1
|
Ash P, Reeve HA, Quinson J, Hidalgo R, Zhu T, McPherson IJ, Chung MW, Healy AJ, Nayak S, Lonsdale TH, Wehbe K, Kelley CS, Frogley MD, Cinque G, Vincent KA. Synchrotron-Based Infrared Microanalysis of Biological Redox Processes under Electrochemical Control. Anal Chem 2016; 88:6666-71. [PMID: 27269716 PMCID: PMC4935962 DOI: 10.1021/acs.analchem.6b00898] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022]
Abstract
We describe a method for addressing redox enzymes adsorbed on a carbon electrode using synchrotron infrared microspectroscopy combined with protein film electrochemistry. Redox enzymes have high turnover frequencies, typically 10-1000 s(-1), and therefore, fast experimental triggers are needed in order to study subturnover kinetics and identify the involvement of transient species important to their catalytic mechanism. In an electrochemical experiment, this equates to the use of microelectrodes to lower the electrochemical cell constant and enable changes in potential to be applied very rapidly. We use a biological cofactor, flavin mononucleotide, to demonstrate the power of synchrotron infrared microspectroscopy relative to conventional infrared methods and show that vibrational spectra with good signal-to-noise ratios can be collected for adsorbed species with low surface coverages on microelectrodes with a geometric area of 25 × 25 μm(2). We then demonstrate the applicability of synchrotron infrared microspectroscopy to adsorbed proteins by reporting potential-induced changes in the flavin mononucleotide active site of a flavoenzyme. The method we describe will allow time-resolved spectroscopic studies of chemical and structural changes at redox sites within a variety of proteins under precise electrochemical control.
Collapse
Affiliation(s)
- Philip
A. Ash
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Holly A. Reeve
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Jonathan Quinson
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Ricardo Hidalgo
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Tianze Zhu
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Ian J. McPherson
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Min-Wen Chung
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Adam J. Healy
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Simantini Nayak
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Thomas H. Lonsdale
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Katia Wehbe
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Chris S. Kelley
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Mark D. Frogley
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Gianfelice Cinque
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Kylie A. Vincent
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| |
Collapse
|
2
|
Bradley JM, Marritt SJ, Kihlken MA, Haynes K, Hemmings AM, Berks BC, Cheesman MR, Butt JN. Redox and chemical activities of the hemes in the sulfur oxidation pathway enzyme SoxAX. J Biol Chem 2012; 287:40350-9. [PMID: 23060437 DOI: 10.1074/jbc.m112.396192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND SoxAX enzymes initiate microbial oxidation of reduced inorganic sulfur compounds. Their catalytic mechanism is unknown. RESULTS Cyanide displaces the CysS(-) ligand to the active site heme following reduction by S(2)O(4)(2-) but not Eu(II). CONCLUSION An active site heme ligand becomes labile on exposure to substrate analogs. SIGNIFICANCE Elucidation of SoxAX mechanism is necessary to understand a widespread pathway for sulfur compound oxidation. SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (E(m)) at pH 7.0 of approximately +210, -340, and -400 mV for the His/Met, His/Cys(-), and active site His/CysS(-)-ligated heme, respectively. Exposing SoxAX to S(2)O(4)(2-), a substrate analog with E(m) ~-450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (E(m) ~-1140 mV), allows cyanide to displace the cysteine persulfide (CysS(-)) ligand to the active site heme. This provides the first evidence for the dissociation of CysS(-) that has been proposed as a key event in SoxAX catalysis.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Ash PA, Vincent KA. Spectroscopic analysis of immobilised redox enzymes under direct electrochemical control. Chem Commun (Camb) 2011; 48:1400-9. [PMID: 22057715 DOI: 10.1039/c1cc15871f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reviews recent developments in spectroscopic analysis of electrode-immobilised enzymes under direct, unmediated electrochemical control. These methods unite the suite of spectroscopic methods available for characterisation of structural, electronic and coordination changes in proteins with the exquisite control over complex redox enzymes that can be achieved in protein film electrochemistry in which immobilised protein molecules exchange electrons directly with an electrode. This combination is particularly powerful in studies of highly active enzymes where redox states can be controlled even under fast electrocatalytic turnover. We examine examples in which UV-visible, IR, Raman and MCD spectroscopy have been combined with direct electrochemistry to probe redox-dependent chemistry, and consider future opportunities for 'direct' spectroelectrochemistry of immobilised enzymes.
Collapse
Affiliation(s)
- Philip A Ash
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | | |
Collapse
|