1
|
Wang H, Lu X, Ye Y, Huang C, Fang Y, Yang R, Sun M, Ren J, Song R, Xu F, Su J, Hong H, Huang C. Stimulation of microglia leads to a rapid antidepressant effect by triggering astrocytic P2Y1Rs and promoting BDNF-mediated neurogenesis in the hippocampus. Brain Behav Immun 2025; 128:134-151. [PMID: 40194747 DOI: 10.1016/j.bbi.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025] Open
Abstract
Reversing the decline of microglia in the dentate gyrus of stressed animals has antidepressant effects, but the molecular mechanisms are unclear. Since microglia normally interact with astrocytes and astrocytic purinergic 2Y1 receptor (P2Y1R) signaling plays an important role in regulating cellular crosstalk, we hypothesize that astrocytic P2Y1R signaling may mediate the antidepressant effects of microglia stimulation. Our results showed that a single injection of low-dose lipopolysaccharide (LPS) (100 μg/kg) elicited rapid antidepressant effects and a significant increase in adenosine triphosphate (ATP) levels in the dentate gyrus in chronically stressed mice, and that these effects of LPS were abolished by chemogenetic inhibition of microglia. Depletion of endogenous ATP, non-specific antagonization of purinergic receptors, or specific inhibition of P2Y1Rs, but not other purinergic receptors, by MRS2179 in the hippocampus abolished the antidepressant effects of low-dose LPS. Conditional gene knockout data showed that the antidepressant effect of low-dose LPS could not be observed in mice lacking P2Y1Rs in astrocytes but not in forebrain neurons. Chemogenetic inhibition of microglia in the dentate gyrus, specific deletion of P2Y1Rs in astrocytes and the absence of ATP abolished the increase in doublecortin (DCX)+ cells and brain-derived neurotrophic factor (BDNF) induced by a low dose of LPS in the dentate gyrus of stressed mice, and infusion of BDNF antibodies into the hippocampus simultaneously abolished the pro-neurogenesis and antidepressant effects of microglia stimulation in stressed mice. Taken together, these results suggest that ATP signaling mobilized by microglia stimulation has an antidepressant effect by triggering astrocytic P2Y1R-dependent synthesis of BDNF.
Collapse
Affiliation(s)
- Hanxiao Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China
| | - Ying Ye
- Department of Ultrasound, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001 Jiangsu, China
| | - Chen Huang
- Department of Vascular Surgery, Affiliated Hospital of Nantong University, Jiangsu Province, #20 Xisi Road, Nantong 226001 Jiangsu, China
| | - Yunli Fang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001 Jiangsu, China
| | - Micona Sun
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China
| | - Jie Ren
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China
| | - Rongrong Song
- Department of Emergency and Critical Care Medicine, Tongzhou People's Hospital, #999 Jianshe Road, Nantong 226300 Jiangsu, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, #666 Shengli Road, Nantong 226006 Jiangsu, China
| | - Jianbin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, #666 Shengli Road, Nantong 226006 Jiangsu, China
| | - Hongxiang Hong
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, #666 Shengli Road, Nantong 226006 Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China.
| |
Collapse
|
2
|
Fan Y, Luan X, Wang X, Li H, Zhao H, Li S, Li X, Qiu Z. Exploring the association between BDNF related signaling pathways and depression: A literature review. Brain Res Bull 2025; 220:111143. [PMID: 39608613 DOI: 10.1016/j.brainresbull.2024.111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Depression is a debilitating mental disease that inflicts significant harm upon individuals and society, yet effective treatment options remain elusive. At present, the pathogenesis of multiple depression is not fully clear, but its occurrence can be related to biological or environmental pathways, among which Brain-derived neurotrophic factor (BDNF) can unequivocally act on two downstream receptors, tyrosine kinase receptor (TrkB) and the p75 neurotrophin receptor (p75NTR), then affect the related signal pathways, affecting the occurrence and development of depression. Accumulating studies have revealed that BDNF-related pathways are critical in the pathophysiology of depression, and their interaction can further influence the efficacy of depression treatment. In this review, we mainly summarized the signaling pathways associated with BDNF and classified them according to different receptors and related molecules, providing promising insights and future directions in the treatment of depression.
Collapse
Affiliation(s)
- Yuchen Fan
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Xinchi Luan
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Xuezhe Wang
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Hongchi Li
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Hongjiao Zhao
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Sheng Li
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Xiaoxuan Li
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zhenkang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
3
|
Gao Z, Peng J, Zhang Y, Chen Z, Song R, Song Z, Feng Q, Sun M, Zhu H, Lu X, Yang R, Huang C. Hippocampal SENP3 mediates chronic stress-induced depression-like behaviors by impairing the CREB-BDNF signaling. Neuropharmacology 2025; 262:110203. [PMID: 39486575 DOI: 10.1016/j.neuropharm.2024.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Impaired signaling between cyclic adenosine monophosphate response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in the hippocampus is generally considered to be the cause of depression. The mechanisms underlying the impairment of CREB-BDNF signaling under stress conditions are largely unclear. Small ubiquitin-like modifier (SUMO) specific peptidase 3 (SENP3) is a molecule that can regulate SUMOylation of target proteins related to synaptic plasticity. Its dynamic changes have been reported to be associated with neuronal damage in various models of central nervous disorders such as cerebral ischemia and traumatic brain injury. However, its role in depression is completely unknown. This problem was addressed in the present study. Our results showed that chronic unpredictable stress (CUS) triggered a specific increase in SENP3 expression in the hippocampus of non-stressed mice. Overexpression of SENP3 in the hippocampus of non-stressed mice elicited depression-like behaviors in the tail suspension test, forced swimming test, and sucrose preference test, accompanied by impairment of the CREB-BDNF signaling cascade in the hippocampus. Conversely, genetic silencing of SENP3 in the hippocampus suppressed the development of depression-like behaviors. Furthermore, infusion of SENP3-shRNA into the hippocampus failed to suppress CUS-induced depression-like behaviors when mice received genetic silencing CREB or BDNF in the hippocampus or inhibition of the BDNF receptor by K252a. Taken together, these results suggest that abnormally elevated SENP3 in the hippocampus leads to the development of depression-like behavior by impairing the CREB-BDNF signaling cascade. SENP3 in the hippocampus could be a promising target for the development of new antidepressants.
Collapse
Affiliation(s)
- Zhiwei Gao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20 Xisi Road, Nantong 226001, Jiangsu Province, China
| | - Jie Peng
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Yi Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu Province, China
| | - Rongrong Song
- Department of Emergency and Critical Care Medicine, Tongzhou People's Hospital, 999 Jianshe Road, Nantong 226300, Jiangsu Province, China
| | - Ze Song
- Department of Neurosurgery, Tongzhou People's Hospital, 999 Jianshe Road, Nantong 226300, Jiangsu Province, China
| | - Qijie Feng
- Department of Orthopedics, Tongzhou People's Hospital, 999 Jianshe Road, Nantong 226300, Jiangsu Province, China
| | - Micona Sun
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20 Xisi Road, Nantong 226001, Jiangsu Province, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
4
|
Costa A, Micheli L, Sordi V, Ciampi C, Lucci J, Passani MB, Provensi G. Preventing social defeat stress-induced behavioural and neurochemical alterations by repeated treatment with a mix of Centella asiatica, Echinacea purpurea and Zingiber officinale standardized extracts. Front Pharmacol 2024; 15:1439811. [PMID: 39253374 PMCID: PMC11381240 DOI: 10.3389/fphar.2024.1439811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Background: Prolonged exposure to stress is a risk factor for the onset of several disorders. Modern life is burdened by a pervasive prevalence of stress, which represents a major societal challenge requiring new therapeutic strategies. In this context, botanical drug-based therapies can have a paramount importance. Methods: Here we studied the preventive effects of a repeated treatment (p.o. daily, 3 weeks) with a combination of Centella asiatica (200 mg/kg), Echinacea purpurea (20 mg/kg) and Zingiber officinale (150 mg/kg) standardized extracts, on the chronic social defeat stress (CSDS) deleterious outcomes. After 10 days of CSDS exposure, male mice' performances were evaluated in paradigms relevant for social (social interaction test), emotional (tail suspension test), cognitive (novel object recognition) domains as well as for pain perception (cold plate and von Frey tests) and motor skills (rotarod). Mice were then sacrificed, the spinal cords, hippocampi and frontal cortices dissected and processed for RT-PCR analysis. Results: Extracts mix treatment prevented stress-induced social aversion, memory impairment, mechanical and thermal allodynia and reduced behavioural despair independently of stress exposure. The treatment stimulated hippocampal and cortical BDNF and TrkB mRNA levels and counteracted stress-induced alterations in pro- (TNF-α, IL-1β and IL-6) and anti-inflammatory (IL4, IL10) cytokines expression in the same areas. It also modulated expression of pain related genes (GFAP and Slc1a3) in the spinal cord. Conclusion: The treatment with the extracts mix obtained from C. asiatica, E. purpurea and Z. officinale may represent a promising strategy to promote resilience and prevent the deleterious effects induced by extended exposure to psychosocial stress.
Collapse
Affiliation(s)
- Alessia Costa
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Laura Micheli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Virginia Sordi
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Clara Ciampi
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Jacopo Lucci
- Bios-Therapy, Physiological Systems for Health S.p.A., Sansepolcro, Italy
- Aboca S.p.A. Società Agricola, Innovation and Medical Science Division, Sansepolcro, Italy
| | | | - Gustavo Provensi
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
5
|
Xavier FAC, Barbieri SS, Popoli M, Ieraci A. Short- and Long-Term Effects of Subchronic Stress Exposure in Male and Female Brain-Derived Neurotrophic Factor Knock-In Val66Met Mice. BIOLOGY 2024; 13:303. [PMID: 38785785 PMCID: PMC11118886 DOI: 10.3390/biology13050303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Stress is an important risk factor for the onset of anxiety and depression. The ability to cope with stressful events varies among different subjects, probably depending on different genetic variants, sex and previous life experiences. The Val66Met variant of Brain-Derived Neurotrophic Factor (BDNF), which impairs the activity-dependent secretion of BDNF, has been associated with increased susceptibility to the development of various neuropsychiatric disorders. Adult male and female wild-type Val/Val (BDNFV/V) and heterozygous Val/Met (BDNFV/M) mice were exposed to two sessions of forced swimming stress (FSS) per day for two consecutive days. The mice were behaviorally tested 1 day (short-term effect) or 11 days (long-term effect) after the last stress session. Protein and mRNA levels were measured in the hippocampus 16 days after the end of stress exposure. Stressed mice showed a higher anxiety-like phenotype compared to non-stressed mice, regardless of the sex and genotype, when analyzed following the short period of stress. In the prolonged period, anxiety-like behavior persisted only in male BDNFV/M mice (p < 0.0001). Interestingly, recovery in male BDNFV/V mice was accompanied by an increase in pCREB (p < 0.001) and Bdnf4 (p < 0.01) transcript and a decrease in HDAC1 (p < 0.05) and Dnmt3a (p = 0.01) in the hippocampus. Overall, our results show that male and female BDNF Val66Met knock-in mice can recover from subchronic stress in different ways.
Collapse
Affiliation(s)
- Fernando Antonio Costa Xavier
- Laboratory of Molecular and Cellular Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil;
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Silvia Stella Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| |
Collapse
|
6
|
Chen T, Cheng L, Ma J, Yuan J, Pi C, Xiong L, Chen J, Liu H, Tang J, Zhong Y, Zhang X, Liu Z, Zuo Y, Shen H, Wei Y, Zhao L. Molecular mechanisms of rapid-acting antidepressants: New perspectives for developing antidepressants. Pharmacol Res 2023; 194:106837. [PMID: 37379962 DOI: 10.1016/j.phrs.2023.106837] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Major depressive disorder (MDD) is a chronic relapsing psychiatric disorder. Conventional antidepressants usually require several weeks of continuous administration to exert clinically significant therapeutic effects, while about two-thirds of the patients are prone to relapse of symptoms or are completely ineffective in antidepressant treatment. The recent success of the N-methyl-D-aspartic acid (NMDA) receptor antagonist ketamine as a rapid-acting antidepressant has propelled extensive research on the action mechanism of antidepressants, especially in relation to its role in synaptic targets. Studies have revealed that the mechanism of antidepressant action of ketamine is not limited to antagonism of postsynaptic NMDA receptors or GABA interneurons. Ketamine produces powerful and rapid antidepressant effects by affecting α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors, adenosine A1 receptors, and the L-type calcium channels, among others in the synapse. More interestingly, the 5-HT2A receptor agonist psilocybin has demonstrated potential for rapid antidepressant effects in depressed mouse models and clinical studies. This article focuses on a review of new pharmacological target studies of emerging rapid-acting antidepressant drugs such as ketamine and hallucinogens (e.g., psilocybin) and briefly discusses the possible strategies for new targets of antidepressants, with a view to shed light on the direction of future antidepressant research.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ling Cheng
- Hospital-Acquired Infection Control Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jingwen Ma
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiyuan Yuan
- Clinical trial center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China
| | - Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yueting Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of medicinal chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, Sichuan 646000, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan 646000, China
| | - Hongping Shen
- Clinical trial center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
7
|
MeCP2 Is an Epigenetic Factor That Links DNA Methylation with Brain Metabolism. Int J Mol Sci 2023; 24:ijms24044218. [PMID: 36835623 PMCID: PMC9966807 DOI: 10.3390/ijms24044218] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
DNA methylation, one of the most well-studied epigenetic modifications, is involved in a wide spectrum of biological processes. Epigenetic mechanisms control cellular morphology and function. Such regulatory mechanisms involve histone modifications, chromatin remodeling, DNA methylation, non-coding regulatory RNA molecules, and RNA modifications. One of the most well-studied epigenetic modifications is DNA methylation that plays key roles in development, health, and disease. Our brain is probably the most complex part of our body, with a high level of DNA methylation. A key protein that binds to different types of methylated DNA in the brain is the methyl-CpG binding protein 2 (MeCP2). MeCP2 acts in a dose-dependent manner and its abnormally high or low expression level, deregulation, and/or genetic mutations lead to neurodevelopmental disorders and aberrant brain function. Recently, some of MeCP2-associated neurodevelopmental disorders have emerged as neurometabolic disorders, suggesting a role for MeCP2 in brain metabolism. Of note, MECP2 loss-of-function mutation in Rett Syndrome is reported to cause impairment of glucose and cholesterol metabolism in human patients and/or mouse models of disease. The purpose of this review is to outline the metabolic abnormalities in MeCP2-associated neurodevelopmental disorders that currently have no available cure. We aim to provide an updated overview into the role of metabolic defects associated with MeCP2-mediated cellular function for consideration of future therapeutic strategies.
Collapse
|