1
|
Stoeckel MA, Feng K, Yang CY, Liu X, Li Q, Liu T, Jeong SY, Woo HY, Yao Y, Fahlman M, Marks TJ, Sharma S, Motta A, Guo X, Fabiano S, Facchetti A. On-Demand Catalysed n-Doping of Organic Semiconductors. Angew Chem Int Ed Engl 2024; 63:e202407273. [PMID: 38770935 DOI: 10.1002/anie.202407273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
A new approach to control the n-doping reaction of organic semiconductors is reported using surface-functionalized gold nanoparticles (f-AuNPs) with alkylthiols acting as the catalyst only upon mild thermal activation. To demonstrate the versatility of this methodology, the reaction of the n-type dopant precursor N-DMBI-H with several molecular and polymeric semiconductors at different temperatures with/without f-AuNPs, vis-à-vis the unfunctionalized catalyst AuNPs, was investigated by spectroscopic, morphological, charge transport, and kinetic measurements as well as, computationally, the thermodynamic of catalyst activation. The combined experimental and theoretical data demonstrate that while f-AuNPs is inactive at room temperature both in solution and in the solid state, catalyst activation occurs rapidly at mild temperatures (~70 °C) and the doping reaction completes in few seconds affording large electrical conductivities (~10-140 S cm-1). The implementation of this methodology enables the use of semiconductor+dopant+catalyst solutions and will broaden the use of the corresponding n-doped films in opto-electronic devices such as thin-film transistors, electrochemical transistors, solar cells, and thermoelectrics well as guide the design of new catalysts.
Collapse
Affiliation(s)
- Marc-Antoine Stoeckel
- Wallenberg Initiative Materials Science for Sustainability, ITN, Linköping University, SE-60174, Norrköping, Sweden
- n-ink AB, Bredgatan 33, SE-60221, Norrköping, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Chi-Yuan Yang
- n-ink AB, Bredgatan 33, SE-60221, Norrköping, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Xianjie Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Qifan Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Tiefeng Liu
- Wallenberg Initiative Materials Science for Sustainability, ITN, Linköping University, SE-60174, Norrköping, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Yao Yao
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Mats Fahlman
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Sakshi Sharma
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Alessandro Motta
- Dipartimento di Chimica, Università di Roma "La Sapienza", p.le A. Moro 5, Rome, I-00185, Italy
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Simone Fabiano
- Wallenberg Initiative Materials Science for Sustainability, ITN, Linköping University, SE-60174, Norrköping, Sweden
- n-ink AB, Bredgatan 33, SE-60221, Norrköping, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Antonio Facchetti
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
2
|
Wu Y, Mao X, Zhang M, Zhao X, Xue R, Di S, Huang W, Wang L, Li Y, Li Y. 2D Molecular Sheets of Hydrogen-Bonded Organic Frameworks for Ultrastable Sodium-Ion Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2106079. [PMID: 34632649 DOI: 10.1002/adma.202106079] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/07/2021] [Indexed: 06/13/2023]
Abstract
There has been growing research interest in hydrogen bonded organic frameworks (HOFs) by virtue of their great structural crystallinity, large surface areas and porosity. Their potential in electrochemical applications, unfortunately, remains elusive because weak hydrogen bonds would dissociate in solution that eventually compromises the structural integrity. Herein, it is demonstrated that this issue may be overcome by designing and introducing multisite hydrogen bonding within HOFs. 2D molecular sheets are prepared using diaminotriazole as the linkers for the first time. In spite of the molecular thickness (≈1 nm), they are chemically stable and mechanically robust, and have diminished solubility in most polar or nonpolar organic solvents. This solution-stable HOF exhibits an excellent electrochemical performance for Na+ ion storage. In particular, it enables an exceptional cycle life of >10 000 cycles at 1 A g-1 , which is far superior to most other organic electrode materials. Theoretical simulations indicate that the activation barrier for the intralayer or interlayer diffusion of Na+ ions within the organic frameworks is small.
Collapse
Affiliation(s)
- Yunling Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xinnan Mao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Mochun Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xuan Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Renjie Xue
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Sijia Di
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Wei Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Methoxy radical adsorption on gold nanoparticles: a comparison with methanethiol and methylamine radicals. ADSORPTION 2020. [DOI: 10.1007/s10450-020-00232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Abstract
Abstract
Preventing the corrosion of iron in inaccessible structures requires a coating method that reaches all surface areas and creates a uniform protective layer. An ages old practice to protect iron artefacts is to coat them with animal fat, that is, a mixture of lipids. This “method” is accidentally ingenious: some natural phospholipids found in animal fat have the potential to form a tightly packed self-assembled monolayer on metal oxide surfaces, similar to the surfactant monolayers that have attracted increasing attention lately. Thus, the most primitive corrosion prevention method may point at a way to coat complex iron structures in an industrial environment. Here the ability of phosphatidic acid, a natural lipid, to coat and protect iron surfaces was examined. Iron coated quartz crystal microbalance (QCM) sensors were used for the experiments, to monitor the deposition of the lipid as well as the acidic corrosion (dissolution) of iron in situ, in real time. The sensors were coated by self-assembled monolayers of di-myristoyl phosphatidic acid using the liposome deposition method. In this process, 50-100 nm vesicles formed by the lipid are delivered in an aqueous solution and spontaneously coat the iron surfaces upon contact. QCM and ellipsometry measurements confirmed that continuous bilayer and monolayer surface coatings can be achieved by this method. QCM measurements also confirmed that the layers were corrosion resistant in 0.01M acetic acid solution that would dissolve the thin iron layer in minutes in the absence of the protective coating. XPS results suggested a chemisorption-based mechanism of phosphatidic acid attachment to the iron surface. Hence, liposome deposition of phosphatidic acid offers a suitable solution to coat iron surfaces in inaccessible structures in situ.
Collapse
|
5
|
Roy JK, Vasquez ES, Pinto HP, Kumari S, Walters KB, Leszczynski J. Computational and experimental approach to understanding the structural interplay of self-assembled end-terminated alkanethiolates on gold surfaces. Phys Chem Chem Phys 2019; 21:23320-23328. [DOI: 10.1039/c9cp03613j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecular organization dictates phases, stability and subsequent electronic structure of self-assembled monolayers. With appropriate density functionals, ab initio molecular dynamics (AIMD) simulations predicted and elucidated experimental orientations.
Collapse
Affiliation(s)
- Juganta K. Roy
- Interdisciplinary Center for Nanotoxicity
- Department of Chemistry
- Physics and Atmospheric Sciences
- Jackson State University
- Jackson
| | - Erick S. Vasquez
- Department of Chemical and Materials Engineering
- University of Dayton
- Dayton
- USA
| | - Henry P. Pinto
- Interdisciplinary Center for Nanotoxicity
- Department of Chemistry
- Physics and Atmospheric Sciences
- Jackson State University
- Jackson
| | - Swati Kumari
- Swalm School of Chemical Engineering
- Mississippi State University
- Mississippi 39762
- USA
| | - Keisha B. Walters
- School of Chemical
- Biological and Materials Engineering
- The University of Oklahoma
- Norman
- USA
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity
- Department of Chemistry
- Physics and Atmospheric Sciences
- Jackson State University
- Jackson
| |
Collapse
|
6
|
Bhandary D, Valechi V, Cordeiro MNDS, Singh JK. Janus Gold Nanoparticles from Nanodroplets of Alkyl Thiols: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3056-3067. [PMID: 28256843 DOI: 10.1021/acs.langmuir.6b04680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Janus particles provide an asymmetry in structure, which can impart diverse functionalities leading to immense importance in various applications, ranging from targeted delivery to interfacial phenomena, including catalysis, electronics, and optics. In this work, we present results of a molecular dynamics study of the growth mechanism of coating on gold nanoparticles (AuNPs) from droplets of n-alkyl thiols with different chain lengths (C5 and C11) and terminal groups (CH3 and COOH). The effect of chain lengths and functional groups on the formation of a monolayer of alkyl thiols on AuNPs is investigated. A two-step mechanism, initiated by the binding of the droplet to the nanoparticle surface with a time constant on the order of ∼1 ns, followed by the diffusion-driven growth with a larger time constant (on the order of 100 ns), is shown to capture the growth dynamics of the monolayer. It is observed that the time required for complete wetting increases with an increase in the chain length. Moreover, the monolayer formation is slowed down in the presence of carboxyl groups because of strong hydrogen bonding. The kinetics of the n-alkyl thiols coating on the nanoparticles is found to be independent of the droplet size but carboxyl-terminated thiols spread more with increasing droplet size. Furthermore, different time constants for different chains and functional groups yield Janus coating when two droplets of alkyl thiols with different terminal groups are allowed to form monolayers on the nanoparticle. The Janus balance (β) for different combinations of alkyl thiols and nanoparticle sizes varies in the range of 0.42-0.71.
Collapse
Affiliation(s)
- Debdip Bhandary
- Department of Chemical Engineering, Indian Institute of Technology Kanpur , Kanpur, Uttar Pradesh 208016, India
| | - Vasumathi Valechi
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , 4169-007 Porto, Portugal
| | - Maria Natália D S Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto , 4169-007 Porto, Portugal
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur , Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
7
|
Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Mete E, Yortanlı M, Danışman MF. A van der Waals DFT study of chain length dependence of alkanethiol adsorption on Au(111): physisorption vs. chemisorption. Phys Chem Chem Phys 2017; 19:13756-13766. [DOI: 10.1039/c7cp01653k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Coverage and size dependent chain–chain electronic interactions counteract with the alkyl chain–gold surface interactions and the surface relaxation of the metal in the formation of standing up monolayer structures.
Collapse
Affiliation(s)
- Ersen Mete
- Department of Physics
- Balıkesir University
- Balıkesir 10145
- Turkey
| | - Merve Yortanlı
- Department of Physics
- Balıkesir University
- Balıkesir 10145
- Turkey
| | | |
Collapse
|
9
|
Comparative Analysis of Reactant and Product Adsorption Energies in the Selective Oxidative Coupling of Alcohols to Esters on Au(111). Top Catal 2016. [DOI: 10.1007/s11244-016-0660-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Mete E, Yılmaz A, Danışman MF. A van der Waals density functional investigation of carboranethiol self-assembled monolayers on Au(111). Phys Chem Chem Phys 2016; 18:12920-7. [PMID: 27108565 DOI: 10.1039/c6cp01485b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Isolated and full monolayer adsorption of various carboranethiol (C2B10H12S) isomers on the gold(111) surface has been investigated using both the standard and van der Waals density functional theory calculations. The effect of different molecular dipole moment orientations on the low energy adlayer geometries, the binding characteristics and the electronic properties of the self-assembled monolayers of these isomers has been studied. Specifically, the binding energy and work function changes associated with different molecules show a correlation with their dipole moments. The adsorption is favored for the isomers with dipole moments parallel to the surface. Of the two possible unit cell structures, (5 × 5) was found to be more stable than .
Collapse
Affiliation(s)
- Ersen Mete
- Department of Physics, Balıkesir University, Balıkesir 10145, Turkey.
| | | | | |
Collapse
|
11
|
Charchar P, Christofferson AJ, Todorova N, Yarovsky I. Understanding and Designing the Gold-Bio Interface: Insights from Simulations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2395-418. [PMID: 27007031 DOI: 10.1002/smll.201503585] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/01/2016] [Indexed: 05/20/2023]
Abstract
Gold nanoparticles (AuNPs) are an integral part of many exciting and novel biomedical applications, sparking the urgent need for a thorough understanding of the physicochemical interactions occurring between these inorganic materials, their functional layers, and the biological species they interact with. Computational approaches are instrumental in providing the necessary molecular insight into the structural and dynamic behavior of the Au-bio interface with spatial and temporal resolutions not yet achievable in the laboratory, and are able to facilitate a rational approach to AuNP design for specific applications. A perspective of the current successes and challenges associated with the multiscale computational treatment of Au-bio interfacial systems, from electronic structure calculations to force field methods, is provided to illustrate the links between different approaches and their relationship to experiment and applications.
Collapse
Affiliation(s)
- Patrick Charchar
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | | | - Nevena Todorova
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
12
|
Abstract
The structural stability and electronic properties of the adsorption characteristics of several toxic gas molecules (NH3, SO2 and NO2) on a germanene monolayer were investigated using density functional theory (DFT) based on an ab initio method.
Collapse
Affiliation(s)
- Sanjeev K. Gupta
- Computational Materials and Nanoscience Group
- Department of Physics
- St. Xavier's College
- Ahmedabad 380009
- India
| | - Deobrat Singh
- Advanced Material Lab
- Department of Applied Physics
- S.V. National Institute of Technology
- Surat 395 007
- India
| | - Kaptansinh Rajput
- Advanced Material Lab
- Department of Applied Physics
- S.V. National Institute of Technology
- Surat 395 007
- India
| | - Yogesh Sonvane
- Advanced Material Lab
- Department of Applied Physics
- S.V. National Institute of Technology
- Surat 395 007
- India
| |
Collapse
|