1
|
Miederer I, Buchholz HG, Rademacher L, Eckart C, Kraft D, Piel M, Fiebach CJ, Schreckenberger M. Dopaminergic Mechanisms of Cognitive Flexibility: An [ 18F]Fallypride PET Study. J Nucl Med 2025; 66:405-409. [PMID: 39884770 DOI: 10.2967/jnumed.124.268317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025] Open
Abstract
Cognitive flexibility is the ability to appropriately adapt one's thinking and behavior to changing environmental demands and is conceptualized as an aspect of executive function. The dopamine system has been implicated in cognitive flexibility; however, a direct, that is, neurochemical, link to cognitive flexibility has not been shown yet. The aim of this study was, therefore, to investigate how cognitive flexibility is mediated by dopaminergic signaling in the ventromedial prefrontal cortex (vmPFC). Methods: Eighteen participants were measured in a PET study with 174 ± 12 MBq of the D2/3 receptor ligand [18F]fallypride in a block design with 2 parts. While participants processed 2 tasks sequentially without rule switching on a computer screen in the first part of the PET scan, they had to flexibly switch between the 2 task rules after 100 min after injection in the second part. Dopamine release (γ) was quantified using the linearized simplified reference region model contrasting the 2 task blocks (switching vs. no-switching/baseline). Results: The statistical analysis of the parametric γ-images showed that the increased cognitive demand during task switching induced a displacement of the D2/3 receptor ligand [18F]fallypride in the vmPFC (maximum T value = 13.8; cluster size: 528 voxels; familywise error rate-corrected P < 0.001; mean γ = 0.022 ± 0.006 min-1). Furthermore, a correlation between behavioral switch costs and vmPFC [18F]fallypride displacement suggested that participants showing greater dopamine release were more efficient in task switching. Conclusion: To our knowledge, this is the first experimental PET study to show direct involvement of dopamine in the vmPFC in a task-switching paradigm, confirming model assumptions about the neurochemical basis of cognitive flexibility.
Collapse
Affiliation(s)
- Isabelle Miederer
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany;
| | - Hans-Georg Buchholz
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lena Rademacher
- Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Cindy Eckart
- Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Dominik Kraft
- Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Markus Piel
- Department of Nuclear Chemistry, Johannes Gutenberg University Mainz, Mainz, Germany; and
| | - Christian J Fiebach
- Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mathias Schreckenberger
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Schachar RJ. Fifty years of executive control research in attention-deficit/hyperactivity disorder:What we have learned and still need to know. Neurosci Biobehav Rev 2023; 155:105461. [PMID: 37949153 DOI: 10.1016/j.neubiorev.2023.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
For 50 years, attention-deficit/hyperactivity disorder (ADHD) has been considered a disorder of executive control (EC), the higher-order, cognitive skills that support self-regulation, goal attainment and what we generally call "attention." This review surveys our current understanding of the nature of EC as it pertains to ADHD and considers the evidence in support of eight hypotheses that can be derived from the EC theory of ADHD. This paper provides a resource for practitioners to aid in clinical decision-making. To support theory building, I draw a parallel between the EC theory of ADHD and the common gene-common variant model of complex traits such as ADHD. The conclusion offers strategies for advancing collaborative research.
Collapse
Affiliation(s)
- Russell J Schachar
- Department of Psychiatry, The Hospital for Sick Children and University of Toronto, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8, Canada.
| |
Collapse
|
3
|
Verhein JR, Vyas S, Shenoy KV. Methylphenidate modulates motor cortical dynamics and behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562405. [PMID: 37905157 PMCID: PMC10614820 DOI: 10.1101/2023.10.15.562405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Methylphenidate (MPH, brand: Ritalin) is a common stimulant used both medically and non-medically. Though typically prescribed for its cognitive effects, MPH also affects movement. While it is known that MPH noncompetitively blocks the reuptake of catecholamines through inhibition of dopamine and norepinephrine transporters, a critical step in exploring how it affects behavior is to understand how MPH directly affects neural activity. This would establish an electrophysiological mechanism of action for MPH. Since we now have biologically-grounded network-level hypotheses regarding how populations of motor cortical neurons plan and execute movements, there is a unique opportunity to make testable predictions regarding how systemic MPH administration - a pharmacological perturbation - might affect neural activity in motor cortex. To that end, we administered clinically-relevant doses of MPH to Rhesus monkeys as they performed an instructed-delay reaching task. Concomitantly, we measured neural activity from dorsal premotor and primary motor cortex. Consistent with our predictions, we found dose-dependent and significant effects on reaction time, trial-by-trial variability, and movement speed. We confirmed our hypotheses that changes in reaction time and variability were accompanied by previously established population-level changes in motor cortical preparatory activity and the condition-independent signal that precedes movements. We expected changes in speed to be a result of changes in the amplitude of motor cortical dynamics and/or a translation of those dynamics in activity space. Instead, our data are consistent with a mechanism whereby the neuromodulatory effect of MPH is to increase the gain and/or the signal-to-noise of motor cortical dynamics during reaching. Continued work in this domain to better understand the brain-wide electrophysiological mechanism of action of MPH and other psychoactive drugs could facilitate more targeted treatments for a host of cognitive-motor disorders.
Collapse
Affiliation(s)
- Jessica R Verhein
- Medical Scientist Training Program, Stanford School of Medicine, Stanford University, Stanford, CA
- Neurosciences Graduate Program, Stanford School of Medicine, Stanford University, Stanford, CA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA
- Current affiliations: Psychiatry Research Residency Training Program, University of California, San Francisco, San Francisco, CA
| | - Saurabh Vyas
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA
- Department of Bioengineering, Stanford University, Stanford, CA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Krishna V Shenoy
- Neurosciences Graduate Program, Stanford School of Medicine, Stanford University, Stanford, CA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA
- Department of Bioengineering, Stanford University, Stanford, CA
- Department of Electrical Engineering, Stanford University, Stanford, CA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA
- Department of Neurobiology, Stanford University, Stanford, CA
- Bio-X Program, Stanford University, Stanford, CA
| |
Collapse
|
4
|
Gutiérrez-Casares JR, Quintero J, Segú-Vergés C, Rodríguez Monterde P, Pozo-Rubio T, Coma M, Montoto C. In silico clinical trial evaluating lisdexamfetamine's and methylphenidate's mechanism of action computational models in an attention-deficit/hyperactivity disorder virtual patients' population. Front Psychiatry 2023; 14:939650. [PMID: 37333910 PMCID: PMC10273406 DOI: 10.3389/fpsyt.2023.939650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/21/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Attention-deficit/hyperactivity disorder (ADHD) is an impairing psychiatric condition with the stimulants, lisdexamfetamine (LDX), and methylphenidate (MPH), as the first lines pharmacological treatment. Methods Herein, we applied a novel in silico method to evaluate virtual LDX (vLDX) and vMPH as treatments for ADHD applying quantitative systems pharmacology (QSP) models. The objectives were to evaluate the model's output, considering the model characteristics and the information used to build them, to compare both virtual drugs' efficacy mechanisms, and to assess how demographic (age, body mass index, and sex) and clinical characteristics may affect vLDX's and vMPH's relative efficacies. Results and Discussion We molecularly characterized the drugs and pathologies based on a bibliographic search, and generated virtual populations of adults and children-adolescents totaling 2,600 individuals. For each virtual patient and virtual drug, we created physiologically based pharmacokinetic and QSP models applying the systems biology-based Therapeutic Performance Mapping System technology. The resulting models' predicted protein activity indicated that both virtual drugs modulated ADHD through similar mechanisms, albeit with some differences. vMPH induced several general synaptic, neurotransmitter, and nerve impulse-related processes, whereas vLDX seemed to modulate neural processes more specific to ADHD, such as GABAergic inhibitory synapses and regulation of the reward system. While both drugs' models were linked to an effect over neuroinflammation and altered neural viability, vLDX had a significant impact on neurotransmitter imbalance and vMPH on circadian system deregulation. Among demographic characteristics, age and body mass index affected the efficacy of both virtual treatments, although the effect was more marked for vLDX. Regarding comorbidities, only depression negatively impacted both virtual drugs' efficacy mechanisms and, while that of vLDX were more affected by the co-treatment of tic disorders, the efficacy mechanisms of vMPH were disturbed by wide-spectrum psychiatric drugs. Our in silico results suggested that both drugs could have similar efficacy mechanisms as ADHD treatment in adult and pediatric populations and allowed raising hypotheses for their differential impact in specific patient groups, although these results require prospective validation for clinical translatability.
Collapse
Affiliation(s)
- José Ramón Gutiérrez-Casares
- Unidad Ambulatoria de Psiquiatría y Salud Mental de la Infancia, Niñez y Adolescencia, Hospital Perpetuo Socorro, Badajoz, Spain
| | - Javier Quintero
- Servicio de Psiquiatría, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain
| | - Cristina Segú-Vergés
- Anaxomics Biotech, Barcelona, Spain
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | - Carmen Montoto
- Medical Department, Takeda Farmacéutica España, Madrid, Spain
| |
Collapse
|
5
|
Quintero J, Gutiérrez-Casares JR, Álamo C. Molecular Characterisation of the Mechanism of Action of Stimulant Drugs Lisdexamfetamine and Methylphenidate on ADHD Neurobiology: A Review. Neurol Ther 2022; 11:1489-1517. [PMID: 35951288 DOI: 10.1007/s40120-022-00392-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset neurodevelopmental disorder characterised by persistent inattention, hyperactivity and impulsivity. Moreover, ADHD is commonly associated with other comorbid diseases (depression, anxiety, bipolar disorder, etc.). The ADHD symptomatology interferes with subject function and development. The treatment of ADHD requires a multidisciplinary approach based on a combination of non-pharmacological and pharmacological treatments with the aim of ameliorating the symptomatology; among first-line pharmacological treatments are stimulants [such as methylphenidate (MPH) and lisdexamfetamine dimesylate (LDX)]. In this review we explored recent ADHD- and stimulants-related literature, with the aim of compiling available descriptions of molecular pathways altered in ADHD, and molecular mechanisms of current first-line stimulants MPH and LDX. While conducting the narrative review, we applied structured search strategies covering PubMed/MEDLINE database and performed handsearching of reference lists on the results of those searches. The aetiology and pathophysiology of ADHD are incompletely understood; both genetic and environmental factors have been associated with the disorder and its grade of burden, and also the relationship between the molecular mechanisms of pharmacological treatments and their clinical implications. The lack of comprehensive understanding of the underlying molecular pathology makes both the diagnosis and treatment difficult. Few published studies evaluating molecular data on the mechanism of action (MoA) of MPH and LDX on ADHD are available and most of them are based on animal models. Further studies are necessary to improve the knowledge of ADHD pathophysiology and how the MoAs of MPH and LDX differentially modulate ADHD pathophysiology and control ADHD symptomatology.
Collapse
Affiliation(s)
- Javier Quintero
- Servicio de Psiquiatría y Salud Mental, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain
| | - José R Gutiérrez-Casares
- Unidad Ambulatoria de Psiquiatría y Salud Mental de la Infancia, Niñez y Adolescencia, Hospital Perpetuo Socorro, Badajoz, Spain.
| | - Cecilio Álamo
- Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
6
|
Ni AM, Bowes BS, Ruff DA, Cohen MR. Methylphenidate as a causal test of translational and basic neural coding hypotheses. Proc Natl Acad Sci U S A 2022; 119:e2120529119. [PMID: 35467980 PMCID: PMC9169912 DOI: 10.1073/pnas.2120529119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Most systems neuroscience studies fall into one of two categories: basic science work aimed at understanding the relationship between neurons and behavior, or translational work aimed at developing treatments for neuropsychiatric disorders. Here we use these two approaches to inform and enhance each other. Our study both tests hypotheses about basic science neural coding principles and elucidates the neuronal mechanisms underlying clinically relevant behavioral effects of systemically administered methylphenidate (Ritalin). We discovered that orally administered methylphenidate, used clinically to treat attention deficit hyperactivity disorder (ADHD) and generally to enhance cognition, increases spatially selective visual attention, enhancing visual performance at only the attended location. Further, we found that this causal manipulation enhances vision in rhesus macaques specifically when it decreases the mean correlated variability of neurons in visual area V4. Our findings demonstrate that the visual system is a platform for understanding the neural underpinnings of both complex cognitive processes (basic science) and neuropsychiatric disorders (translation). Addressing basic science hypotheses, our results are consistent with a scenario in which methylphenidate has cognitively specific effects by working through naturally selective cognitive mechanisms. Clinically, our findings suggest that the often staggeringly specific symptoms of neuropsychiatric disorders may be caused and treated by leveraging general mechanisms.
Collapse
Affiliation(s)
- Amy M. Ni
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260
| | - Brittany S. Bowes
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260
| | - Douglas A. Ruff
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260
| | - Marlene R. Cohen
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
7
|
The effect of methylphenidate and mixed amphetamine salts on cognitive reflection: a field study. Psychopharmacology (Berl) 2022; 239:455-463. [PMID: 34729642 DOI: 10.1007/s00213-021-06016-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
RATIONALE Methylphenidate (MPH) and mixed D,L-amphetamine salts (MASs; Adderall) were previously found to have unreliable effects on judgment and decision processes. OBJECTIVE We predicted that MPH and MASs have a specific effect of reducing heuristic responses, which should lead to increased performance on the cognitive reflection test (CRT). The CRT is considered to be a testbed for heuristic versus deliberative response modes. METHODS We recruited a sample of 15,361 individuals using the Prolific Academic crowdsourcing platform. From this initial pool, our final sample consisted of 294 participants (125 MPH users and 169 MASs users) who conformed to the study criteria and completed the experimental tasks. Tasks were performed on days where participants were either medicated or not, allowing to assess the effect of medication status. RESULTS There was a strong positive effect of taking MPH on CRT scores (Cohen's d = 0.40) which was not qualified by frequency of MPH usage, ADHD symptoms, and demographic factors. There was also a somewhat weaker effect for MASs (Cohen's d = 0.07). No effects of MPH and MASs were recorded for risk-taking and numeracy. CONCLUSIONS The results indicate that MPH enhances decision-making in tasks where heuristic responses typically bias it.
Collapse
|
8
|
Gutiérrez-Casares JR, Quintero J, Jorba G, Junet V, Martínez V, Pozo-Rubio T, Oliva B, Daura X, Mas JM, Montoto C. Methods to Develop an in silico Clinical Trial: Computational Head-to-Head Comparison of Lisdexamfetamine and Methylphenidate. Front Psychiatry 2021; 12:741170. [PMID: 34803764 PMCID: PMC8595241 DOI: 10.3389/fpsyt.2021.741170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Regulatory agencies encourage computer modeling and simulation to reduce the time and cost of clinical trials. Although still not classified in formal guidelines, system biology-based models represent a powerful tool for generating hypotheses with great molecular detail. Herein, we have applied a mechanistic head-to-head in silico clinical trial (ISCT) between two treatments for attention-deficit/hyperactivity disorder, to wit lisdexamfetamine (LDX) and methylphenidate (MPH). The ISCT was generated through three phases comprising (i) the molecular characterization of drugs and pathologies, (ii) the generation of adult and children virtual populations (vPOPs) totaling 2,600 individuals and the creation of physiologically based pharmacokinetic (PBPK) and quantitative systems pharmacology (QSP) models, and (iii) data analysis with artificial intelligence methods. The characteristics of our vPOPs were in close agreement with real reference populations extracted from clinical trials, as did our PBPK models with in vivo parameters. The mechanisms of action of LDX and MPH were obtained from QSP models combining PBPK modeling of dosing schemes and systems biology-based modeling technology, i.e., therapeutic performance mapping system. The step-by-step process described here to undertake a head-to-head ISCT would allow obtaining mechanistic conclusions that could be extrapolated or used for predictions to a certain extent at the clinical level. Altogether, these computational techniques are proven an excellent tool for hypothesis-generation and would help reach a personalized medicine.
Collapse
Affiliation(s)
- José Ramón Gutiérrez-Casares
- Unidad Ambulatoria de Psiquiatría y Salud Mental de la Infancia, Niñez y Adolescencia, Hospital Perpetuo Socorro, Badajoz, Spain
| | - Javier Quintero
- Servicio de Psiquiatría, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain
| | - Guillem Jorba
- Anaxomics Biotech, Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Valentin Junet
- Anaxomics Biotech, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | | | - Baldomero Oliva
- Research Programme on Biomedical Informatics (GRIB), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Carmen Montoto
- Medical Department, Takeda Farmacéutica España, Madrid, Spain
| |
Collapse
|
9
|
Abstract
Cognitive and behavioural flexibility permit the appropriate adjustment of thoughts and behaviours in response to changing environmental demands. Brain mechanisms enabling flexibility have been examined using non-invasive neuroimaging and behavioural approaches in humans alongside pharmacological and lesion studies in animals. This work has identified large-scale functional brain networks encompassing lateral and orbital frontoparietal, midcingulo-insular and frontostriatal regions that support flexibility across the lifespan. Flexibility can be compromised in early-life neurodevelopmental disorders, clinical conditions that emerge during adolescence and late-life dementias. We critically evaluate evidence for the enhancement of flexibility through cognitive training, physical activity and bilingual experience.
Collapse
Affiliation(s)
- Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|