1
|
Eskander G, Abdelhamid SG, Wahdan SA, Radwan SM. Roflumilast attenuates doxorubicin and cyclophosphamide combination-induced chemobrain in rats through modulation of NLRP3/ASC/caspase-1/GSDMD axis. Life Sci 2025; 362:123378. [PMID: 39788415 DOI: 10.1016/j.lfs.2025.123378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
AIM The aim of this study is to investigate the neuroprotective effect of roflumilast, a phosphodiesterase-4 (PDE-4) inhibitor on cognitive impairment induced by doxorubicin (DOX)/cyclophosphamide (CP) combination therapy and to elucidate its modulatory effect on the pyroptosis pathway. MATERIALS AND METHODS Rats were allocated into five groups: a control group, a DOX/CP-intoxicated group, two groups receiving DOX/CP plus low-dose (0.5 mg/kg/day) or high-dose (1 mg/kg/day) roflumilast, and a roflumilast-only group. Behavioral assessments and brain tissue analyses were conducted, including histopathological staining and the measurement of inflammatory and oxidative stress markers. FINDINGS DOX/CP treatment resulted in cognitive impairment, abnormal brain histology. It significantly elevated the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and malondialdehyde (MDA). Concurrently, superoxide dismutase (SOD) activity was reduced. Pyroptosis-associated markers, including nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), caspase-1, gasdermin-D (GSDMD), and interleukin-18 (IL-18) were upregulated. Apoptotic marker caspase-3 also exhibited increased expression. Conversely, administration of roflumilast (1 mg/kg/day) for four weeks ameliorated these pathological changes. Roflumilast improved cognitive function, reduced oxidative stress, and modulated inflammatory signaling. Additionally, it suppressed pyroptotic and apoptotic pathways within hippocampal tissue. SIGNIFICANCE These results suggest that roflumilast exerts neuroprotective effects against chemotherapy-induced cognitive dysfunction and neurodegeneration through inhibition of the NLRP3/ASC/caspase-1/GSDMD pyroptosis pathway.
Collapse
Affiliation(s)
- Georgette Eskander
- Postgraduate program, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| | - Sherihan G Abdelhamid
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| | - Sara A Wahdan
- Pharmacology and toxicology Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| | - Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
2
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Prickaerts J, Kerckhoffs J, Possemis N, van Overveld W, Verbeek F, Grooters T, Sambeth A, Blokland A. Roflumilast and cognition enhancement: A translational perspective. Biomed Pharmacother 2024; 181:117707. [PMID: 39591666 DOI: 10.1016/j.biopha.2024.117707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Cognitive impairment affiliated with neurological disorders has a severe impact on daily life functioning and the quality of life of patients. This is associated with a significant and long-lasting health, social and financial burden, not only for the patients, but also for families and the wider society. However, treatment for cognitive impairment is only available for the indication Alzheimer's disease (AD) and its prodromal stage Mild Cognitive Impairment (MCI), although with major adverse effects, i.e. gastrointestinal effects (drugs) or hemorrhages (antibodies). Roflumilast (selective phosphodiesterase type 4 (PDE4) inhibitor) has been approved as an anti-inflammatory drug for the treatment of chronic obstructive pulmonary disease (COPD), although still 5 % of the patients experience nausea or even vomiting at the approved dose of 500 μg. Nonclinical studies demonstrated that roflumilast appears a promising drug the treat cognitive impairment in healthy rodents and a wide variety of animal models of CNS disorders. These effects are attributed to pro-neuroplasticity and anti-inflammatory effects, which appeared dose dependent. Roflumilast has also been tested in clinical studies and showed cognition enhancement at low dosing (100-250 µg) in healthy adults, healthy elderly, MCI and schizophrenia. Currently, clinical trials are underway for testing the pro-cognitive effects in early AD, post stroke cognitive impairment and Fragile X. Overall, the data showed that roflumilast has beneficial effects on cognitive performance. These cognition-enhancing effects are found at doses that were well-tolerated. Based on this favorable therapeutic window, the repurposing of roflumilast for treating cognitive impairments in CNS diseases may offer an affordable treatment option for patients.
Collapse
Affiliation(s)
| | - Jill Kerckhoffs
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Netherlands; Limburg Brain Injury Centre, Maastricht University, Maastricht, Netherlands
| | - Nina Possemis
- Department of Psychiatry and Neuropsychology, Maastricht University, Netherlands
| | | | | | | | - Anke Sambeth
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Netherlands.
| |
Collapse
|
4
|
Etkin A, Powell J, Savitz AJ. Opportunities for use of neuroimaging in de-risking drug development and improving clinical outcomes in psychiatry: an industry perspective. Neuropsychopharmacology 2024; 50:258-268. [PMID: 39169213 PMCID: PMC11526012 DOI: 10.1038/s41386-024-01970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Neuroimaging, across positron emission tomography (PET), electroencephalography (EEG), and magnetic resonance imaging (MRI), has been a mainstay of clinical neuroscience research for decades, yet has penetrated little into psychiatric drug development beyond often underpowered phase 1 studies, or into clinical care. Simultaneously, there is a pressing need to improve the probability of success in drug development, increase mechanistic diversity, and enhance clinical efficacy. These goals can be achieved by leveraging neuroimaging in a precision psychiatry framework, wherein effects of drugs on the brain are measured early in clinical development to understand dosing and indication, and then in later-stage trials to identify likely drug responders and enrich clinical trials, ultimately improving clinical outcomes. Here we examine the key variables important for success in using neuroimaging for precision psychiatry from the lens of biotechnology and pharmaceutical companies developing and deploying new drugs in psychiatry. We argue that there are clear paths for incorporating different neuroimaging modalities to de-risk subsequent development phases in the near to intermediate term, culminating in use of select neuroimaging modalities in clinical care for prescription of new precision drugs. Better outcomes through neuroimaging biomarkers, however, require a wholesale commitment to a precision psychiatry approach and will necessitate a cultural shift to align biopharma and clinical care in psychiatry to a precision orientation already routine in other areas of medicine.
Collapse
Affiliation(s)
- Amit Etkin
- Alto Neuroscience Inc., Los Altos, CA, 94022, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94304, USA.
| | | | - Adam J Savitz
- Alto Neuroscience Inc., Los Altos, CA, 94022, USA
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, 10021, USA
| |
Collapse
|
5
|
Farid HA, Sayed RH, El-Shamarka MES, Abdel-Salam OME, El Sayed NS. PI3K/AKT signaling activation by roflumilast ameliorates rotenone-induced Parkinson's disease in rats. Inflammopharmacology 2024; 32:1421-1437. [PMID: 37541971 PMCID: PMC11006765 DOI: 10.1007/s10787-023-01305-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023]
Abstract
Parkinson's disease (PD) is the second most common progressive age-related neurodegenerative disorder. Paramount evidence shed light on the role of PI3K/AKT signaling activation in the treatment of neurodegenerative disorders. PI3K/AKT signaling can be activated via cAMP-dependent pathways achieved by phosphodiesterase 4 (PDE4) inhibition. Roflumilast is a well-known PDE4 inhibitor that is currently used in the treatment of chronic obstructive pulmonary disease. Furthermore, roflumilast has been proposed as a favorable candidate for the treatment of neurological disorders. The current study aimed to unravel the neuroprotective role of roflumilast in the rotenone model of PD in rats. Ninety male rats were allocated into six groups as follows: control, rotenone (1.5 mg/kg/48 h, s.c.), L-dopa (22.5 mg/kg, p.o), and roflumilast (0.2, 0.4 or 0.8 mg/kg, p.o). All treatments were administrated for 21 days 1 h after rotenone injection. Rats treated with roflumilast showed an improvement in motor activity and coordination as well as preservation of dopaminergic neurons in the striatum. Moreover, roflumilast increased cAMP level and activated the PI3K/AKT axis via stimulation of CREB/BDNF/TrkB and SIRT1/PTP1B/IGF1 signaling cascades. Roflumilast also caused an upsurge in mTOR and Nrf2, halted GSK-3β and NF-ĸB, and suppressed FoxO1 and caspase-3. Our study revealed that roflumilast exerted neuroprotective effects in rotenone-induced neurotoxicity in rats. These neuroprotective effects were mediated via the crosstalk between CREB/BDNF/TrkB and SIRT1/PTP1B/IGF1 signaling pathways which activates PI3K/AKT trajectory. Therefore, PDE4 inhibition is likely to offer a reliable persuasive avenue in curing PD via PI3K/AKT signaling activation.
Collapse
Affiliation(s)
- Heba A Farid
- Department of Narcotics, Ergogenic Aids and Poisons, National Research Centre, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | | | - Omar M E Abdel-Salam
- Department of Narcotics, Ergogenic Aids and Poisons, National Research Centre, Cairo, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
6
|
Zagórska A, Czopek A, Fryc M, Jaromin A, Boyd BJ. Drug Discovery and Development Targeting Dementia. Pharmaceuticals (Basel) 2023; 16:151. [PMID: 37259302 PMCID: PMC9965722 DOI: 10.3390/ph16020151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 08/04/2023] Open
Abstract
Dementia, most often associated with neurodegenerative diseases, affects millions of people worldwide, predominantly the elderly. Unfortunately, no treatment is still available. Therefore, there is an urgent need to address this situation. This review presents the state of the art of drug discovery and developments in targeting dementia. Several approaches are discussed, such as drug repurposing, the use of small molecules, and phosphodiesterase inhibitors. Furthermore, the review also provides insights into clinical trials of these molecules. Emphasis has been placed on small molecules and multi-target-directed ligands, as well as disease-modifying therapies. Finally, attention is drawn to the possibilities of applications of nanotechnology in managing dementia.
Collapse
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Czopek
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Fryc
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Ben J. Boyd
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
7
|
Targeting phosphodiesterase 4 as a therapeutic strategy for cognitive improvement. Bioorg Chem 2022; 130:106278. [DOI: 10.1016/j.bioorg.2022.106278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
8
|
Schick MA, Schlegel N. Clinical Implication of Phosphodiesterase-4-Inhibition. Int J Mol Sci 2022; 23:1209. [PMID: 35163131 PMCID: PMC8835523 DOI: 10.3390/ijms23031209] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
The pleiotropic function of 3',5'-cyclic adenosine monophosphate (cAMP)-dependent pathways in health and disease led to the development of pharmacological phosphodiesterase inhibitors (PDE-I) to attenuate cAMP degradation. While there are many isotypes of PDE, a predominant role of PDE4 is to regulate fundamental functions, including endothelial and epithelial barrier stability, modulation of inflammatory responses and cognitive and/or mood functions. This makes the use of PDE4-I an interesting tool for various therapeutic approaches. However, due to the presence of PDE4 in many tissues, there is a significant danger for serious side effects. Based on this, the aim of this review is to provide a comprehensive overview of the approaches and effects of PDE4-I for different therapeutic applications. In summary, despite many obstacles to use of PDE4-I for different therapeutic approaches, the current data warrant future research to utilize the therapeutic potential of phosphodiesterase 4 inhibition.
Collapse
Affiliation(s)
- Martin Alexander Schick
- Department of Anesthesiology and Critical Care, Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, 97080 Würzburg, Germany;
| |
Collapse
|
9
|
Livingston NR, Hawkins PCT, Gilleen J, Ye R, Valdearenas L, Shergill SS, Mehta MA. Preliminary evidence for the phosphodiesterase type-4 inhibitor, roflumilast, in ameliorating cognitive flexibility deficits in patients with schizophrenia. J Psychopharmacol 2021; 35:1099-1110. [PMID: 33908296 PMCID: PMC8435828 DOI: 10.1177/02698811211000778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cognitive flexibility deficits are present in patients with schizophrenia and are strong predictors of functional outcome but, as yet, have no pharmacological treatments. AIMS The purpose of this study was to investigate whether the phosphodiesterase type-4 inhibitor, roflumilast, can improve cognitive flexibility performance and functional brain activity in patients with schizophrenia. METHODS This was a within-subject, randomised, double-blind, placebo-controlled, three-period crossover study using a version of the Intradimensional/Extradimensional (ID/ED) task, optimised for functional magnetic resonance imaging (fMRI), in 10 patients with schizophrenia who were scanned after receiving placebo, 100 µg or 250 µg roflumilast for 8 consecutive days. Data from an additional fMRI ID/ED study of 18 healthy participants on placebo was included to contextualise the schizophrenia-related performance and activations. The fMRI analyses included a priori driven region of interest (ROI) analysis of the dorsal frontoparietal attention network. RESULTS Patients on placebo demonstrated broad deficits in task performance compared to the healthy comparison group, accompanied by preserved network activity for solution search, but reduced activity in left ventrolateral prefrontal cortex (VLPFC) and posterior parietal cortex for attentional set-shifting and reduced activity in left dorsolateral prefrontal cortex (DLPFC) for reversal learning. These ROI deficits were ameliorated by 250 µg roflumilast, whereas during solution search 100 µg roflumilast reduced activity in the left orbitofrontal cortex, right DLPFC and bilateral PPC, which was associated with an improvement in formation of attentional sets. CONCLUSIONS The results suggest roflumilast has dose-dependent cognitive enhancing effects on the ID/ED task in patients with schizophrenia, and provides sufficient support for larger studies to test roflumilast's role in improving cognitive flexibility deficits in this clinical population.
Collapse
Affiliation(s)
| | | | - James Gilleen
- Department of Psychology, University of Roehampton, London, UK,Department of Psychosis Studies, King’s College London, London, UK
| | - Rong Ye
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Lorena Valdearenas
- North Middlesex University Hospital, Barnet, Enfield and Haringey Mental Health NHS Trust, London, UK
| | - Sukhi S Shergill
- Department of Psychosis Studies, King’s College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, King’s College London, London, UK,Mitul A Mehta, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
10
|
Gilleen J, Nottage J, Yakub F, Kerins S, Valdearenas L, Uz T, Lahu G, Tsai M, Ogrinc F, Williams SC, Ffytche D, Mehta MA, Shergill SS. The effects of roflumilast, a phosphodiesterase type-4 inhibitor, on EEG biomarkers in schizophrenia: A randomised controlled trial. J Psychopharmacol 2021; 35:15-22. [PMID: 32854568 DOI: 10.1177/0269881120946300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Patients with schizophrenia have significant cognitive deficits, which may profoundly impair quality of life. These deficits are also evident at the neurophysiological level with patients demonstrating altered event-related potential in several stages of cognitive processing compared to healthy controls; within the auditory domain, for example, there are replicated alterations in Mismatch Negativity, P300 and Auditory Steady State Response. However, there are no approved pharmacological treatments for cognitive deficits in schizophrenia. AIMS Here we examine whether the phosphodiesterase-4 inhibitor, roflumilast, can improve neurophysiological deficits in schizophrenia. METHODS Using a randomised, double-blind, placebo-controlled, crossover design study in 18 patients with schizophrenia, the effect of the phosphodiesterase-4 inhibitor, roflumilast (100 µg and 250 µg) on auditory steady state response (early stage), mismatch negativity and theta (intermediate stage) and P300 (late stage) was examined using electroencephalogram. A total of 18 subjects were randomised and included in the analysis. RESULTS Roflumilast 250 µg significantly enhanced the amplitude of both the mismatch negativity (p=0.04) and working memory-related theta oscillations (p=0.02) compared to placebo but not in the other (early- or late-stage) cognitive markers. CONCLUSIONS The results suggest that phosphodiesterase-4 inhibition, with roflumilast, can improve electroencephalogram cognitive markers, which are impaired in schizophrenia, and that phosphodiesterase-4 inhibition acts at an intermediate rather than early or late cognitive processing stage. This study also underlines the use of neurophysiological measures as cognitive biomarkers in experimental medicine.
Collapse
Affiliation(s)
- James Gilleen
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.,Department of Psychology, University of Roehampton, London, UK
| | - Judith Nottage
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK.,Department of Psychiatry, University of Oxford, Oxford, UK
| | - Farah Yakub
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Sarah Kerins
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Lorena Valdearenas
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.,South London and Maudsley Hospital NHS Foundation Trust, London, UK.,North Middlesex University Hospital, Barnet, Enfield and Haringey Mental Health NHS Trust, London, UK
| | - Tolga Uz
- Takeda Development Center Americas, Deerfield, USA
| | - Gez Lahu
- Takeda Development Center Americas, Deerfield, USA
| | - Max Tsai
- Eli Lilly and Company, Indianapolis, USA
| | - Frank Ogrinc
- Takeda Development Center Americas, Deerfield, USA
| | - Steve C Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Dominic Ffytche
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Sukhi S Shergill
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| |
Collapse
|
11
|
Roflumilast: A potential drug for the treatment of cognitive impairment? Neurosci Lett 2020; 736:135281. [DOI: 10.1016/j.neulet.2020.135281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022]
|
12
|
Dominant-Negative Attenuation of cAMP-Selective Phosphodiesterase PDE4D Action Affects Learning and Behavior. Int J Mol Sci 2020; 21:ijms21165704. [PMID: 32784895 PMCID: PMC7460819 DOI: 10.3390/ijms21165704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/26/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
PDE4 cyclic nucleotide phosphodiesterases reduce 3′, 5′ cAMP levels in the CNS and thereby regulate PKA activity and the phosphorylation of CREB, fundamental to depression, cognition, and learning and memory. The PDE4 isoform PDE4D5 interacts with the signaling proteins β-arrestin2 and RACK1, regulators of β2-adrenergic and other signal transduction pathways. Mutations in PDE4D in humans predispose to acrodysostosis, associated with cognitive and behavioral deficits. To target PDE4D5, we developed mice that express a PDE4D5-D556A dominant-negative transgene in the brain. Male transgenic mice demonstrated significant deficits in hippocampus-dependent spatial learning, as assayed in the Morris water maze. In contrast, associative learning, as assayed in a fear conditioning assay, appeared to be unaffected. Male transgenic mice showed augmented activity in prolonged (2 h) open field testing, while female transgenic mice showed reduced activity in the same assay. Transgenic mice showed no demonstrable abnormalities in prepulse inhibition. There was also no detectable difference in anxiety-like behavior, as measured in the elevated plus-maze. These data support the use of a dominant-negative approach to the study of PDE4D5 function in the CNS and specifically in learning and memory.
Collapse
|
13
|
Baillie GS, Tejeda GS, Kelly MP. Therapeutic targeting of 3',5'-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov 2019; 18:770-796. [PMID: 31388135 PMCID: PMC6773486 DOI: 10.1038/s41573-019-0033-4] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 01/24/2023]
Abstract
Phosphodiesterases (PDEs), enzymes that degrade 3',5'-cyclic nucleotides, are being pursued as therapeutic targets for several diseases, including those affecting the nervous system, the cardiovascular system, fertility, immunity, cancer and metabolism. Clinical development programmes have focused exclusively on catalytic inhibition, which continues to be a strong focus of ongoing drug discovery efforts. However, emerging evidence supports novel strategies to therapeutically target PDE function, including enhancing catalytic activity, normalizing altered compartmentalization and modulating post-translational modifications, as well as the potential use of PDEs as disease biomarkers. Importantly, a more refined appreciation of the intramolecular mechanisms regulating PDE function and trafficking is emerging, making these pioneering drug discovery efforts tractable.
Collapse
Affiliation(s)
- George S Baillie
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Gonzalo S Tejeda
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
14
|
Blokland A, Van Duinen MA, Sambeth A, Heckman PRA, Tsai M, Lahu G, Uz T, Prickaerts J. Acute treatment with the PDE4 inhibitor roflumilast improves verbal word memory in healthy old individuals: a double-blind placebo-controlled study. Neurobiol Aging 2019; 77:37-43. [PMID: 30776650 DOI: 10.1016/j.neurobiolaging.2019.01.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 11/30/2022]
Abstract
There is ample evidence that phosphodiesterase 4 (PDE4) inhibition can improve memory performance in animal studies. In the present study, we examined the acute effects of the PDE4 inhibitor roflumilast on memory performance in healthy individuals (60-80 years of age). We tested the effects of acute roflumilast administration (100, 250, 1000 μg) in a double-blind, placebo-controlled, 4-way crossover design. Participants were first screened for their verbal word memory performance to ensure normal memory performance (within 0.5 standard deviation from norm score; n = 20) Drug effects on memory performance were tested in a verbal memory test and a spatial memory test. Reported side effects of drug treatment were registered. Roflumilast (100 μg) improved the delayed recall performance of the participants (Cohen's d, 0.69). No effects were observed in the spatial memory task. Roflumilast was well tolerated at this low dose. Although no clear adverse side effects were reported at the low dose, mild adverse events (including headache, dizziness, insomnia, and diarrhea) were reported after the 1000 μg dose. The present study provides first evidence that the PDE4 inhibitor roflumilast improves verbal memory performance in old participants. The current data encourage further development of PDE4 inhibitors for improving memory.
Collapse
Affiliation(s)
- Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, the Netherlands
| | - Marlies A Van Duinen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Anke Sambeth
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, the Netherlands
| | - Pim R A Heckman
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Max Tsai
- Department of Clinical Development, Takeda Development Center Americas, Deerfield, IL, USA
| | - Gezim Lahu
- Department of Clinical Development, Takeda Development Center Americas, Deerfield, IL, USA
| | - Tolga Uz
- Department of Clinical Development, Takeda Development Center Americas, Deerfield, IL, USA
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
15
|
Borghans LGJM, Sambeth A, Prickaerts J, Ramaekers JG, Blokland A. The effects of the soluble guanylate cyclase stimulator riociguat on memory performance in healthy volunteers with a biperiden-induced memory impairment. Psychopharmacology (Berl) 2018; 235:2407-2416. [PMID: 29882087 PMCID: PMC6061766 DOI: 10.1007/s00213-018-4938-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/30/2018] [Indexed: 10/25/2022]
Abstract
RATIONALE After stimulation with nitric oxide, soluble guanylate cyclase (sGC) produces cyclic guanosine monophosphate (cGMP), which stimulates an important signalling pathway for long-term potentiation (LTP). By upregulating cGMP, LTP could be stimulated and thereby enhancing memory processes. The present study investigated the effects of the sGC stimulator riociguat on cognition in healthy volunteers. Participants were pre-treated with and without biperiden, which impairs memory performance, to investigate the memory-enhancing effects of riociguat. METHODS Twenty volunteers participated in a double-blind placebo-controlled six-way crossover design with a cognitive test battery including the verbal learning task (VLT), n-back task, spatial memory test, the attention network test, and a reaction time task. Treatments were placebo and riociguat 0.5 mg, placebo and riociguat 1.0 mg, biperiden 2.0 mg and placebo, biperiden 2.0 mg and riociguat 0.5 mg and biperiden 2.0 mg and riociguat 1.0 mg. RESULTS Blood pressure was found to be decreased and heart rate to be increased after administration of riociguat. Cognitive performance was not enhanced after administration of riociguat. Biperiden decreased episodic memory on the VLT, yet this deficit was not reversed by riociguat. CONCLUSION This supports the notion that biperiden might be a valuable pharmacological model to induce episodic memory impairments as observed in AD/MCI.
Collapse
Affiliation(s)
- Laura G. J. M. Borghans
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Anke Sambeth
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Faculty of Medicine, Health & Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Johannes G. Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
16
|
Heckman PRA, Blokland A, Bollen EPP, Prickaerts J. Phosphodiesterase inhibition and modulation of corticostriatal and hippocampal circuits: Clinical overview and translational considerations. Neurosci Biobehav Rev 2018; 87:233-254. [PMID: 29454746 DOI: 10.1016/j.neubiorev.2018.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/20/2022]
Abstract
The corticostriatal and hippocampal circuits contribute to the neurobiological underpinnings of several neuropsychiatric disorders, including Alzheimer's disease, Parkinson's disease and schizophrenia. Based on biological function, these circuits can be clustered into motor circuits, associative/cognitive circuits and limbic circuits. Together, dysfunctions in these circuits produce the wide range of symptoms observed in related neuropsychiatric disorders. Intracellular signaling in these circuits is largely mediated through the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway with an additional role for the cyclic guanosine monophosphate (cGMP)/ protein kinase G (PKG) pathway, both of which can be regulated by phosphodiesterase inhibitors (PDE inhibitors). Through their effects on cAMP response element-binding protein (CREB) and Dopamine- and cAMP-Regulated PhosphoProtein MR 32 kDa (DARPP-32), cyclic nucleotide pathways are involved in synaptic transmission, neuron excitability, neuroplasticity and neuroprotection. In this clinical review, we provide an overview of the current clinical status, discuss the general mechanism of action of PDE inhibitors in relation to the corticostriatal and hippocampal circuits and consider several translational challenges.
Collapse
Affiliation(s)
- P R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands.
| | - A Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - E P P Bollen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - J Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|