral phenotypes exhibited by individually-tested birds may both be indicators of negative states.
Collapse
Affiliation(s)
- Dana L M Campbell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW, Australia.,School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Peta S Taylor
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Carlos E Hernandez
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW, Australia.,School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia.,Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mairi Stewart
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | - Sue Belson
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW, Australia
| | - Caroline Lee
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW, Australia.,School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|