1
|
Abstract
Glycoscience assembles all the scientific disciplines involved in studying various molecules and macromolecules containing carbohydrates and complex glycans. Such an ensemble involves one of the most extensive sets of molecules in quantity and occurrence since they occur in all microorganisms and higher organisms. Once the compositions and sequences of these molecules are established, the determination of their three-dimensional structural and dynamical features is a step toward understanding the molecular basis underlying their properties and functions. The range of the relevant computational methods capable of addressing such issues is anchored by the specificity of stereoelectronic effects from quantum chemistry to mesoscale modeling throughout molecular dynamics and mechanics and coarse-grained and docking calculations. The Review leads the reader through the detailed presentations of the applications of computational modeling. The illustrations cover carbohydrate-carbohydrate interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. A final section features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics.
Collapse
Affiliation(s)
- Serge Perez
- Centre de Recherche sur les Macromolecules Vegetales, University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041, France
| | - Olga Makshakova
- FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| |
Collapse
|
2
|
Sousa SF, Ribeiro AJM, Neves RPP, Brás NF, Cerqueira NMFSA, Fernandes PA, Ramos MJ. Application of quantum mechanics/molecular mechanics methods in the study of enzymatic reaction mechanisms. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1281] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sérgio Filipe Sousa
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - António J. M. Ribeiro
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Rui P. P. Neves
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Natércia F. Brás
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Nuno M. F. S. A. Cerqueira
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Pedro A. Fernandes
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Maria João Ramos
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| |
Collapse
|
3
|
Tankrathok A, Iglesias-Fernández J, Williams RJ, Pengthaisong S, Baiya S, Hakki Z, Robinson RC, Hrmova M, Rovira C, Williams SJ, Ketudat Cairns JR. A Single Glycosidase Harnesses Different Pyranoside Ring Transition State Conformations for Hydrolysis of Mannosides and Glucosides. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01547] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anupong Tankrathok
- School of Biochemistry, Institute of Science, and Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Department of Biotechnology, Faculty of Agro-Industrial
Technology, Rajamangala University of Technology, Isan, Kalasin Campus, Kalasin 46000, Thailand
| | - Javier Iglesias-Fernández
- Departament de Quı́mica
Orgànica/Institut de Quı́mica Teòrica i
Computacional (IQTCUB), Universitat de Barcelona, Martı́ i Franquès
1, 08028 Barcelona, Spain
| | - Rohan J. Williams
- School of Chemistry and Bio21 Molecular
Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Salila Pengthaisong
- School of Biochemistry, Institute of Science, and Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Supaporn Baiya
- School of Biochemistry, Institute of Science, and Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Zalihe Hakki
- School of Chemistry and Bio21 Molecular
Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robert C. Robinson
- Institute of Molecular
and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597
| | - Maria Hrmova
- School of Agriculture, Food and Wine, Australian
Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glenn
Osmond, Australia
| | - Carme Rovira
- Departament de Quı́mica
Orgànica/Institut de Quı́mica Teòrica i
Computacional (IQTCUB), Universitat de Barcelona, Martı́ i Franquès
1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluı́s Companys, 23, 08018 Barcelona, Spain
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular
Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James R. Ketudat Cairns
- School of Biochemistry, Institute of Science, and Center
for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
4
|
Abstract
The article reviews the significant contributions to, and the present status of, applications of computational methods for the characterization and prediction of protein-carbohydrate interactions. After a presentation of the specific features of carbohydrate modeling, along with a brief description of the experimental data and general features of carbohydrate-protein interactions, the survey provides a thorough coverage of the available computational methods and tools. At the quantum-mechanical level, the use of both molecular orbitals and density-functional theory is critically assessed. These are followed by a presentation and critical evaluation of the applications of semiempirical and empirical methods: QM/MM, molecular dynamics, free-energy calculations, metadynamics, molecular robotics, and others. The usefulness of molecular docking in structural glycobiology is evaluated by considering recent docking- validation studies on a range of protein targets. The range of applications of these theoretical methods provides insights into the structural, energetic, and mechanistic facets that occur in the course of the recognition processes. Selected examples are provided to exemplify the usefulness and the present limitations of these computational methods in their ability to assist in elucidation of the structural basis underlying the diverse function and biological roles of carbohydrates in their dialogue with proteins. These test cases cover the field of both carbohydrate biosynthesis and glycosyltransferases, as well as glycoside hydrolases. The phenomenon of (macro)molecular recognition is illustrated for the interactions of carbohydrates with such proteins as lectins, monoclonal antibodies, GAG-binding proteins, porins, and viruses.
Collapse
Affiliation(s)
- Serge Pérez
- Department of Molecular Pharmacochemistry, CNRS, University Grenoble-Alpes, Grenoble, France.
| | - Igor Tvaroška
- Department of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, Nitra, Slovak Republic.
| |
Collapse
|
5
|
Jitonnom J, Sattayanon C, Kungwan N, Hannongbua S. A DFT study of the unusual substrate-assisted mechanism of Serratia marcescens chitinase B reveals the role of solvent and mutational effect on catalysis. J Mol Graph Model 2015; 56:53-9. [DOI: 10.1016/j.jmgm.2014.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022]
|
6
|
Bobovská A, Tvaroška I, Kóňa J. Theoretical study of enzymatic catalysis explains why the trapped covalent intermediate in the E303C mutant of glycosyltransferase GTB was not detected in the wild-type enzyme. Glycobiology 2014; 25:3-7. [DOI: 10.1093/glycob/cwu085] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
7
|
Jitonnom J, Limb MAL, Mulholland AJ. QM/MM free-energy simulations of reaction in Serratia marcescens Chitinase B reveal the protonation state of Asp142 and the critical role of Tyr214. J Phys Chem B 2014; 118:4771-83. [PMID: 24730355 DOI: 10.1021/jp500652x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Serratia marcescens Chitinase B (ChiB), belonging to the glycosidase family 18 (GH18), catalyzes the hydrolysis of β-1,4-glycosidic bond, with retention of configuration, via an unusual substrate-assisted mechanism, in which the substrate itself acts as an intramolecular nucleophile. Here, both elementary steps (glycosylation and deglycosylation) of the ChiB-catalyzed reaction are investigated by means of combined quantum mechanics/molecular mechanics (QM/MM) umbrella sampling molecular dynamics (MD) simulations at the SCC-DFTB/CHARMM22 level of theory. We examine the influence of the Asp142 protonation state on the reaction and the role that this residue performs in the reaction. Our simulations show that reaction with a neutral Asp142 is preferred and demonstrate that this residue provides electrostatic stabilization of the oxazolinium ion intermediate formed in the reaction. Insight into the conformational itinerary ((1,4)B↔(4)H5↔(4)C1) adopted by the substrate (bound in subsite -1) along the preferred reaction pathway is also provided by the simulations. The relative energies of the stationary points found along the reaction pathway calculated with SCC-DFTB and B3LYP were compared. The results suggest that SCC-DFTB is an accurate method for estimating the relative barriers for both steps of the reaction; however, it was found to overestimate the relative energy of an intermediate formed in the reaction when compared with the higher level of theory. Glycosylation is suggested to be a rate-determining step in the reaction with calculated overall reaction free-energy barrier of 20.5 kcal/mol, in a reasonable agreement with the 16.1 kcal/mol barrier derived from the experiment. The role of Tyr214 in catalysis was also investigated with the results, indicating that the residue plays a critical role in the deglycosylation step of the reaction. Simulations of the enzyme-product complex were also performed with an unbinding event suggested to have been observed, affording potential new mechanistic insight into the release of the product of ChiB.
Collapse
Affiliation(s)
- Jitrayut Jitonnom
- Division of Chemistry, School of Science, University of Phayao , Phayao 56000, Thailand
| | | | | |
Collapse
|
8
|
Pan XL, Liu W, Liu JY. Mechanism of the Glycosylation Step Catalyzed by Human α-Galactosidase: A QM/MM Metadynamics Study. J Phys Chem B 2013; 117:484-9. [DOI: 10.1021/jp308747c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiao-Liang Pan
- State Key
Laboratory of Theoretical and Computational Chemistry, Institute of
Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Wei Liu
- State Key
Laboratory of Theoretical and Computational Chemistry, Institute of
Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Jing-Yao Liu
- State Key
Laboratory of Theoretical and Computational Chemistry, Institute of
Theoretical Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
9
|
Dependence of the optical absorption and Na+ binding energies of coumarin-crown ethers on the size and attachment position of ether ring: density functional investigation. J Mol Model 2012; 19:173-8. [PMID: 22842819 DOI: 10.1007/s00894-012-1500-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
The crowned coumarin complexes are well known compounds for their ion recognition abilities. They undergo photophysical changes upon cation binding. On the basis of density functional theory calculations, we examined the sodium cation (Na+) binding energies of coumarin-crown ethers based on 15-Crown-5 (15 C5) and 18-Crown-6 (18 C6) as well as the optical absorptions of coumarin-crown ethers based on 12-Crown-4 (12 C4), 15 C5 and 18 C6. We explored why the attachment of crown ether ring to coumarin affects the Na+ binding energies of coumarin-crown ethers and also why the optical absorption of coumarin is modified by the crown ethers. Our study reveals that the Na+ ion binding energies of coumarin-crown ethers depend strongly on the size of the crown ether ring and also on the attachment position of the ether ring on coumarin. These factors affect the intramolecular charge transfer and overall stability of the complexes. The absorptions of the coumarin and ether ring parts of coumarin-crown ether are red shifted from those of isolated coumarin and crown ether, respectively. The red-shift of the coumarin ester group absorption is much stronger depending on the attachment position of the ether ring to coumarin. The absorption intensity of the coumarin part in coumarin-crown ethers is reduced for the benzene group absorption, but is enhanced for the ester group absorption.
Collapse
|
10
|
Sousa SF, Fernandes PA, Ramos MJ. Computational enzymatic catalysis – clarifying enzymatic mechanisms with the help of computers. Phys Chem Chem Phys 2012; 14:12431-41. [DOI: 10.1039/c2cp41180f] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Passos Ó, Fernandes PA, Ramos MJ. QM/MM Study of the Catalytic Mechanism of GalNAc Removal from GM2 Ganglioside Catalyzed by Human β-HexosaminidaseA. J Phys Chem B 2011; 115:14751-9. [DOI: 10.1021/jp205826n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Óscar Passos
- Requimte, Faculty of Sciences, Porto University, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | | | - Maria João Ramos
- Requimte, Faculty of Sciences, Porto University, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| |
Collapse
|