1
|
Collins HM, Gullino LS, Ozdemir D, Lazarenco C, Sudarikova Y, Daly E, Pilar Cuéllar F, Pinacho R, Bannerman DM, Sharp T. Rebound activation of 5-HT neurons following SSRI discontinuation. Neuropsychopharmacology 2024; 49:1580-1589. [PMID: 38609530 PMCID: PMC11319583 DOI: 10.1038/s41386-024-01857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Cessation of therapy with a selective serotonin (5-HT) reuptake inhibitor (SSRI) is often associated with an early onset and disabling discontinuation syndrome, the mechanism of which is surprisingly little investigated. Here we determined the effect on 5-HT neurochemistry of discontinuation from the SSRI paroxetine. Paroxetine was administered repeatedly to mice (once daily, 12 days versus saline controls) and then either continued or discontinued for up to 5 days. Whereas brain tissue levels of 5-HT and/or its metabolite 5-HIAA tended to decrease during continuous paroxetine, levels increased above controls after discontinuation, notably in hippocampus. In microdialysis experiments continuous paroxetine elevated hippocampal extracellular 5-HT and this effect fell to saline control levels on discontinuation. However, depolarisation (high potassium)-evoked 5-HT release was reduced by continuous paroxetine but increased above controls post-discontinuation. Extracellular hippocampal 5-HIAA also decreased during continuous paroxetine and increased above controls post-discontinuation. Next, immunohistochemistry experiments found that paroxetine discontinuation increased c-Fos expression in midbrain 5-HT (TPH2 positive) neurons, adding further evidence for a hyperexcitable 5-HT system. The latter effect was recapitulated by 5-HT1A receptor antagonist administration although gene expression analysis could not confirm altered expression of 5-HT1A autoreceptors following paroxetine discontinuation. Finally, in behavioural experiments paroxetine discontinuation increased anxiety-like behaviour, which partially correlated in time with the measures of increased 5-HT function. In summary, this study reports evidence that, across a range of experiments, SSRI discontinuation triggers a rebound activation of 5-HT neurons. This effect is reminiscent of neural changes associated with various psychotropic drug withdrawal states, suggesting a common unifying mechanism.
Collapse
Affiliation(s)
- Helen M Collins
- Dept. of Pharmacology, University of Oxford, Oxford, UK
- Dept. of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - Dersu Ozdemir
- Dept. of Pharmacology, University of Oxford, Oxford, UK
| | | | | | | | - Fuencisla Pilar Cuéllar
- Dept. of Pharmacology, University of Oxford, Oxford, UK
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
| | - Raquel Pinacho
- Dept. of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - Trevor Sharp
- Dept. of Pharmacology, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Sharp T, Collins H. Mechanisms of SSRI Therapy and Discontinuation. Curr Top Behav Neurosci 2024; 66:21-47. [PMID: 37955823 DOI: 10.1007/7854_2023_452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
SSRIs are one of the most widely used drug therapies in primary care and psychiatry, and central to the management of the most common mental health problems in today's society. Despite this, SSRIs suffer from a slow onset of therapeutic effect and relatively poor efficacy as well as adverse effects, with recent concerns being focused on a disabling SSRI discontinuation syndrome. The mechanism underpinning their therapeutic effect has long shifted away from thinking that SSRIs act simply by increasing 5-HT in the synapse. Rather, a current popular view is that increased 5-HT is just the beginning of a series of complex downstream signalling events, which trigger changes in neural plasticity at the functional and structural level. These changes in plasticity are then thought to interact with neuropsychological processes to enhance re-learning of emotional experiences that ultimately brings about changes in mood. This compelling view of SSRI action is underpinning attempts to understand fast-acting antidepressants, such as ketamine and psychedelic drugs, and aid the development of future therapies. An important gap in the theory is evidence that changes in plasticity are causally linked to relevant behavioural effects. Also, predictions that the SSRI-induced neural plasticity might have applicability in other areas of medicine have not yet been borne out. In contrast to the sophisticated view of the antidepressant action of SSRIs, the mechanism underpinning SSRI discontinuation is little explored. Nevertheless, evidence of rebound increases in 5-HT neuron excitability immediately on cessation of SSRI treatment provide a starting point for future investigation. Indeed, this evidence allows formulation of a mechanistic explanation of SSRI discontinuation which draws on parallels with the withdrawal states of other psychotropic drugs.
Collapse
Affiliation(s)
- Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Helen Collins
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Robinson E, Bangasser DA. Innovating translational models of affective disorders. Psychopharmacology (Berl) 2023; 240:2217-2220. [PMID: 37843593 DOI: 10.1007/s00213-023-06472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Affiliation(s)
- Emma Robinson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
| | - Debra A Bangasser
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| |
Collapse
|