1
|
Hawn SE, Hicks TA, Latourrette C, Thomas A, Chaname D, Ehlke S, Powers Lott A. Psychometric evaluation of a novel measure of trauma-related cannabis use to cope. Eur J Psychotraumatol 2025; 16:2500141. [PMID: 40354168 PMCID: PMC12077481 DOI: 10.1080/20008066.2025.2500141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Abstract
Background: Posttraumatic stress disorder (PTSD) and cannabis use disorder (CUD) are commonly comorbid and are associated with many negative public health outcomes. One plausible explanation for this comorbidity comes from a self-medication framework, which suggests people use cannabis to cope with PTSD symptoms. Despite theoretical and empirical evidence for PTSD-related cannabis use to cope, no measure of this construct exists.Objective: We sought to address this gap by developing and validating a novel measure of PTSD-specific cannabis self-medication, which we have termed the Trauma-Related Cannabis Use to Cope (TRCU) questionnaire.Method: The psychometric properties of the TRCU and how it relates to relevant constructs were examined among a diverse sample of 345 trauma-exposed undergraduate cannabis users (Mage = 22.19, SD = 6.45; 46.7% White; 79.7% woman-identifying) using structural equation modelling in Mplus.Results: Study findings indicate that the TRCU is a more precise and targeted measure of cannabis use to cope with PTSD symptomology, as compared to existing measures of cannabis coping motives. Furthermore, our data support the use of the TRCU as a four-factor scale, assessing cannabis use to cope with the four DSM-5 PTSD symptom clusters (χ2(164) = 257.83, p < .001; CFI = .969; TLI = .965; RMSEA = .041). We also found strong evidence supporting the construct and criterion validity of the TRCU, specifically in relation to PTSD symptoms, cannabis use, and cannabis-related issues and dependence.Conclusions: Results support the use of the TRCU in future self-medication research and as a clinically useful screening tool for identifying individuals with PTSD who are at risk for developing CUD.
Collapse
Affiliation(s)
- Sage E. Hawn
- Department of Psychology, Old Dominion University, Norfolk, VA, USA
- Virginia Consortium Program in Clinical Psychology, Norfolk, VA, USA
| | - Terrell A. Hicks
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | | | - Anita Thomas
- Department of Psychology, Old Dominion University, Norfolk, VA, USA
| | - Daniela Chaname
- Department of Psychology, Old Dominion University, Norfolk, VA, USA
| | - Sarah Ehlke
- Department of Psychology, Old Dominion University, Norfolk, VA, USA
- Virginia Consortium Program in Clinical Psychology, Norfolk, VA, USA
| | - Abigail Powers Lott
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Izquierdo-Luengo C, Ponce-Renilla M, Ten-Blanco M, Arnanz MA, Tolón RM, Pereda-Pérez I, Berrendero F. Long-term consequences of adolescent exposure to the synthetic cannabinoid AB-FUBINACA in male and female mice. iScience 2025; 28:111857. [PMID: 39991544 PMCID: PMC11847088 DOI: 10.1016/j.isci.2025.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
The consumption of synthetic cannabinoids during adolescence is reported to be a risk factor for the appearance of psychiatric disorders later in life. AB-FUBINACA is a member of the indazole carboxamide family of synthetic cannabinoids present in Spice/K2 preparations. The present study sought to investigate the long-term effects of AB-FUBINACA consumption during adolescence in both male and female mice. AB-FUBINACA revealed several sex-dependent behavioral alterations. In this sense, the administration of this synthetic cannabinoid in female, but not male, mice induced psychotic-like symptoms which were associated with changes in dendritic arborization and density of mature dendritic spines in pyramidal neurons of the prefrontal cortex, as well as with an up-regulation of differentially expressed genes in this brain area. This study helps to clarify the potential late detrimental effects of this potent synthetic cannabinoid that may derive from its use during adolescence.
Collapse
Affiliation(s)
- Cristina Izquierdo-Luengo
- Institute of Life Sciences, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - María Ponce-Renilla
- Institute of Life Sciences, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Marc Ten-Blanco
- Institute of Life Sciences, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - María Andrea Arnanz
- Institute of Life Sciences, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Rosa María Tolón
- Institute of Life Sciences, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Inmaculada Pereda-Pérez
- Department of Psychobiology, Faculty of Psychology, Universidad Complutense, 28224 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Berrendero
- Institute of Life Sciences, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
3
|
Xie A, Cheng G, Wu J, Li Z, Yu G, Zhu X, Chen T. Highly BBB-permeable nanomedicine reverses neuroapoptosis and neuroinflammation to treat Alzheimer's disease. Biomaterials 2025; 312:122749. [PMID: 39121725 DOI: 10.1016/j.biomaterials.2024.122749] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The prevalence of Alzheimer's disease (AD) is increasing globally due to population aging. However, effective clinical treatment strategies for AD still remain elusive. The mechanisms underlying AD onset and the interplay between its pathological factors have so far been unclear. Evidence indicates that AD progression is ultimately driven by neuronal loss, which in turn is caused by neuroapoptosis and neuroinflammation. Therefore, the inhibition of neuroapoptosis and neuroinflammation could be a useful anti-AD strategy. Nonetheless, the delivery of active drug agents into the brain parenchyma is hindered by the blood-brain barrier (BBB). To address this challenge, we fabricated a black phosphorus nanosheet (BP)-based methylene blue (MB) delivery system (BP-MB) for AD therapy. After confirming the successful preparation of BP-MB, we proved that its BBB-crossing ability was enhanced under near-infrared light irradiation. In vitro pharmacodynamics analysis revealed that BP and MB could synergistically scavenge excessive reactive oxygen species (ROS) in okadaic acid (OA)-treated PC12 cells and lipopolysaccharide (LPS)-treated BV2 cells, thus efficiently reversing neuroapoptosis and neuroinflammation. To study in vivo pharmacodynamics, we established a mouse model of AD mice, and behavioral tests confirmed that BP-MB treatment could successfully improve cognitive function in these animals. Notably, the results of pathological evaluation were consistent with those of the in vitro assays. The findings demonstrated that BP-MB could scavenge excessive ROS and inhibit Tau hyperphosphorylation, thereby alleviating downstream neuroapoptosis and regulating the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Overall, this study highlights the therapeutic potential of a smart nanomedicine with the capability of reversing neuroapoptosis and neuroinflammation for AD treatment.
Collapse
Affiliation(s)
- Aihua Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Guowang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiaxin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zilin Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Guangtao Yu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Xiaozhen Zhu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
4
|
Liu Y, Tan Y, Cheng G, Ni Y, Xie A, Zhu X, Yin C, Zhang Y, Chen T. Customized Intranasal Hydrogel Delivering Methylene Blue Ameliorates Cognitive Dysfunction against Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307081. [PMID: 38395039 DOI: 10.1002/adma.202307081] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The accumulation of hyperphosphorylated tau protein aggregates is a key pathogenic event in Alzheimer's disease (AD) and induces mitochondrial dysfunction and reactive oxygen species overproduction. However, the treatment of AD remains challenging owning to the hindrance caused by the blood-brain barrier (BBB) and the complex pathology of AD. Nasal delivery represents an effective means of circumventing the BBB and delivering drugs to the brain. In this study, black phosphorus (BP) is used as a drug carrier, as well as an antioxidant, and loaded with a tau aggregation inhibitor, methylene blue (MB), to obtain BP-MB. For intranasal (IN) delivery, a thermosensitive hydrogel is fabricated by cross-linking carboxymethyl chitosan and aldehyde Pluronic F127 (F127-CHO) micelles. The BP-MB nanocomposite is incorporated into the hydrogel to obtain BP-MB@Gel. BP-MB@Gel could be injected intranasally, providing high nasal mucosal retention and controlled drug release. After IN administration, BP-MB is continuously released and delivered to the brain, exerting synergistic therapeutic effects by suppressing tau neuropathology, restoring mitochondrial function, and alleviating neuroinflammation, thus inducing cognitive improvements in mouse models of AD. These findings highlight a potential strategy for brain-targeted drug delivery in the management of the complex pathologies of AD.
Collapse
Affiliation(s)
- Yujing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yun Tan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guopan Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Aihua Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaozhen Zhu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
5
|
Gonçalves PFR, Nunes LED, Andrade BDS, Silva MOLD, Souza INDO, Assunção-Miranda I, Castro NG, Neves GA. Age-dependent memory impairment induced by co-exposure to nicotine and a synthetic cannabinoid in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110821. [PMID: 37442332 DOI: 10.1016/j.pnpbp.2023.110821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Co-use of marijuana and tobacco products is the second most common drug combination among adolescents. Nicotine (NIC) and cannabinoid use during adolescence induce similar detrimental changes, raising the hypothesis that simultaneous exposure could result in even more severe outcomes. Thus, we investigated whether the co-exposure to NIC and the synthetic cannabinoid WIN 55,212-2 (WIN) in adolescent mice causes behavioral outcomes different from those observed after exposure to a single drug. Male Swiss mice were exposed twice daily to NIC, WIN, or NIC + WIN during adolescence (PND28-47) or adulthood (PND70-89). Drug combination led to a greater reduction in weight gain in adolescent mice, while NIC-induced weight loss was observed in adults. During administration, NIC provoked hypothermia, and WIN produced hyperlocomotion in adolescent and adult mice. Animals exposed to NIC + WIN presented a profile of changes similar to those exposed to NIC. After drug exposure, changes in locomotion, thigmotaxis, social preference, prepulse inhibition, and working and recognition memory were evaluated. Adolescent but not adult mice exposed to NIC showed withdrawal-related hyperlocomotion unaffected by WIN co-administration. An age-specific impairment in object recognition memory was induced only by drug co-exposure during adolescence, which resolved spontaneously before reaching early adulthood. A transient decrease in hippocampal α7 nAChR subunit and CB1 receptor mRNA levels was induced by NIC exposure, which may be involved but is not enough to explain the memory impairment. Our work confirms the potential of NIC and cannabinoids association to aggravate some of the individual drug effects during critical neurodevelopmental periods.
Collapse
Affiliation(s)
- Patricia Felix Rolo Gonçalves
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Eduardo Duarte Nunes
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Brenda da Silva Andrade
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Isis Nem de Oliveira Souza
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Newton Gonçalves Castro
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilda Angela Neves
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Carrica LK, Choi CY, Walter FA, Noonan BL, Shi L, Johnson CT, Bradshaw HB, Liang NC, Gulley JM. Effects of combined use of alcohol and delta-9-tetrahydrocannibinol on working memory in Long Evans rats. Behav Brain Res 2023; 449:114475. [PMID: 37146720 PMCID: PMC10247469 DOI: 10.1016/j.bbr.2023.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
The increase in social acceptance and legalization of cannabis over the last several years is likely to increase the prevalence of its co-use with alcohol. In spite of this, the potential for effects unique to co-use of these drugs, especially in moderate doses, has been studied relatively infrequently. We addressed this in the current study using a laboratory rat model of voluntary drug intake. Periadolescent male and female Long-Evans rats were allowed to orally self-administer ethanol, Δ9-tetrahydrocannibinol (THC), both drugs, or their vehicle controls from postnatal day (P) 30 to P47. They were subsequently trained and tested on an instrumental behavior task that assesses attention, working memory and behavioral flexibility. Similar to previous work, consumption of THC reduced both ethanol and saccharin intake in both sexes. Blood samples taken 14 h following the final self-administration session revealed that females had higher levels of the THC metabolite THC-COOH. There were modest effects of THC on our delayed matching to position (DMTP) task, with females exhibiting reduced performance compared to their control group or male, drug using counterparts. However, there were no significant effects of co-use of ethanol or THC on DMTP performance, and drug effects were also not apparent in the reversal learning phase of the task when non-matching to position was required as the correct response. These findings are consistent with other published studies in rodent models showing that use of these drugs in low to moderate doses does not significantly impact memory or behavioral flexibility following a protracted abstinence period.
Collapse
Affiliation(s)
- Lauren K Carrica
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Chan Young Choi
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Francis A Walter
- Neuroscience Program, University of Illinois at Urbana-Champaign, USA
| | - Brynn L Noonan
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Linyuan Shi
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Clare T Johnson
- Department of Psychological & Brain Science, Indiana University, Bloomington, IN, USA
| | - Heather B Bradshaw
- Department of Psychological & Brain Science, Indiana University, Bloomington, IN, USA
| | - Nu-Chu Liang
- Department of Psychology, University of Illinois at Urbana-Champaign, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, USA
| | - Joshua M Gulley
- Department of Psychology, University of Illinois at Urbana-Champaign, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
7
|
Gasparyan A, Maldonado Sanchez D, Navarrete F, Sion A, Navarro D, García-Gutiérrez MS, Rubio Valladolid G, Jurado Barba R, Manzanares J. Cognitive Alterations in Addictive Disorders: A Translational Approach. Biomedicines 2023; 11:1796. [PMID: 37509436 PMCID: PMC10376598 DOI: 10.3390/biomedicines11071796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/30/2023] Open
Abstract
The cognitive decline in people with substance use disorders is well known and can be found during both the dependence and drug abstinence phases. At the clinical level, cognitive decline impairs the response to addiction treatment and increases dropout rates. It can be irreversible, even after the end of drug abuse consumption. Improving our understanding of the molecular and cellular alterations associated with cognitive decline could be essential to developing specific therapeutic strategies for its treatment. Developing animal models to simulate drug abuse-induced learning and memory alterations is critical to continue exploring this clinical situation. The main aim of this review is to summarize the most recent evidence on cognitive impairment and the associated biological markers in patients addicted to some of the most consumed drugs of abuse and in animal models simulating this clinical situation. The available information suggests the need to develop more studies to further explore the molecular alterations associated with cognitive impairment, with the ultimate goal of developing new potential therapeutic strategies.
Collapse
Affiliation(s)
- Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | | | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Ana Sion
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Faculty of Psychology, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Gabriel Rubio Valladolid
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Psychiatry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rosa Jurado Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Faculty of Health, Universidad Camilo José Cela, 28001 Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
8
|
Ferland JMN, Ellis RJ, Rompala G, Landry JA, Callens JE, Ly A, Frier MD, Uzamere TO, Hurd YL. Dose mediates the protracted effects of adolescent THC exposure on reward and stress reactivity in males relevant to perturbation of the basolateral amygdala transcriptome. Mol Psychiatry 2023; 28:2583-2593. [PMID: 35236956 DOI: 10.1038/s41380-022-01467-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 01/01/2023]
Abstract
Despite the belief that cannabis is relatively harmless, exposure during adolescence is associated with increased risk of developing several psychopathologies in adulthood. In addition to the high levels of use amongst teenagers, the potency of ∆-9-tetrahydrocannabinol (THC) has increased more than fourfold compared to even twenty years ago, and it is unclear whether potency influences the presentation of THC-induced behaviors. Expanded knowledge about the impact of adolescent THC exposure, especially high dose, is important to delineating neural networks and molecular mechanisms underlying psychiatric risk. Here, we observed that repeated exposure to low (1.5 mg/kg) and high (5 mg/kg) doses of THC during adolescence in male rats produced divergent effects on behavior in adulthood. Whereas low dose rats showed greater sensitivity to reward devaluation and also self-administered more heroin, high dose animals were significantly more reactive to social isolation stress. RNA sequencing of the basolateral amygdala, a region linked to reward processing and stress, revealed significant perturbations in transcripts and gene networks related to synaptic plasticity and HPA axis that were distinct to THC dose as well as stress. In silico single-cell deconvolution of the RNAseq data revealed a significant reduction of astrocyte-specific genes related to glutamate regulation in stressed high dose animals, a result paired anatomically with greater astrocyte-to-neuron ratios and hypotrophic astrocytes. These findings emphasize the importance of dose and behavioral state on the presentation of THC-related behavioral phenotypes in adulthood and dysregulation of astrocytes as an interface for the protracted effects of high dose THC and subsequent stress sensitivity.
Collapse
Affiliation(s)
- Jacqueline-Marie N Ferland
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Randall J Ellis
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Joseph A Landry
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - James E Callens
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Annie Ly
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Micah D Frier
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Teddy O Uzamere
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA
| | - Yasmin L Hurd
- Icahn School of Medicine at Mount Sinai, Departments of Neuroscience and Psychiatry, Addiction Institute of Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Carrica LK, Choi CY, Walter FA, Noonan BL, Shi L, Johnson CT, Bradshaw HB, Liang NC, Gulley JM. Effects of combined use of alcohol and delta-9-tetrahydrocannibinol on working memory in Long Evans rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526698. [PMID: 36778500 PMCID: PMC9915622 DOI: 10.1101/2023.02.02.526698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The increase in social acceptance and legalization of cannabis over the last several years is likely to increase the prevalence of its co-use with alcohol. In spite of this, the potential for effects unique to co-use of these drugs, especially in moderate doses, has been studied relatively infrequently. We addressed this in the current study using a laboratory rat model of voluntary drug intake. Periadolescent male and female Long-Evans rats were allowed to orally self-administer ethanol, Î" 9 -tetrahydrocannibinol (THC), both drugs, or their vehicle controls from postnatal day (P) 30 to P47. They were subsequently trained and tested on an instrumental behavior task that assesses attention, working memory and behavioral flexibility. Similar to previous work, consumption of THC reduced both ethanol and saccharin intake in both sexes. Blood samples taken 14h following the final self-administration session revealed that females had higher levels of the THC metabolite THC-COOH. There were modest effects of THC on our delayed matching to position (DMTP) task, with females exhibiting reduced performance compared to their control group or male, drug using counterparts. However, there were no significant effects of co-use of ethanol or THC on DMTP performance, and drug effects were also not apparent in the reversal learning phase of the task when non-matching to position was required as the correct response. These findings are consistent with other published studies in rodent models showing that use of these drugs in low to moderate doses does not significantly impact memory or behavioral flexibility following a protracted abstinence period.
Collapse
Affiliation(s)
- Lauren K. Carrica
- Department of Psychology, University of Illinois at Urbana-Champaign
| | - Chan Young Choi
- Department of Psychology, University of Illinois at Urbana-Champaign
| | | | - Brynn L. Noonan
- Department of Psychology, University of Illinois at Urbana-Champaign
| | - Linyuan Shi
- Department of Psychology, University of Illinois at Urbana-Champaign
| | - Clare T. Johnson
- Department of Psychological & Brain Science, Indiana University, Bloomington, Indiana
| | - Heather B. Bradshaw
- Department of Psychological & Brain Science, Indiana University, Bloomington, Indiana
| | - Nu-Chu Liang
- Department of Psychology, University of Illinois at Urbana-Champaign
- Neuroscience Program, University of Illinois at Urbana-Champaign
| | - Joshua M. Gulley
- Department of Psychology, University of Illinois at Urbana-Champaign
- Neuroscience Program, University of Illinois at Urbana-Champaign
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign
| |
Collapse
|
10
|
Niloy N, Hediyal TA, Vichitra C, Sonali S, Chidambaram SB, Gorantla VR, Mahalakshmi AM. Effect of Cannabis on Memory Consolidation, Learning and Retrieval and Its Current Legal Status in India: A Review. Biomolecules 2023; 13:biom13010162. [PMID: 36671547 PMCID: PMC9855787 DOI: 10.3390/biom13010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Cannabis is one of the oldest crops grown, traditionally held religious attachments in various cultures for its medicinal use much before its introduction to Western medicine. Multiple preclinical and clinical investigations have explored the beneficial effects of cannabis in various neurocognitive and neurodegenerative diseases affecting the cognitive domains. Tetrahydrocannabinol (THC), the major psychoactive component, is responsible for cognition-related deficits, while cannabidiol (CBD), a non-psychoactive phytocannabinoid, has been shown to elicit neuroprotective activity. In the present integrative review, the authors focus on the effects of cannabis on the different cognitive domains, including learning, consolidation, and retrieval. The present study is the first attempt in which significant focus has been imparted on all three aspects of cognition, thus linking to its usage. Furthermore, the investigators have also depicted the current legal position of cannabis in India and the requirement for reforms.
Collapse
Affiliation(s)
- Nandi Niloy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Vasavi Rakesh Gorantla
- Department of Anatomical Science, St. George’s University, University Centre, St. Georges FZ818, Grenada
- Correspondence: (V.R.G.); (A.M.M.)
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Correspondence: (V.R.G.); (A.M.M.)
| |
Collapse
|
11
|
Kayir H, Ruffolo J, McCunn P, Khokhar JY. The Relationship Between Cannabis, Cognition, and Schizophrenia: It's Complicated. Curr Top Behav Neurosci 2023; 63:437-461. [PMID: 36318403 DOI: 10.1007/7854_2022_396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The consequences of cannabis use, especially in the context of schizophrenia, have gained increased importance with the legalization of cannabis in North America and across the globe. Cannabis use has multifaceted impacts on cognition in schizophrenia patients and healthy subjects. Healthy subjects, particularly those who initiated cannabis use at earlier ages and used high-potency cannabis for longer durations, exhibited poorer cognition mainly in working memory and attention. Cannabis use in schizophrenia has been associated with symptom exacerbation, longer and more frequent psychotic episodes, and poorer treatment outcomes. However, cannabis-using patients have better overall cognitive performance compared to patients who were not cannabis users. Interestingly, these effects were only apparent in lifetime cannabis users, but not in current (or within last 6 months) users. Moreover, higher frequency and earlier age of cannabis use initiation (i.e., before 17 years of age) were associated with better cognitive performance, although they had an earlier illness onset. Three possible hypotheses seem to come forward to explain this paradox. First, some components of cannabis may have antipsychotic or cognitive-enhancing properties. Secondly, chronic cannabis use may alter endocannabinoid signaling in the brain which could be a protective factor for developing psychosis or cognitive impairments. A third explanation could be their representation of a phenotypically distinct patient group with more intact cognitive functioning and less neurodevelopmental pathology. Multiple factors need to be considered to understand the complex relationship between cannabis, cognitive function, and schizophrenia. In short, age at initiation, duration and rate of cannabis use, abstinence duration, co-use of substances and alcohol, prescribed medications, relative cannabinoid composition and potency of cannabis, presence of genetic and environmental vulnerability factors are prominent contributors to the variability in outcomes. Animal studies support the disruptive effects of Δ9-tetrahydrocannabinol (THC) administration during adolescence on attention and memory performance. They provide insights about interaction of cannabinoid receptors with other neurotransmitter systems, such as GABA and glutamate, and other regulatory molecules, such as PSD95 and synaptophysin. Cannabidiol (CBD), on the other hand, can improve cognitive deficits seen in neurodevelopmental and chemically-induced animal models of schizophrenia. Future studies focusing on bridging the translational gaps between human and animal studies, through the use of translationally relevant methods of exposure (e.g., vaping), consistent behavioral assessments, and congruent circuit interrogations (e.g., imaging) will help to further clarify this complex picture.
Collapse
Affiliation(s)
- Hakan Kayir
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jessica Ruffolo
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patrick McCunn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
12
|
Penman SL, Berthold EC, Mihalkovic A, Hammond N, McCurdy CR, Blum K, Eiden RD, Sharma A, Thanos PK. Vaporized Delta-9-tetrahydrocannabinol Inhalation in Female Sprague Dawley Rats: A Pharmacokinetic and Behavioral Assessment. Curr Pharm Des 2023; 29:2149-2160. [PMID: 37114788 PMCID: PMC10979821 DOI: 10.2174/1381612829666230419093809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Delta-9-tetrahydrocannabinol (THC) is the main psychoactive component of cannabis. Historically, rodent studies examining the effects of THC have used intraperitoneal injection as the route of administration, heavily focusing on male subjects. However, human cannabis use is often through inhalation rather than injection. OBJECTIVE We sought to characterize the pharmacokinetic and phenotypic profile of acutely inhaled THC in female rats, compared to intraperitoneal injection, to identify any differences in exposure of THC between routes of administration. METHODS Adult female rats were administered THC via inhalation or intraperitoneal injection. Serum samples from multiple time points were analyzed for THC and metabolites 11-hydroxy-delta-9-tetrahydrocannabinol and 11-nor-9-carboxy-delta-9-tetrahydrocannabinol using ultra-performance liquid chromatography-tandem mass spectrometry. Rats were similarly treated for locomotor activity analysis. RESULTS Rats treated with 2 mg/kg THC intraperitoneally reached a maximum serum THC concentration of 107.7 ± 21.9 ng/mL. Multiple THC inhalation doses were also examined (0.25 mL of 40 or 160 mg/mL THC), achieving maximum concentrations of 43.3 ± 7.2 and 71.6 ± 22.5 ng/mL THC in serum, respectively. Significantly reduced vertical locomotor activity was observed in the lower inhaled dose of THC and the intraperitoneal injected THC dose compared to vehicle treatment. CONCLUSION This study established a simple rodent model of inhaled THC, demonstrating the pharmacokinetic and locomotor profile of acute THC inhalation, compared to an i.p. injected THC dose in female subjects. These results will help support future inhalation THC rat research which is especially important when researching behavior and neurochemical effects of inhaled THC as a model of human cannabis use.
Collapse
Affiliation(s)
- Samantha L. Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo. Buffalo, NY USA
| | - Erin C. Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida. Gainesville, FL USA
| | - Abrianna Mihalkovic
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo. Buffalo, NY USA
| | - Nikki Hammond
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo. Buffalo, NY USA
| | - Christopher R. McCurdy
- Department of Pharmaceutics, College of Pharmacy, University of Florida. Gainesville, FL USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida. Gainesville, FL USA
- Department of Medicinal Chemistry, University of Florida. Gainesville, FL, USA
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Mental Health & Sports, Exercise and Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Rina D. Eiden
- Department of Psychology, Pennsylvania State University. State College, PA USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida. Gainesville, FL USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida. Gainesville, FL USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo. Buffalo, NY USA
- Department of Psychology, University at Buffalo. Buffalo, NY, USA
| |
Collapse
|
13
|
Dos(e)Age: Role of Dose and Age in the Long-Term Effect of Cannabinoids on Cognition. Molecules 2022; 27:molecules27041411. [PMID: 35209200 PMCID: PMC8876668 DOI: 10.3390/molecules27041411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Cannabis is still the most widely used illicit drug around the world. While its use has always been prevalent among adolescents, recent evidence suggests that its consumption is also increasing among other population groups, such as pregnant women and aged people. Given the known impact of cannabis on brain development and behavior, it is important to dissect the possible long-term impact of its use across different age groups, especially on measures of cognitive performance. Animal models of cannabinoid exposure have represented a fundamental tool to characterize the long-lasting consequences of cannabinoids on cognitive performance and helped to identify possible factors that could modulate cannabinoids effects in the long term, such as the age of exposure and doses administered. This scoping review was systematically conducted using PubMed and includes papers published from 2015 to December 2021 that examined the effects of cannabinoids, either natural or synthetic, on cognitive performance in animal models where exposure occurred in the prenatal period, during adolescence, or in older animals. Overall, available data clearly point to a crucial role of age in determining the long-term effect of cannabinoid on cognition, highlighting possible detrimental consequences during brain development (prenatal and adolescent exposure) and beneficial outcomes in old age. In contrast, despite the recent advances in the field, it appears difficult to clearly establish a possible role of dosage in the effects of cannabinoids on cognition, especially when the adolescent period is taken into account.
Collapse
|
14
|
Ruiz CM, Torrens A, Lallai V, Castillo E, Manca L, Martinez MX, Justeson DN, Fowler CD, Piomelli D, Mahler SV. Pharmacokinetic and pharmacodynamic properties of aerosolized ("vaped") THC in adolescent male and female rats. Psychopharmacology (Berl) 2021; 238:3595-3605. [PMID: 34495367 PMCID: PMC8665923 DOI: 10.1007/s00213-021-05976-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE Adolescent exposure to ∆9-tetrahydrocannabinol (THC), the psychotropic constituent of cannabis, might affect brain development, and in rodent models leads to long-term behavioral and physiological alterations. Yet, the basic pharmacology of this drug in adolescent rodents, especially when ingested via ecologically relevant routes like aerosol inhalation, commonly referred to as "vaping," is still poorly characterized. Moreover, sex differences exist in THC metabolism, kinetics, and behavioral effects, but these have not been rigorously examined after vapor dosing in adolescents. OBJECTIVES We investigated the pharmacokinetics and pharmacodynamics of aerosolized THC (30 min inhalation exposure, 25 or 100 mg/ml) in adolescent Wistar rats of both sexes. METHODS Liquid chromatography/mass spectrometry analysis of THC and its major metabolites was conducted on blood plasma and brain tissue at 5, 30, 60, and 120 min following a 30-min aerosol dosing session. Effects on activity in a novel environment for 120 min after aerosol, and temperature, were measured in separate rats. RESULTS We found sex-dependent differences in the pharmacokinetics of THC and its active (11-OH-THC) and inactive (11-COOH-THC) metabolites in the blood and brain, along with dose- and sex-dependent effects on anxiety-like and exploratory behaviors; namely, greater 11-OH-THC levels accompanied by greater behavioral effects in females at the low dose but similar hypothermic effects in both sexes at the high dose. CONCLUSIONS These results provide a benchmark for dosing adolescent rats with aerosolized (or "vaped") THC, which could facilitate adoption by other labs of this potentially human-relevant THC exposure model to understand cannabis effects on the developing brain.
Collapse
Affiliation(s)
- C M Ruiz
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - A Torrens
- Department of Anatomy & Neurobiology, University of California Irvine, 1244 Gillespie Hall, Irvine, CA, 92697, USA
| | - V Lallai
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - E Castillo
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - L Manca
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - M X Martinez
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - D N Justeson
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - C D Fowler
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA
| | - D Piomelli
- Department of Anatomy & Neurobiology, University of California Irvine, 1244 Gillespie Hall, Irvine, CA, 92697, USA
| | - S V Mahler
- Department of Neurobiology & Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA, 92697, USA.
| |
Collapse
|
15
|
Reyes-Cuapio E, Coronado-Álvarez A, Quiroga C, Alcaraz-Silva J, Ruíz-Ruíz JC, Imperatori C, Murillo-Rodríguez E. Juvenile cannabidiol chronic treatments produce robust changes in metabolic markers in adult male Wistar rats. Eur J Pharmacol 2021; 910:174463. [PMID: 34478689 DOI: 10.1016/j.ejphar.2021.174463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
The use of cannabidiol (CBD), the non-psychotropic compound derived from Cannabis sativa, for therapeutic purposes is growing exponentially by targeting the management of multiple medical disorders, including metabolic-related diseases. Nevertheless, substantial questions have emerged in concerning the potential metabolic disturbances in adulthood as consequence of the long-term uses of CBD during early years of life. Therefore, we studied whether chronic CBD injections (5, 10 or 30 mg/kg; i.p.) given to juvenile rats (from post-natal day [PND] 30) for 14 days might influence in adulthood the activity of metabolic markers, such as glucose, total cholesterol, triglycerides as well as activity of antioxidants (DPPH) from plasma, white adipose tissue (WAT), brown adipose tissue (BAT), liver, and hypothalamus. Our results showed that adult rats treated during juvenile ages with CBD (5, 10 or 30 mg/kg) for two weeks increased the contents of glucose whereas with no changes on total cholesterol in adulthood were observed. Additionally, a significant decrease in the levels of triglycerides were found in plasma, WAT, BAT, and liver in adult rats treated with chronic injections of CBD during the adolescence. However, unexpectedly, the contents of triglycerides in hypothalamus were found enhanced. Finally, the DPPH assay showed a significant enhancement in triglycerides analyzed from WAT and liver whereas opposite findings were observed in BAT and no significant changes were found in hypothalamus in adult rats that received during the adolescence chronic injections of CBD. In conclusion, repeated CBD administration to juvenile rats induced significant alterations in multiple metabolic markers analyzed in the adulthood. Our findings highlight the relevance of chronic CBD treatment in disturbed metabolic activity and remark the need for studying the underlying mechanisms involved.
Collapse
Affiliation(s)
- Elena Reyes-Cuapio
- Escuela de Nutrición, División Ciencias de la Salud, Universidad Anáhuac Mayab Mérida, Yucatán, Mexico; Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group, Mexico
| | - Astrid Coronado-Álvarez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group, Mexico
| | - Carla Quiroga
- Escuela de Nutrición, División Ciencias de la Salud, Universidad Anáhuac Mayab Mérida, Yucatán, Mexico; Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group, Mexico
| | - Jocelyne Alcaraz-Silva
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group, Mexico
| | - Jorge Carlos Ruíz-Ruíz
- Escuela de Nutrición, División Ciencias de la Salud, Universidad Anáhuac Mayab Mérida, Yucatán, Mexico
| | - Claudio Imperatori
- Intercontinental Neuroscience Research Group, Mexico; Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group, Mexico.
| |
Collapse
|
16
|
Stark T, Di Martino S, Drago F, Wotjak CT, Micale V. Phytocannabinoids and schizophrenia: Focus on adolescence as a critical window of enhanced vulnerability and opportunity for treatment. Pharmacol Res 2021; 174:105938. [PMID: 34655773 DOI: 10.1016/j.phrs.2021.105938] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
The recent shift in socio-political debates and growing liberalization of Cannabis use across the globe has raised concern regarding its impact on vulnerable populations such as adolescents. Concurrent with declining perception of Cannabis harms, more adolescents are using it daily in several countries and consuming marijuana strains with high content of psychotropic delta (9)-tetrahydrocannabinol (THC). These dual, related trends seem to facilitate the development of compromised social and cognitive performance at adulthood, which are described in preclinical and human studies. Cannabis exerts its effects via altering signalling within the endocannabinoid system (ECS), which modulates the stress circuitry during the neurodevelopment. In this context early interventions appear to circumvent the emergence of adult neurodevelopmental deficits. Accordingly, Cannabis sativa second-most abundant compound, cannabidiol (CBD), emerges as a potential therapeutic agent to treat neuropsychiatric disorders. We first focus on human and preclinical studies on the long-term effects induced by adolescent THC exposure as a "critical window" of enhanced neurophysiological vulnerability, which could be involved in the pathophysiology of schizophrenia and related primary psychotic disorders. Then, we focus on adolescence as a "window of opportunity" for early pharmacological treatment, as novel risk reduction strategy for neurodevelopmental disorders. Thus, we review current preclinical and clinical evidence regarding the efficacy of CBD in terms of positive, negative and cognitive symptoms treatment, safety profile, and molecular targets.
Collapse
Affiliation(s)
- Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carsten T Wotjak
- Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach an der Riss, Germany
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
17
|
Reversing the Psychiatric Effects of Neurodevelopmental Cannabinoid Exposure: Exploring Pharmacotherapeutic Interventions for Symptom Improvement. Int J Mol Sci 2021; 22:ijms22157861. [PMID: 34360626 PMCID: PMC8346164 DOI: 10.3390/ijms22157861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental exposure to psychoactive compounds in cannabis, specifically THC, is associated with a variety of long-term psychopathological outcomes. This increased risk includes a higher prevalence of schizophrenia, mood and anxiety disorders, and cognitive impairments. Clinical and pre-clinical research continues to identify a wide array of underlying neuropathophysiological sequelae and mechanisms that may underlie THC-related psychiatric risk vulnerability, particularly following adolescent cannabis exposure. A common theme among these studies is the ability of developmental THC exposure to induce long-term adaptations in the mesocorticolimbic system which resemble pathological endophenotypes associated with these disorders. This narrative review will summarize recent clinical and pre-clinical evidence that has elucidated these THC-induced developmental risk factors and examine how specific pharmacotherapeutic interventions may serve to reverse or perhaps prevent these cannabis-related risk outcomes.
Collapse
|
18
|
Bara A, Ferland JMN, Rompala G, Szutorisz H, Hurd YL. Cannabis and synaptic reprogramming of the developing brain. Nat Rev Neurosci 2021; 22:423-438. [PMID: 34021274 DOI: 10.1038/s41583-021-00465-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Recent years have been transformational in regard to the perception of the health risks and benefits of cannabis with increased acceptance of use. This has unintended neurodevelopmental implications given the increased use of cannabis and the potent levels of Δ9-tetrahydrocannabinol today being consumed by pregnant women, young mothers and teens. In this Review, we provide an overview of the neurobiological effects of cannabinoid exposure during prenatal/perinatal and adolescent periods, in which the endogenous cannabinoid system plays a fundamental role in neurodevelopmental processes. We highlight impaired synaptic plasticity as characteristic of developmental exposure and the important contribution of epigenetic reprogramming that maintains the long-term impact into adulthood and across generations. Such epigenetic influence by its very nature being highly responsive to the environment also provides the potential to diminish neural perturbations associated with developmental cannabis exposure.
Collapse
Affiliation(s)
- Anissa Bara
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Jacqueline-Marie N Ferland
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Gregory Rompala
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Henrietta Szutorisz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA.,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA.,Friedman Brain Institute, Mount Sinai, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA. .,Addiction Institute of Mount Sinai, Mount Sinai, NY, USA. .,Friedman Brain Institute, Mount Sinai, NY, USA.
| |
Collapse
|
19
|
Ruiz CM, Torrens A, Castillo E, Perrone CR, Cevallos J, Inshishian VC, Harder EV, Justeson DN, Huestis MA, Swarup V, Piomelli D, Mahler SV. Pharmacokinetic, behavioral, and brain activity effects of Δ 9-tetrahydrocannabinol in adolescent male and female rats. Neuropsychopharmacology 2021; 46:959-969. [PMID: 32927465 PMCID: PMC8115040 DOI: 10.1038/s41386-020-00839-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023]
Abstract
Δ9-tetrahydrocannabinol (THC) is the intoxicating constituent of cannabis and is responsible for the drug's reinforcing effects. Retrospective human studies suggest that cannabis use during adolescence is linked to long-term negative psychological outcomes, but in such studies it is difficult to distinguish the effects of THC from those of coexisting factors. Therefore, translationally relevant animal models are required to properly investigate THC effects in adolescents. However, though the relevance of these studies depends upon human-relevant dosing, surprisingly little is known about THC pharmacology and its effects on behavior and brain activity in adolescent rodents-especially in females. Here, we conducted a systematic investigation of THC pharmacokinetics, metabolism and distribution in blood and brain, and of THC effects upon behavior and neural activity in adolescent Long Evans rats of both sexes. We administered THC during an early-middle adolescent window (postnatal days 27-45) in which the brain may be particularly sensitive to developmental perturbation by THC. We determined the pharmacokinetic profile of THC and its main first-pass metabolites (11-hydroxy-THC and 11-nor-9-carboxy-THC) in blood and brain following acute injection (0.5 or 5 mg/kg, intraperitoneal). We also evaluated THC effects on behavioral assays of anxiety, locomotion, and place conditioning, as well as c-Fos expression in 14 brain regions. Confirming previous work, we find marked sex differences in THC metabolism, including a female-specific elevation in the bioactive metabolite 11-hydroxy-THC. Furthermore, we find dose-dependent and sex-dependent effects on behavior, neural activity, and functional connectivity across multiple nodes of brain stress and reward networks. Our findings are relevant for interpreting results of rat adolescent THC exposure studies, and may lend new insights into how THC impacts the brain in a sex-dependent manner.
Collapse
Affiliation(s)
- Christina M. Ruiz
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA 92697 USA
| | - Alexa Torrens
- grid.266093.80000 0001 0668 7243Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697 USA
| | - Erik Castillo
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA 92697 USA
| | - Christina R. Perrone
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA 92697 USA ,grid.266093.80000 0001 0668 7243Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697 USA
| | - Jenny Cevallos
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA 92697 USA
| | - Victoria C. Inshishian
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA 92697 USA ,grid.266093.80000 0001 0668 7243Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697 USA
| | - Eden V. Harder
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA 92697 USA
| | - Drew N. Justeson
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA 92697 USA
| | - Marilyn A. Huestis
- grid.265008.90000 0001 2166 5843Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Vivek Swarup
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA 92697 USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA. .,Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA. .,Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA.
| | - Stephen V. Mahler
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA 92697 USA
| |
Collapse
|
20
|
Effects of vapourized THC and voluntary alcohol drinking during adolescence on cognition, reward, and anxiety-like behaviours in rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110141. [PMID: 33069816 DOI: 10.1016/j.pnpbp.2020.110141] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022]
Abstract
Cannabis and alcohol co-use is prevalent in adolescence, but the long-term behavioural effects of this co-use remain largely unexplored. The aim of this study is to investigate the effects of adolescent alcohol and Δ9-tetrahydracannabinol (THC) vapour co-exposure on cognitive- and reward-related behaviours. Male Sprague-Dawley rats received vapourized THC (10 mg vapourized THC/four adolescent rats) or vehicle every other day (from post-natal day (PND) 28-42) and had continuous voluntary access to ethanol (10% volume/volume) in adolescence. Alcohol intake was measured during the exposure period to assess the acute effects of THC on alcohol consumption. In adulthood (PND 56+), rats underwent behavioural testing. Adolescent rats showed higher alcohol preference, assessed using the two-bottle choice test, on days on which they were not exposed to THC vapour. In adulthood, rats that drank alcohol as adolescents exhibited short-term memory deficits and showed decreased alcohol preference; on the other hand, rats exposed to THC vapour showed learning impairments in the delay-discounting task. Vapourized THC, alcohol or their combination had no effect on anxiety-like behaviours in adulthood. Our results show that although adolescent THC exposure acutely affects alcohol drinking, adolescent alcohol and cannabis co-use may not produce long-term additive effects.
Collapse
|
21
|
Poulia N, Delis F, Brakatselos C, Polissidis A, Koutmani Y, Kokras N, Dalla C, Politis PK, Antoniou K. Detrimental effects of adolescent escalating low-dose Δ 9 -tetrahydrocannabinol leads to a specific bio-behavioural profile in adult male rats. Br J Pharmacol 2021; 178:1722-1736. [PMID: 33496341 DOI: 10.1111/bph.15394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/27/2020] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Adolescent cannabis use is associated with adult psychopathology. When Δ9 -tetrahydrocannabinol (THC), mainly in high doses, is administered to adolescence rats there are also long lasting effects in adults. This study aims to determine the specific adult bio-behavioural profile after adolescent low-dose THC, which better mirrors adolescent recreational cannabis use. EXPERIMENTAL APPROACH Adolescent male Sprague-Dawley rats were treated with escalating low-dose of THC. In adulthood, they were evaluated for their spontaneous locomotion, sensorimotor gating, higher order and spatial cognitive functions. Dopaminergic activity and cannabinoid receptor expression were measured in distinct brain regions. Hippocampal neurogenic activity of neural stem cells was determined and protein levels of neuroplasticity-related biomarkers were quantified. Adolescent low-dose THC exposure increased spontaneous open-field activity, without affecting prepulse inhibition and attentional set-shifting performance. Region-specific dopaminergic alterations and CB1 receptor up-regulation in the prefrontal cortex were observed. Impaired spatial memory, as assessed with the object location task and Morris water maze test, was associated with significantly decreased proliferative activity (SOX2-positive cells), neurogenic potential (decreased doublecortin-positive cells) in the adult hippocampus and defective neuroplasticity, including reduced BDNF expression in the hippocampus and prefrontal cortex. KEY RESULTS Our findings reveal the adverse impact of adolescent low-dose THC on the psychomotor profile, dopaminergic neurotransmission, compensatory cannabinoid receptor response, cognition-related neurobiological and behavioural functions. CONCLUSION AND IMPLICATIONS Our adolescent low-dose THC animal model does not induce tangible psychotic-like effects, such as those reported in high-dose THC studies, but it impairs cognitive functions and points to hippocampal vulnerability and disrupted neurogenesis.
Collapse
Affiliation(s)
- Nafsika Poulia
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Charalampos Brakatselos
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Alexia Polissidis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Yassemi Koutmani
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,First Department of Psychiatry, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis K Politis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
22
|
Dawes C, Bickerdike A, O'Neill C, Carneiro Pereira S, Waddington JL, Moran PM, O'Tuathaigh CMP. Cannabis Use, Schizotypy and Kamin Blocking Performance. Front Psychiatry 2021; 12:633476. [PMID: 34887781 PMCID: PMC8649723 DOI: 10.3389/fpsyt.2021.633476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Cannabis use has been associated with increased risk for a first episode of psychosis and inappropriate assignment of salience to extraneous stimuli has been proposed as a mechanism underlying this association. Psychosis-prone (especially schizotypal) personality traits are associated with deficits in associative learning tasks that measure salience allocation. The aim of this study was to examine the relationship between history of cannabis use and Kamin blocking (KB), a form of selective associative learning, in a non-clinical sample. Additionally, KB was examined in relation to self-reported schizotypy and aberrant salience scale profiles. A cross-sectional study was conducted in 307 healthy participants with no previous psychiatric or neurological history. Participants were recruited and tested using the Testable Minds behavioural testing platform. KB was calculated using Oades' "mouse in the house task", performance of which is disrupted in schizophrenia patients. Schizotypy was measured using the Schizotypal Personality Questionnaire (SPQ), and the Aberrant Salience Inventory (ASI) was used to assess self-reported unusual or inappropriate salience. The modified Cannabis Experience Questionnaire (CEQm) was used to collect detailed history of use of cannabis and other recreational drugs. Regression models and Bayesian t-tests or ANOVA (or non-parametric equivalents) examined differences in KB based on lifetime or current cannabis use (frequent use during previous year), as well as frequency of use among those who had previously used cannabis. Neither lifetime nor current cannabis use was associated with any significant change in total or trial-specific KB scores. Current cannabis use was associated with higher Disorganised SPQ dimension scores and higher total and sub-scale values for the ASI. A modest positive association was observed between total KB score and Disorganised SPQ dimension scores, but no relationships were found between KB and other SPQ measures. Higher scores on "Senses Sharpening" ASI sub-scale predicted decreased KB score only in participants who have not engaged in recent cannabis use. These results are discussed in the context of our understanding of the effects of long-term cannabis exposure on salience attribution, as well as inconsistencies in the literature with respect to both the relationship between KB and schizotypy and the measurement of KB associative learning phenomena.
Collapse
Affiliation(s)
- Christopher Dawes
- School of Psychology, University Park, University of Nottingham, Nottingham, United Kingdom
| | - Andrea Bickerdike
- Department of Sport, Leisure, and Childhood Studies, Munster Technological University, Cork, Ireland
| | - Cian O'Neill
- Department of Sport, Leisure, and Childhood Studies, Munster Technological University, Cork, Ireland
| | - Sarah Carneiro Pereira
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paula M Moran
- School of Psychology, University Park, University of Nottingham, Nottingham, United Kingdom
| | - Colm M P O'Tuathaigh
- Medical Education Unit, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Thorpe HHA, Hamidullah S, Jenkins BW, Khokhar JY. Adolescent neurodevelopment and substance use: Receptor expression and behavioral consequences. Pharmacol Ther 2019; 206:107431. [PMID: 31706976 DOI: 10.1016/j.pharmthera.2019.107431] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Adolescence is the transitional period between childhood and adulthood, during which extensive brain development occurs. Since this period also overlaps with the initiation of drug use, it is important to consider how substance use during this time might produce long-term neurobiological alterations, especially against the backdrop of developmental changes in neurotransmission. Alcohol, cannabis, nicotine, and opioids all produce marked changes in the expression and function of the neurotransmitter and receptor systems with which they interact. These acute and chronic alterations also contribute to behavioral consequences ranging from increased addiction risk to cognitive or neuropsychiatric behavioral dysfunctions. The current review provides an in-depth overview and update of the developmental changes in neurotransmission during adolescence, as well as the impact of drug exposure during this neurodevelopmental window. While most of these factors have been studied in animal models, which are the focus of this review, future longitudinal studies in humans that assess neural function and behavior will help to confirm pre-clinical findings. Furthermore, the neural changes induced by each drug should also be considered in the context of other contributing factors, such as sex. Further understanding of these consequences can help in the identification of novel approaches for preventing and reversing the neurobiological effects of adolescent substance use.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Shahnaza Hamidullah
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Bryan W Jenkins
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada.
| |
Collapse
|
24
|
Wood S. Undergraduate Research Assistant Leadership for Rigorous, High Quality Research. Front Psychol 2019; 10:474. [PMID: 30914995 PMCID: PMC6422877 DOI: 10.3389/fpsyg.2019.00474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Suzanne Wood
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|