1
|
Shin YC, Latorre-Muro P, Djurabekova A, Zdorevskyi O, Bennett CF, Burger N, Song K, Xu C, Paulo JA, Gygi SP, Sharma V, Liao M, Puigserver P. Structural basis of respiratory complex adaptation to cold temperatures. Cell 2024; 187:6584-6598.e17. [PMID: 39395414 PMCID: PMC11601890 DOI: 10.1016/j.cell.2024.09.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
In response to cold, mammals activate brown fat for respiratory-dependent thermogenesis reliant on the electron transport chain. Yet, the structural basis of respiratory complex adaptation upon cold exposure remains elusive. Herein, we combined thermoregulatory physiology and cryoelectron microscopy (cryo-EM) to study endogenous respiratory supercomplexes from mice exposed to different temperatures. A cold-induced conformation of CI:III2 (termed type 2) supercomplex was identified with a ∼25° rotation of CIII2 around its inter-dimer axis, shortening inter-complex Q exchange space, and exhibiting catalytic states that favor electron transfer. Large-scale supercomplex simulations in mitochondrial membranes reveal how lipid-protein arrangements stabilize type 2 complexes to enhance catalytic activity. Together, our cryo-EM studies, multiscale simulations, and biochemical analyses unveil the thermoregulatory mechanisms and dynamics of increased respiratory capacity in brown fat at the structural and energetic level.
Collapse
Affiliation(s)
- Young-Cheul Shin
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Latorre-Muro
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Amina Djurabekova
- Department of Physics, University of Helsinki, Helsinki 00014, Finland
| | | | - Christopher F Bennett
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nils Burger
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kangkang Song
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chen Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki 00014, Finland; HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Maofu Liao
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| | - Pere Puigserver
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Shin YC, Latorre-Muro P, Djurabekova A, Zdorevskyi O, Bennett CF, Burger N, Song K, Xu C, Sharma V, Liao M, Puigserver P. Structural basis of respiratory complexes adaptation to cold temperatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575914. [PMID: 38293190 PMCID: PMC10827213 DOI: 10.1101/2024.01.16.575914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
In response to cold, mammals activate brown fat for respiratory-dependent thermogenesis reliant on the electron transport chain (1, 2). Yet, the structural basis of respiratory complex adaptation to cold remains elusive. Herein we combined thermoregulatory physiology and cryo-EM to study endogenous respiratory supercomplexes exposed to different temperatures. A cold-induced conformation of CI:III 2 (termed type 2) was identified with a ∼25° rotation of CIII 2 around its inter-dimer axis, shortening inter-complex Q exchange space, and exhibiting different catalytic states which favor electron transfer. Large-scale supercomplex simulations in lipid membrane reveal how unique lipid-protein arrangements stabilize type 2 complexes to enhance catalytic activity. Together, our cryo-EM studies, multiscale simulations and biochemical analyses unveil the mechanisms and dynamics of respiratory adaptation at the structural and energetic level.
Collapse
|
3
|
Gamero-Quijano A, Bhattacharya S, Cazade PA, Molina-Osorio AF, Beecher C, Djeghader A, Soulimane T, Dossot M, Thompson D, Herzog G, Scanlon MD. Modulating the pro-apoptotic activity of cytochrome c at a biomimetic electrified interface. SCIENCE ADVANCES 2021; 7:eabg4119. [PMID: 34739310 PMCID: PMC8570605 DOI: 10.1126/sciadv.abg4119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Programmed cell death via apoptosis is a natural defence against excessive cell division, crucial for fetal development to maintenance of homeostasis and elimination of precancerous and senescent cells. Here, we demonstrate an electrified liquid biointerface that replicates the molecular machinery of the inner mitochondrial membrane at the onset of apoptosis. By mimicking in vivo cytochrome c (Cyt c) interactions with cell membranes, our platform allows us to modulate the conformational plasticity of the protein by simply varying the electrochemical environment at an aqueous-organic interface. We observe interfacial electron transfer between an organic electron donor decamethylferrocene and O2, electrocatalyzed by Cyt c. This interfacial reaction requires partial Cyt c unfolding, mimicking Cyt c in vivo peroxidase activity. As proof of concept, we use our electrified liquid biointerface to identify drug molecules, such as bifonazole, that can potentially down-regulate Cyt c and protect against uncontrolled neuronal cell death in neurodegenerative disorders.
Collapse
Affiliation(s)
- Alonso Gamero-Quijano
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Shayon Bhattacharya
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Physics, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Pierre-André Cazade
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Physics, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Andrés F. Molina-Osorio
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Cillian Beecher
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Ahmed Djeghader
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Tewfik Soulimane
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Manuel Dossot
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement, Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Damien Thompson
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Physics, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement, Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Micheál D. Scanlon
- The Bernal Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
| |
Collapse
|
4
|
Hydrogen bonding rearrangement by a mitochondrial disease mutation in cytochrome bc 1 perturbs heme b H redox potential and spin state. Proc Natl Acad Sci U S A 2021; 118:2026169118. [PMID: 34389670 PMCID: PMC8379992 DOI: 10.1073/pnas.2026169118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To perform their specific electron-transfer relay functions, hemes commonly adopt low spin states with fine-tuned redox potentials. Understanding molecular elements controlling these properties is crucial for the description of natural proteins and engineering redox-active systems. We describe unusual effects of mitochondrial disease-related mutation in cytochrome bc1, based on which we identify a dual role of hydrogen bonding to the propionate group of heme bH. We observe that stabilization of the hydrogen bond in mutant enhances the redox potential but destabilizes the low spin state of oxidized heme. This demonstrates a critical role of the hydrogen bonding, and heme-protein interactions in general, to secure a suitable redox potential and spin state, a notion that might be universal for other heme proteins. Hemes are common elements of biological redox cofactor chains involved in rapid electron transfer. While the redox properties of hemes and the stability of the spin state are recognized as key determinants of their function, understanding the molecular basis of control of these properties is challenging. Here, benefiting from the effects of one mitochondrial disease–related point mutation in cytochrome b, we identify a dual role of hydrogen bonding (H-bond) to the propionate group of heme bH of cytochrome bc1, a common component of energy-conserving systems. We found that replacing conserved glycine with serine in the vicinity of heme bH caused stabilization of this bond, which not only increased the redox potential of the heme but also induced structural and energetic changes in interactions between Fe ion and axial histidine ligands. The latter led to a reversible spin conversion of the oxidized Fe from 1/2 to 5/2, an effect that potentially reduces the electron transfer rate between the heme and its redox partners. We thus propose that H-bond to the propionate group and heme-protein packing contribute to the fine-tuning of the redox potential of heme and maintaining its proper spin state. A subtle balance is needed between these two contributions: While increasing the H-bond stability raises the heme potential, the extent of increase must be limited to maintain the low spin and diamagnetic form of heme. This principle might apply to other native heme proteins and can be exploited in engineering of artificial heme-containing protein maquettes.
Collapse
|
5
|
Husen P, Solov'yov IA. Modeling the Energy Landscape of Side Reactions in the Cytochrome bc 1 Complex. Front Chem 2021; 9:643796. [PMID: 34095083 PMCID: PMC8170094 DOI: 10.3389/fchem.2021.643796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Much of the metabolic molecular machinery responsible for energy transduction processes in living organisms revolves around a series of electron and proton transfer processes. The highly redox active enzymes can, however, also pose a risk of unwanted side reactions leading to reactive oxygen species, which are harmful to cells and are a factor in aging and age-related diseases. Using extensive quantum and classical computational modeling, we here show evidence of a particular superoxide production mechanism through stray reactions between molecular oxygen and a semiquinone reaction intermediate bound in the mitochondrial complex III of the electron transport chain, also known as the cytochrome b c 1 complex. Free energy calculations indicate a favorable electron transfer from semiquinone occurring at low rates under normal circumstances. Furthermore, simulations of the product state reveal that superoxide formed at the Q o -site exclusively leaves the b c 1 complex at the positive side of the membrane and escapes into the intermembrane space of mitochondria, providing a critical clue in further studies of the harmful effects of mitochondrial superoxide production.
Collapse
Affiliation(s)
- Peter Husen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Jiang X, Futera Z, Blumberger J. Ergodicity-Breaking in Thermal Biological Electron Transfer? Cytochrome C Revisited. J Phys Chem B 2019; 123:7588-7598. [PMID: 31405279 DOI: 10.1021/acs.jpcb.9b05253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It was recently suggested that certain redox proteins operate in an ergodicity-breaking regime to facilitate biological electron transfer (ET). A signature for this is a large variance reorganization free energy (several electronvolts) but a significantly smaller Stokes reorganization free energy due to incomplete protein relaxation on the time scale of the ET event. Here we investigate whether this picture holds for oxidation of cytochrome c in aqueous solution, at various levels of theory including classical molecular dynamics with two additive and one electronically polarizable force field, and QM/MM calculations with the QM region treated by full electrostatic DFT embedding and by the perturbed matrix method. Sampling the protein and energy gap dynamics over more than 250 ns, we find no evidence for ergodicity-breaking effects. In particular, the inclusion of electronic polarizability of the heme group at QM/MM levels did not induce nonergodic effects, contrary to previous reports by Matyushov et al. The well-known problem of overestimation of reorganization free energies with additive force fields is cured when the protein and solvent are treated as electronically polarizable. Ergodicity-breaking effects may occur in other redox proteins, and our results suggest that long simulations, ideally on the ET time scale, with electronically polarizable force fields are required to obtain strong numerical evidence for them.
Collapse
Affiliation(s)
- Xiuyun Jiang
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Zdenek Futera
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
7
|
Wu X, Clavaguera C, Lagardère L, Piquemal JP, de la Lande A. AMOEBA Polarizable Force Field Parameters of the Heme Cofactor in Its Ferrous and Ferric Forms. J Chem Theory Comput 2018; 14:2705-2720. [PMID: 29630819 DOI: 10.1021/acs.jctc.7b01128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We report the first parameters of the heme redox cofactors for the polarizable AMOEBA force field in both the ferric and ferrous forms. We consider two types of complexes, one with two histidine side chains as axial ligands and one with a histidine and a methionine side chain as ligands. We have derived permanent multipoles from second-order Møller-Plesset perturbation theory (MP2). The sets of parameters have been validated in a first step by comparison of AMOEBA interaction energies of heme and a collection of biologically relevant molecules with MP2 and Density Functional Theory (DFT) calculations. In a second validation step, we consider interaction energies with large aggregates comprising around 80 H2O molecules. These calculations are repeated for 30 structures extracted from semiempirical PM7 DM simulations. Very encouraging agreement is found between DFT and the AMOEBA force field, which results from an accurate treatment of electrostatic interactions. We finally report long (10 ns) MD simulations of cytochromes in two redox states with AMOEBA testing both the 2003 and 2014 AMOEBA water models. These simulations have been carried out with the TINKER-HP (High Performance) program. In conclusion, owing to their ubiquity in biology, we think the present work opens a wide array of applications of the polarizable AMOEBA force field on hemeproteins.
Collapse
Affiliation(s)
- Xiaojing Wu
- Laboratoire de Chimie Physique , Université Paris Sud - CNRS, Université Paris Saclay , 15 Avenue Jean Perrin , 91405 Orsay Cedex , France
| | - Carine Clavaguera
- Laboratoire de Chimie Physique , Université Paris Sud - CNRS, Université Paris Saclay , 15 Avenue Jean Perrin , 91405 Orsay Cedex , France
| | - Louis Lagardère
- Sorbonne Université, CNRS , Institut Parisien de Chimie Physique et Théorique (IP2CT) , 4 Place Jussieu , F-75005 , Paris , France.,Sorbonne Université , Institut des Sciences du Calcul et des Données (ISCD) , 4 place Jussieu , F-75005 , Paris , France
| | - Jean-Philip Piquemal
- Sorbonne Université, CNRS , Laboratoire de Chimie Théorique (LCT) , 4 Place Jussieu , F-75005 , Paris , France.,Department of Biomedical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States.,Institut Universitaire de France , 75005 , Paris , France
| | - Aurélien de la Lande
- Laboratoire de Chimie Physique , Université Paris Sud - CNRS, Université Paris Saclay , 15 Avenue Jean Perrin , 91405 Orsay Cedex , France
| |
Collapse
|
8
|
Husen P, Solov'yov IA. Mutations at the Q o Site of the Cytochrome bc 1 Complex Strongly Affect Oxygen Binding. J Phys Chem B 2016; 121:3308-3317. [PMID: 27748117 DOI: 10.1021/acs.jpcb.6b08226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The homodimeric bc1 protein complex is embedded in membranes of mitochondria and photosynthetic bacteria, where it transports protons across the membrane to maintain an electrostatic potential used to drive ATP synthesis as part of the respiratory or photosynthetic pathways. The reaction cycle of the bc1 complex is driven by series of redox processes involving substrate molecules from the membrane, but occasional side reactions between an intermediate semiquinone substrate and molecular oxygen are suspected to be a source of toxic superoxide, which is believed to be a factor in aging. The present investigation employs molecular dynamics simulations to study the effect of mutations in the Qo binding sites of the bc1 complex on the ability of oxygen molecules to migrate to and bind at various locations within the complex. It is found that the mutations strongly affect the ability of oxygen to bind at the Qo sites, and moreover, different behavior of the two monomers of the bc1 complex is observed. The conformational differences at the Qo sites of the two monomers are studied in detail and discussed. The anionic form of semiquinone was identified as leading to the greatest opportunity for side reactions with oxygen.
Collapse
Affiliation(s)
- Peter Husen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| | - Ilia A Solov'yov
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
9
|
Barragan AM, Schulten K, Solov'yov IA. Mechanism of the Primary Charge Transfer Reaction in the Cytochrome bc 1 Complex. J Phys Chem B 2016; 120:11369-11380. [PMID: 27661199 DOI: 10.1021/acs.jpcb.6b07394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bc1 complex is a critical enzyme for the ATP production in photosynthesis and cellular respiration. Its biochemical function relies on the so-called Q-cycle, which is well established and operates via quinol substrates that bind inside the protein complex. Despite decades of research, the quinol-protein interaction, which initiates the Q-cycle, has not yet been completely described. Furthermore, the initial charge transfer reactions of the Q-cycle lack a physical description. The present investigation utilizes classical molecular dynamics simulations in tandem with quantum density functional theory calculations, to provide a complete and consistent quantitative description of the primary events that occur within the bc1 complex upon quinol binding. In particular, the electron and proton transfer reactions that trigger the Q-cycle in the bc1 complex from Rhodobacter capsulatus are studied. The coupled nature of these charge transfer reactions was revealed by obtaining the transition energy path connecting configurations of the Qo-site prior and after the transfers. The analysis of orbitals and partial charge distribution of the different states of the Qo-site has further supported the conclusion. Finally, key structural elements of the bc1 complex that trigger the charge transfer reactions were established, manifesting the importance of the environment in the process, which is furthermore evidenced by free energy calculations.
Collapse
Affiliation(s)
- Angela M Barragan
- Department of Physics, University of Illinois at Urbana-Champaign , 1110 West Green Street, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Klaus Schulten
- Department of Physics, University of Illinois at Urbana-Champaign , 1110 West Green Street, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ilia A Solov'yov
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
10
|
Atomistic determinants of co-enzyme Q reduction at the Q i-site of the cytochrome bc 1 complex. Sci Rep 2016; 6:33607. [PMID: 27667198 PMCID: PMC5035994 DOI: 10.1038/srep33607] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/30/2016] [Indexed: 01/21/2023] Open
Abstract
The cytochrome (cyt) bc1 complex is an integral component of the respiratory electron transfer chain sustaining the energy needs of organisms ranging from humans to bacteria. Due to its ubiquitous role in the energy metabolism, both the oxidation and reduction of the enzyme’s substrate co-enzyme Q has been studied vigorously. Here, this vast amount of data is reassessed after probing the substrate reduction steps at the Qi-site of the cyt bc1 complex of Rhodobacter capsulatus using atomistic molecular dynamics simulations. The simulations suggest that the Lys251 side chain could rotate into the Qi-site to facilitate binding of half-protonated semiquinone – a reaction intermediate that is potentially formed during substrate reduction. At this bent pose, the Lys251 forms a salt bridge with the Asp252, thus making direct proton transfer possible. In the neutral state, the lysine side chain stays close to the conserved binding location of cardiolipin (CL). This back-and-forth motion between the CL and Asp252 indicates that Lys251 functions as a proton shuttle controlled by pH-dependent negative feedback. The CL/K/D switching, which represents a refinement to the previously described CL/K pathway, fine-tunes the proton transfer process. Lastly, the simulation data was used to formulate a mechanism for reducing the substrate at the Qi-site.
Collapse
|
11
|
Husen P, Solov'yov IA. Spontaneous Binding of Molecular Oxygen at the Qo-Site of the bc1 Complex Could Stimulate Superoxide Formation. J Am Chem Soc 2016; 138:12150-8. [PMID: 27447781 DOI: 10.1021/jacs.6b04849] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A key part of the respiratory and photosynthetic pathways is the bc1 protein complex embedded in the inner membrane of mitochondria and the plasma membrane of photosynthetic bacteria. The protein complex pumps protons across the membrane to maintain an electrostatic potential, which is in turn used to drive ATP synthesis. This molecular machinery, however, is suspected to be a source of superoxide, which is toxic to the cell, even in minuscular quantities, and believed to be a factor in aging. Through molecular dynamics simulations, we investigate here the migration of molecular oxygen in the bc1 complex in order to identify possible reaction sites that could lead to superoxide formation. It is found, in particular, that oxygen penetrates spontaneously the Qo binding site of the bc1 complex in the presence of an intermediate semiquinone radical, thus making the Qo-site a strong candidate for being a center of superoxide production.
Collapse
Affiliation(s)
- Peter Husen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Odense 5230, Denmark
| | - Ilia A Solov'yov
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Odense 5230, Denmark
| |
Collapse
|
12
|
Scintilla S, Bonfio C, Belmonte L, Forlin M, Rossetto D, Li J, Cowan JA, Galliani A, Arnesano F, Assfalg M, Mansy SS. Duplications of an iron–sulphur tripeptide leads to the formation of a protoferredoxin. Chem Commun (Camb) 2016; 52:13456-13459. [DOI: 10.1039/c6cc07912a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on UV-Vis, NMR, and EPR spectroscopies and DFT and molecular dynamics calculations, a model prebiotic [2Fe–2S] tripeptide was shown to accept and donate electrons.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingwei Li
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | - James A. Cowan
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Angela Galliani
- Department of Chemistry
- University of “Bari A. Moro”
- 70125 Bari
- Italy
| | - Fabio Arnesano
- Department of Chemistry
- University of “Bari A. Moro”
- 70125 Bari
- Italy
| | - Michael Assfalg
- Department of Biotechnology
- University of Verona
- 37134 Verona
- Italy
| | | |
Collapse
|
13
|
Barragan AM, Crofts AR, Schulten K, Solov'yov IA. Identification of ubiquinol binding motifs at the Qo-site of the cytochrome bc1 complex. J Phys Chem B 2014; 119:433-47. [PMID: 25372183 PMCID: PMC4297238 DOI: 10.1021/jp510022w] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Enzymes of the bc1 complex family power
the biosphere through their central role in respiration and photosynthesis.
These enzymes couple the oxidation of quinol molecules by cytochrome c to the transfer of protons across the membrane, to generate
a proton-motive force that drives ATP synthesis. Key for the function
of the bc1 complex is the initial redox
process that involves a bifurcated electron transfer in which the
two electrons from a quinol substrate are passed to different electron
acceptors in the bc1 complex. The electron
transfer is coupled to proton transfer. The overall mechanism of quinol
oxidation by the bc1 complex is well enough
characterized to allow exploration at the atomistic level, but details
are still highly controversial. The controversy stems from the uncertain
binding motifs of quinol at the so-called Qo active site of the bc1 complex.
Here we employ a combination of classical all atom molecular dynamics
and quantum chemical calculations to reveal the binding modes of quinol
at the Qo-site of the bc1 complex from Rhodobacter capsulatus. The calculations suggest a novel configuration of amino acid residues
responsible for quinol binding and support a mechanism for proton-coupled
electron transfer from quinol to iron–sulfur cluster through
a bridging hydrogen bond from histidine that stabilizes the reaction
complex.
Collapse
Affiliation(s)
- Angela M Barragan
- Department of Physics, University of Illinois at Urbana-Champaign , 1110 W. Green Street, Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
14
|
Pabis A, Geronimo I, York DM, Paneth P. Molecular Dynamics Simulation of Nitrobenzene Dioxygenase Using AMBER Force Field. J Chem Theory Comput 2014; 10:2246-2254. [PMID: 24955078 PMCID: PMC4059247 DOI: 10.1021/ct500205z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Indexed: 12/03/2022]
Abstract
Molecular dynamics simulation of the oxygenase component of nitrobenzene dioxygenase (NBDO) system, a member of the naphthalene family of Rieske nonheme iron dioxygenases, has been carried out using the AMBER force field combined with a new set of parameters for the description of the mononuclear nonheme iron center and iron-sulfur Rieske cluster. Simulation results provide information on the structure and dynamics of nitrobenzene dioxygenase in an aqueous environment and shed light on specific interactions that occur in its catalytic center. The results suggest that the architecture of the active site is stabilized by key hydrogen bonds, and Asn258 positions the substrate for oxidation. Analysis of protein-water interactions reveal the presence of a network of solvent molecules at the entrance to the active site, which could be of potential catalytic importance.
Collapse
Affiliation(s)
- Anna Pabis
- Institute
of Applied Radiation Chemistry, Lodz University
of Technology, Zeromskiego
116, 90-924 Lodz, Poland
- Department
of Chemistry and Chemical Biology, Center for Integrative Proteomics
Research and BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Inacrist Geronimo
- Institute
of Applied Radiation Chemistry, Lodz University
of Technology, Zeromskiego
116, 90-924 Lodz, Poland
| | - Darrin M. York
- Department
of Chemistry and Chemical Biology, Center for Integrative Proteomics
Research and BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Piotr Paneth
- Institute
of Applied Radiation Chemistry, Lodz University
of Technology, Zeromskiego
116, 90-924 Lodz, Poland
| |
Collapse
|