1
|
Vlasov I, Filatova E, Slominsky P, Shadrina M. Differential expression of Dusp1 and immediate early response genes in the hippocampus of rats, subjected to forced swim test. Sci Rep 2023; 13:9985. [PMID: 37340011 DOI: 10.1038/s41598-023-36611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
The forced swim test (FST) is widely used to screen for potential antidepressant drugs and treatments. Despite this, the nature of stillness during FST and whether it resembles "depressive-like behavior" are widely debated issues. Furthermore, despite being widely used as a behavioral assay, the effects of the FST on the brain transcriptome are rarely investigated. Therefore, in this study we have investigated changes in the transcriptome of the rat hippocampus 20 min and 24 h after FST exposure. RNA-Seq is performed on the hippocampus tissues of rats 20 min and 24 h after an FST. Differentially expressed genes (DEGs) were identified using limma and used to construct gene interaction networks. Fourteen differentially expressed genes (DEGs) were identified only in the 20-m group. No DEGs were identified 24 h after the FST. These genes were used for Gene Ontology term enrichment and gene-network construction. Based on the constructed gene-interaction networks, we identified a group of DEGs (Dusp1, Fos, Klf2, Ccn1, and Zfp36) that appeared significant based on multiple methods of downstream analysis. Dusp1 appears especially important, as its role in the pathogenesis of depression has been demonstrated both in various animal models of depression and in patients with depressive disorders.
Collapse
Affiliation(s)
- Ivan Vlasov
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, .
| | - Elena Filatova
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| | - Petr Slominsky
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| | - Maria Shadrina
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| |
Collapse
|
2
|
Zou Y, Guo Q, Chang Y, Zhong Y, Cheng L, Wei W. Effects of Maternal High-Fructose Diet on Long Non-Coding RNAs and Anxiety-like Behaviors in Offspring. Int J Mol Sci 2023; 24:ijms24054460. [PMID: 36901891 PMCID: PMC10003385 DOI: 10.3390/ijms24054460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Increased fructose intake is an international issue. A maternal high-fructose diet during gestation and lactation could affect nervous system development in offspring. Long non-coding RNA (lncRNA) plays an important role in brain biology. However, the mechanism whereby maternal high-fructose diets influence offspring brain development by affecting lncRNAs is still unclear. Here, we administered 13% and 40% fructose water to establish a maternal high-fructose diet model during gestation and lactation. To determine lncRNAs and their target genes, full-length RNA sequencing was performed using the Oxford Nanopore Technologies platform, and 882 lncRNAs were identified. Moreover, the 13% fructose group and the 40% fructose group had differentially expressed lncRNA genes compared with the control group. Enrichment analyses and co-expression analyses were performed to investigate the changes in biological function. Furthermore, enrichment analyses, behavioral science experiments, and molecular biology experiments all indicated that the fructose group offspring showed anxiety-like behaviors. In summary, this study provides insight into the molecular mechanisms underlying maternal high-fructose diet-induced lncRNA expression and co-expression of lncRNA and mRNA.
Collapse
|
3
|
Npas3 deficiency impairs cortical astrogenesis and induces autistic-like behaviors. Cell Rep 2022; 40:111289. [PMID: 36044858 DOI: 10.1016/j.celrep.2022.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Transcription factors with basic-helix-loop-helix (bHLH) motifs can control neural progenitor fate determination to neurons and oligodendrocytes. How bHLH transcription factors regulate astrogenesis remains largely unknown. Here, we report that NPAS3, a bHLH transcription factor, is a critical regulator of astrogenesis. Npas3 deficiency impairs cortical astrogenesis, correlating with abnormal brain development and autistic-like behaviors. Single-cell transcriptomes reveal that Npas3 knockout induces abnormal transition states in the differentiation trajectories from radial glia to astrocytes. Analysis of chromatin immunoprecipitation sequencing data in primary cortical astrocytes shows that NPAS3 binding targets are involved in functions of brain development and synapse organization. Co-culture assay further indicates that NPAS3-impaired astrogenesis induces synaptic deficits in wild-type neurons. Astrocyte-specific knockdown of NPAS3 in wild-type cortex causes synaptic and behavioral abnormalities associated with the core symptoms in autism. Together, our findings suggest that transcription factor NPAS3 regulates astrogenesis and its subsequent consequences for brain development and behavior.
Collapse
|
4
|
Song W, Li Q, Wang T, Li Y, Fan T, Zhang J, Wang Q, Pan J, Dong Q, Sun ZS, Wang Y. Putative complement control protein CSMD3 dysfunction impairs synaptogenesis and induces neurodevelopmental disorders. Brain Behav Immun 2022; 102:237-250. [PMID: 35245678 DOI: 10.1016/j.bbi.2022.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/10/2022] [Accepted: 02/26/2022] [Indexed: 12/23/2022] Open
Abstract
Recent studies have reported that complement-related proteins modulate brain development through regulating synapse processes in the cortex. CSMD3 belongs to a group of putative complement control proteins. However, its role in the central nervous system and synaptogenesis remains largely unknown. Here we report that CSMD3 deleterious mutations occur frequently in patients with neurodevelopmental disorders (NDDs). Csmd3 is predominantly expressed in cortical neurons of the developing cortex. In mice, Csmd3 disruption induced retarded development and NDD-related behaviors. Csmd3 deficiency impaired synaptogenesis and neurogenesis, allowing fewer neurons reaching the cortical plate. Csmd3 deficiency also induced perturbed functional networks in the developing cortex, involving a number of downregulated synapse-associated genes that influence early synaptic organization and upregulated genes related to immune activity. Our study provides mechanistic insights into the endogenous regulation of complement-related proteins in synaptic development and supports the pathological role of CSMD3 in NDDs.
Collapse
Affiliation(s)
- Wei Song
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Li
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Tao Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianda Fan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jianghong Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinrong Pan
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiwen Dong
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Miao Z, Li Y, Mao F, Zhang J, Sun ZS, Wang Y. Prenatal witness stress induces intergenerational anxiety-like behaviors and altered gene expression profiles in male mice. Neuropharmacology 2022; 202:108857. [PMID: 34728220 DOI: 10.1016/j.neuropharm.2021.108857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Prenatal cues imposed on an organism can exert long-term and even cross-generational influences on the physiology and behaviors. To date, numerous rodent models have been developed to mimic the effects of prenatal physical stress on offspring. Whether psychological stress during gestation exerts adverse influences on offspring remains investigated. Here, we report that prenatal witnessing the defeat process of the mated partner induces anxiety-like behaviors in F1 male, but not female offspring. These abnormal behaviors were not present in the F2 generation, indicating a sex-specific intergenerational effects. Genome-wide transcriptional profiling identified 71 up-regulated and 120 down-regulated genes shared in F0 maternal and F1 male hippocampus. F0 and F1 hippocampi also shared witness stress-sensitive and -resistant genes. Whole transcriptome comparison reveals that F1 dentate gyrus showed differential expression profiles from hippocampus. Few differentially expressed genes were identified in the dentate gyrus of F1 stress female mice, explaining why females were resistant to the stress. Finally, candidate drugs as the potential treatment for psychological stress were predicted according to transcriptional signatures, including the histone deacetylase inhibitor and dopamine receptor agonist. Our work provides a new model for better understanding the molecular basis of prenatal psychological stress, highlighting the complexity of stress and sex factors on emotion and behaviors.
Collapse
Affiliation(s)
- Zhuang Miao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yuanyuan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengbiao Mao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianghong Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Pallarés ME, Monteleone MC, Pastor V, Grillo Balboa J, Alzamendi A, Brocco MA, Antonelli MC. Early-Life Stress Reprograms Stress-Coping Abilities in Male and Female Juvenile Rats. Mol Neurobiol 2021; 58:5837-5856. [PMID: 34409559 DOI: 10.1007/s12035-021-02527-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/06/2021] [Indexed: 01/06/2023]
Abstract
Prenatal stress (PS) is a major risk factor for the development of emotional disorders in adulthood that may be mediated by an altered hypothalamic-pituitary-adrenal axis response to stress. Although the early onset of stress-related disorders is recognized as a major public health problem, to date, there are relatively few studies that have examined the incidence of early-life stressors in younger individuals. In this study, we assessed PS impact on the stress-coping response of juvenile offspring in behavioral tests and in the induced molecular changes in the hippocampus. Furthermore, we assessed if pregnancy stress could be driving changes in patterns of maternal behavior during early lactation. We found that PS modified stress-coping abilities of both sex offspring. In the hippocampus, PS increased the expression of bdnf-IV and crfr1 and induced sex difference changes on glucocorticoids and BDNF mRNA receptor levels. PS changed the hippocampal epigenetic landscape mainly in male offspring. Stress during pregnancy enhanced pup-directed behavior of stressed dams. Our study indicates that exposure to PS, in addition to enhanced maternal behavior, induces dynamic neurobehavioral variations at juvenile ages of the offspring that should be considered adaptive or maladaptive, depending on the characteristics of the confronting environment. Our present results highlight the importance to further explore risk factors that appear early in life that will be important to allow timely prevention strategies to later vulnerability to stress-related disorders.
Collapse
MESH Headings
- Animals
- Female
- Male
- Pregnancy
- Rats
- Adaptation, Psychological
- Anxiety/etiology
- Anxiety/genetics
- Anxiety/physiopathology
- Brain-Derived Neurotrophic Factor/biosynthesis
- Brain-Derived Neurotrophic Factor/genetics
- Corticosterone/blood
- Corticotropin-Releasing Hormone/biosynthesis
- Corticotropin-Releasing Hormone/genetics
- Elevated Plus Maze Test
- Gene Expression Regulation
- Glucocorticoids/biosynthesis
- Glucocorticoids/genetics
- Hippocampus/embryology
- Hippocampus/physiology
- Hypothalamo-Hypophyseal System/embryology
- Hypothalamo-Hypophyseal System/physiopathology
- Lactation/physiology
- Lactation/psychology
- Maternal Behavior
- Pituitary-Adrenal System/embryology
- Pituitary-Adrenal System/physiopathology
- Pregnancy Complications/physiopathology
- Pregnancy Complications/psychology
- Prenatal Exposure Delayed Effects
- Rats, Wistar
- Receptor, trkB/biosynthesis
- Receptor, trkB/genetics
- Receptors, Corticotropin-Releasing Hormone/biosynthesis
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Glucocorticoid/biosynthesis
- Receptors, Glucocorticoid/genetics
- Restraint, Physical/adverse effects
- Sex Characteristics
- Stress, Physiological/physiology
- Stress, Psychological/physiopathology
- Swimming
Collapse
Affiliation(s)
- María Eugenia Pallarés
- Laboratorio de Neuroprogramación Perinatal del Neurodesarrollo, Instituto de Biología Celular Y Neurociencias "Prof. Eduardo De Robertis" (IBCN)- Facultad de Medicina, Universidad de Buenos Aires, 2155 Paraguay St. CABA, C1121ABG, Buenos Aires, Argentina.
| | - Melisa Carolina Monteleone
- Instituto de Investigaciones Biotecnológicas (IIB), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Verónica Pastor
- Laboratorio de Neuroprogramación Perinatal del Neurodesarrollo, Instituto de Biología Celular Y Neurociencias "Prof. Eduardo De Robertis" (IBCN)- Facultad de Medicina, Universidad de Buenos Aires, 2155 Paraguay St. CABA, C1121ABG, Buenos Aires, Argentina
| | - Jazmín Grillo Balboa
- Laboratorio de Neuroprogramación Perinatal del Neurodesarrollo, Instituto de Biología Celular Y Neurociencias "Prof. Eduardo De Robertis" (IBCN)- Facultad de Medicina, Universidad de Buenos Aires, 2155 Paraguay St. CABA, C1121ABG, Buenos Aires, Argentina
| | - Ana Alzamendi
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Marcela Adriana Brocco
- Instituto de Investigaciones Biotecnológicas (IIB), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Marta Cristina Antonelli
- Laboratorio de Neuroprogramación Perinatal del Neurodesarrollo, Instituto de Biología Celular Y Neurociencias "Prof. Eduardo De Robertis" (IBCN)- Facultad de Medicina, Universidad de Buenos Aires, 2155 Paraguay St. CABA, C1121ABG, Buenos Aires, Argentina
| |
Collapse
|
7
|
The Importance of Epigenetics in Diagnostics and Treatment of Major Depressive Disorder. J Pers Med 2021; 11:jpm11030167. [PMID: 33804455 PMCID: PMC7999864 DOI: 10.3390/jpm11030167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies imply that there is a tight association between epigenetics and a molecular mechanism of major depressive disorder (MDD). Epigenetic modifications, i.e., DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA), are able to influence the severity of the disease and the outcome of the therapy. This article summarizes the most recent literature data on this topic, i.e., usage of histone deacetylases as therapeutic agents with an antidepressant effect and miRNAs or lncRNAs as markers of depression. Due to the noteworthy potential of the role of epigenetics in MDD diagnostics and therapy, we have gathered the most relevant data in this area.
Collapse
|
8
|
Trujillo V, Valentim-Lima E, Mencalha R, Carbalan QSR, Dos-Santos RC, Felintro V, Girardi CEN, Rorato R, Lustrino D, Reis LC, Mecawi AS. Neonatal Serotonin Depletion Induces Hyperactivity and Anxiolytic-like Sex-Dependent Effects in Adult Rats. Mol Neurobiol 2020; 58:1036-1051. [PMID: 33083963 DOI: 10.1007/s12035-020-02181-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The serotoninergic system plays an important role in the ontogeny of the mammalian central nervous system, and changes in serotonin production during development may lead to permanent changes in brain cytoarchitecture and function. The present study investigated the programming effects of neonatal serotonin depletion on behavior and molecular components of the serotoninergic system in adult male and female rats. Subcutaneous para-chlorophenylalanine (pCPA) administration (100 mg kg-1) was performed daily on postnatal days 8-16 to deplete brain serotonin content. During adulthood, elevated plus-maze, open field, social interaction, forced swimming, and food, saline, and sucrose intake tests were performed. Relative expression of serotonin neurotransmission components in several brain areas was determined by qPCR. Additionally, serotonin immunofluorescence and neuropeptide mRNA expression were assessed in dorsal raphe (DRN) and paraventricular (PVN) nuclei, respectively. Rat performance in behavioral tests demonstrated a general increase in locomotor activity and active escape behavior as well as decreased anxiety-like behavior after neonatal brain serotonin depletion. The behavioral programming effects due to neonatal serotonin depletion were more pronounced in females than males. At the gene expression level, the mRNA of Tph1 and Tph2 were lower in DRN while Htr2c was higher in the amygdala of pCPA-treated males, while Htr1a, Htr2c, Oxt, Avp, Crh, and Trh were not different in any treatments or sex in PVN. The results indicate that neonatal serotonin depletion has long-term consequences on locomotion and anxiety-like behavior associated with long-lasting molecular changes in the brain serotoninergic system in adult rats.
Collapse
Affiliation(s)
- Verónica Trujillo
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862, Edifício de Ciências Biomédicas, 7° andar, Vila Clementino, São Paulo, CEP 04023-062, Brasil
- Departament of Physiology, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Evandro Valentim-Lima
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862, Edifício de Ciências Biomédicas, 7° andar, Vila Clementino, São Paulo, CEP 04023-062, Brasil
| | - Rodrigo Mencalha
- Department of Natural Sciences, Universidade Federal do Acre, Rio Branco, Brazil
| | - Quézia S R Carbalan
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Raoni C Dos-Santos
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Viviane Felintro
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Carlos E N Girardi
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rodrigo Rorato
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862, Edifício de Ciências Biomédicas, 7° andar, Vila Clementino, São Paulo, CEP 04023-062, Brasil
| | - Danilo Lustrino
- Department of Physiology, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Luis C Reis
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - André S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862, Edifício de Ciências Biomédicas, 7° andar, Vila Clementino, São Paulo, CEP 04023-062, Brasil.
| |
Collapse
|