1
|
Stoukatch S, Dupont F, Redouté JM. Device Processing Challenges for Miniaturized Sensing Systems Targeting Biological Fluids. BIOMEDICAL MATERIALS & DEVICES 2022. [PMCID: PMC9510362 DOI: 10.1007/s44174-022-00034-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/02/2022] [Indexed: 09/29/2023]
Abstract
This article presents a review of device processing technologies used in the fabrication of biomedical systems, and highlights the requirements of advanced manufacturing technology. We focus on biomedical systems that perform diagnostics of fluidic specimens, with analytes that are in the liquid phase. In the introduction, we define biomedical systems as well as their versatile applications and the essential current trends. The paper gives an overview of the most important biomolecules that typically must be detected or analyzed in several applications. The paper is structured as follows. First, the conventional architecture and construction of a biosensing system is introduced. We provide an overview of the most common biosensing methods that are currently used for the detection of biomolecules and its analysis. We present an overview of reported biochips, and explain the technology of biofunctionalization and detection principles, including their corresponding advantages and disadvantages. Next, we introduce microfluidics as a method for delivery of the specimen to the biochip sensing area. A special focus lies on material requirements and on manufacturing technology for fabricating microfluidic systems, both for niche and mass-scale production segments. We formulate requirements and constraints for integrating the biochips and microfluidic systems. The possible impacts of the conventional microassembly techniques and processing methods on the entire biomedical system and its specific parts are also described. On that basis, we explain the need for alternative microassembly technologies to enable the integration of biochips and microfluidic systems into fully functional systems.
Collapse
Affiliation(s)
- S. Stoukatch
- Microsys Lab, Department of Electrical Engineering and Computer Science, Liege University, Seraing, Belgium
| | - F. Dupont
- Microsys Lab, Department of Electrical Engineering and Computer Science, Liege University, Seraing, Belgium
| | - J.-M. Redouté
- Microsys Lab, Department of Electrical Engineering and Computer Science, Liege University, Seraing, Belgium
| |
Collapse
|
2
|
Tortajada-Genaro LA, Yamanaka ES, Maquieira Á. Consumer electronics devices for DNA genotyping based on loop-mediated isothermal amplification and array hybridisation. Talanta 2019; 198:424-431. [PMID: 30876582 DOI: 10.1016/j.talanta.2019.01.124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
Consumer electronic technologies offer practical performances to develop compact biosensing systems intended for the point-of-care testing of DNA biomarkers. Herein a discrimination method for detecting single nucleotide polymorphisms, based on isothermal amplification and on-chip hybridisation, was developed and integrated into user-friendly optical devices: e.g., USB digital microscope, flatbed scanner, smartphone and DVD drive. In order to adequately identify a single base change, loop-mediated isothermal amplification (LAMP) was employed, with high yields (8 orders) within 45 min. Subsequently, products were directly hybridised to the allele-specific probes attached to plastic chips in an array format. After colorimetric staining, four consumer electronic techniques were compared. Sensitive precise measurements were taken (high signal-to-noise ratios, 10-μm image resolution, 99% scan-to-scan reproducibility). These features confirmed their potential as analytical tools, are a competitive alternative to fluorescence scanners, and incorporate additional advantages, such as user-friendly interface and connectivity for telemedicine needs. The analytical performances of the integrated platform (assay and reader) in the human samples were also excellent, with a low detection limit (100 genomic DNA copies), and reproducible (<15%) and cheap assays (< 10 €/test). The correct genotyping of a genetic biomarker (single-nucleotide polymorphism located in the GRIK4 gene) was achieved as the assigned genotypes agreed with those determined by using sequencing. The portability, favourable discriminating and read-out capabilities reveal that the implementation of mass-produced low-cost devices into minimal-specialised clinical laboratories is closer to becoming a reality.
Collapse
Affiliation(s)
- Luis A Tortajada-Genaro
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, E46022 Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain; Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, IIS La Fe, Valencia, Spain.
| | - Eric Seiti Yamanaka
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, E46022 Valencia, Spain
| | - Ángel Maquieira
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, E46022 Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain; Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, IIS La Fe, Valencia, Spain
| |
Collapse
|
3
|
Van Belle W, Gerits N, Jakobsen K, Brox V, Van Ghelue M, Moens U. Intensity Dependent Confidence Intervals on Microarray Measurements of Differentially Expressed Genes: A Case Study of the Effect of MK5, FKRP and TAF4 on the Transcriptome. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [DOI: 10.1177/117762500700100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To perform a quantitative analysis with gene-arrays, one must take into account inaccuracies (experimental variations, biological variations and other measurement errors) which are seldom known. In this paper we investigated amplification and noise propagation related errors by measuring intensity dependent variations. Based on a set of control samples, we create confidence intervals for up and down regulations. We validated our method through a qPCR experiment and compared it to standard analysis methods (including loess normalization and filtering methods based on genetic variability). The results reveal that amplification related errors are a major concern.
Collapse
Affiliation(s)
- Werner Van Belle
- Department of Microbiology and Virology, Section Virology, Faculty of Medicine, University of Tromsø, Norway
- Department for Medical Genetics, University Hospital Tromsø, Northern Norway
| | - Nancy Gerits
- Department of Microbiology and Virology, Section Virology, Faculty of Medicine, University of Tromsø, Norway
| | - Kirsti Jakobsen
- Department of Microbiology and Virology, Section Virology, Faculty of Medicine, University of Tromsø, Norway
- Department for Medical Genetics, University Hospital Tromsø, Northern Norway
| | - Vigdis Brox
- Department for Medical Genetics, University Hospital Tromsø, Northern Norway
| | - Marijke Van Ghelue
- Department for Medical Genetics, University Hospital Tromsø, Northern Norway
| | - Ugo Moens
- Department of Microbiology and Virology, Section Virology, Faculty of Medicine, University of Tromsø, Norway
| |
Collapse
|
4
|
Sauer U. Analytical Protein Microarrays: Advancements Towards Clinical Applications. SENSORS (BASEL, SWITZERLAND) 2017; 17:E256. [PMID: 28146048 PMCID: PMC5335935 DOI: 10.3390/s17020256] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 01/28/2023]
Abstract
Protein microarrays represent a powerful technology with the potential to serve as tools for the detection of a broad range of analytes in numerous applications such as diagnostics, drug development, food safety, and environmental monitoring. Key features of analytical protein microarrays include high throughput and relatively low costs due to minimal reagent consumption, multiplexing, fast kinetics and hence measurements, and the possibility of functional integration. So far, especially fundamental studies in molecular and cell biology have been conducted using protein microarrays, while the potential for clinical, notably point-of-care applications is not yet fully utilized. The question arises what features have to be implemented and what improvements have to be made in order to fully exploit the technology. In the past we have identified various obstacles that have to be overcome in order to promote protein microarray technology in the diagnostic field. Issues that need significant improvement to make the technology more attractive for the diagnostic market are for instance: too low sensitivity and deficiency in reproducibility, inadequate analysis time, lack of high-quality antibodies and validated reagents, lack of automation and portable instruments, and cost of instruments necessary for chip production and read-out. The scope of the paper at hand is to review approaches to solve these problems.
Collapse
Affiliation(s)
- Ursula Sauer
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, 3430 Tulln, Austria.
| |
Collapse
|
5
|
Pápa Z, Ramakrishnan SK, Martin M, Cloitre T, Zimányi L, Márquez J, Budai J, Tóth Z, Gergely C. Interactions at the Peptide/Silicon Surfaces: Evidence of Peptide Multilayer Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7250-7258. [PMID: 27315212 DOI: 10.1021/acs.langmuir.6b00916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Selective deposition of peptides from liquid solutions to n- and p-doped silicon has been demonstrated. The selectivity is governed by peptide/silicon adhesion differences. A noninvasive, fast characterization of the obtained peptide layers is required to promote their application for interfacing silicon-based devices with biological material. In this study we show that spectroscopic ellipsometry-a method increasingly used for the investigation of biointerfaces-can provide essential information about the amount of adsorbed peptide material and the degree of coverage on silicon surfaces. We observed the formation of peptide multilayers for a strongly binding adhesion peptide on p-doped silicon. Application of the patterned layer ellipsometric evaluation method combined with Sellmeier dispersion led to physically consistent results, which describe well the optical properties of peptide layers in the visible spectral range. This evaluation allowed the estimation of surface coverage, which is an important indicator of adsorption quality. The ellipsometric findings were well supported by atomic force microscopy results.
Collapse
Affiliation(s)
- Zsuzsanna Pápa
- ELI-ALPS, ELI-Hu Nkft , Dugonics ter 13, Szeged 6720, Hungary
| | - Sathish Kumar Ramakrishnan
- Laboratoire Charles Coulomb (L2C), UMR 5221, CNRS-Université de Montpellier , Montpellier, France
- Nanobiology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Marta Martin
- Laboratoire Charles Coulomb (L2C), UMR 5221, CNRS-Université de Montpellier , Montpellier, France
| | - Thierry Cloitre
- Laboratoire Charles Coulomb (L2C), UMR 5221, CNRS-Université de Montpellier , Montpellier, France
| | - László Zimányi
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences , Szeged, Hungary
| | - Jessica Márquez
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences , Szeged, Hungary
- Faculty of Chemical Sciences, Universidad Autónoma de San Luis Potosí , San Luis Potosí, Mexico
| | - Judit Budai
- ELI-ALPS, ELI-Hu Nkft , Dugonics ter 13, Szeged 6720, Hungary
| | | | - Csilla Gergely
- Laboratoire Charles Coulomb (L2C), UMR 5221, CNRS-Université de Montpellier , Montpellier, France
| |
Collapse
|
6
|
Choi HJ, Chung BH, Kim Y. Analysis of Protein-Protein Interactions by Surface Plasmon Resonance Imaging-based Microwell and Microfluidic Chip. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hyun-Ju Choi
- Institute of General Education; Kyungnam University; Changwon-si Republic of Korea
| | - Bong Hyun Chung
- Department of Science Education; Kyungnam University; Changwon-si Republic of Korea
| | - Yongseong Kim
- BioNanotechnology Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon 305-806 Republic of Korea
| |
Collapse
|
7
|
Wang Y, Li H, Xu D. Aptamers-based sandwich assay for silver-enhanced fluorescence multiplex detection. Anal Chim Acta 2015; 905:149-55. [PMID: 26755149 DOI: 10.1016/j.aca.2015.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/04/2015] [Accepted: 12/12/2015] [Indexed: 12/26/2022]
Abstract
In this work, aptamers-modified silver nanoparticles (AgNPs) were prepared as capture substrate, and fluorescent dyes-modified aptamers were synthesized as detection probes. The sandwich assay was based on dual aptamers, which was aimed to accomplish the highly sensitive detection of single protein and multiplex detection of proteins on one-spot. We found that aptamers-modified AgNPs based microarray was much superior to the aptamer based microarray in fluorescence detection of proteins. The result shows that the detection limit of the sandwich assay using AgNPs probes for thrombin or platelet-derived growth factor-BB (PDGF-BB) is 80 or 8 times lower than that of aptamers used directly. For multiplex detection of proteins, the detection limit was 625 pM for PDGF-BB and 21 pM for thrombin respectively. The sandwich assay based on dual aptamers and AgNPs was sensitive and specific.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, China; School of Environmental Science, Nanjing Xiaozhuang University, China.
| | - Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, China.
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, China.
| |
Collapse
|
8
|
Jeong Y, Lee KH, Park H, Choi J. Enhanced detection of single-cell-secreted proteins using a fluorescent immunoassay on the protein-G-terminated glass substrate. Int J Nanomedicine 2015; 10:7197-205. [PMID: 26648723 PMCID: PMC4664541 DOI: 10.2147/ijn.s92596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We present an evaluation of protein-G-terminated glass slides that may contain a suitable substrate for aligning the orientation of antibodies to obtain better binding moiety to the target antigen. The results of the protein-G-terminated slides were compared with those obtained with epoxy-based slides to evaluate signal enhancement for human immunoglobulin G (IgG) targets, and an increase in the average fluorescence intensity was observed for the lowest measurable amount of IgG target in the assay using protein-G-terminated slides. Applying this strategy for signal amplification to single-cell assays improves the limits of detection for human IgG protein and cytokines (interleukin-2 and interferon-γ) captured from hybridomas. Our data indicate that protein-G-terminated slides have a higher binding capacity for antigens and have better spot-to-spot consistency than that of traditional epoxy-based slides. These properties would be beneficial in the detection of fine amounts of single-cell-secreted proteins, which may provide key insights into cell–cell communication and immune responses.
Collapse
Affiliation(s)
- Yoon Jeong
- Department of Bionano Technology, Graduate School, Hanyang University, Seoul, South Korea ; Department of Bionano Engineering, Hanyang University ERICA, Ansan, South Korea
| | - Kwan Hong Lee
- Department of Bionano Technology, Graduate School, Hanyang University, Seoul, South Korea ; Department of Bionano Engineering, Hanyang University ERICA, Ansan, South Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, South Korea
| | - Jonghoon Choi
- Department of Bionano Technology, Graduate School, Hanyang University, Seoul, South Korea ; Department of Bionano Engineering, Hanyang University ERICA, Ansan, South Korea
| |
Collapse
|
9
|
Brunner C, Hoffmann K, Thiele T, Schedler U, Jehle H, Resch-Genger U. Novel calibration tools and validation concepts for microarray-based platforms used in molecular diagnostics and food safety control. Anal Bioanal Chem 2015; 407:3181-91. [PMID: 25616702 DOI: 10.1007/s00216-014-8450-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/05/2014] [Accepted: 12/23/2014] [Indexed: 11/28/2022]
Abstract
Commercial platforms consisting of ready-to-use microarrays printed with target-specific DNA probes, a microarray scanner, and software for data analysis are available for different applications in medical diagnostics and food analysis, detecting, e.g., viral and bacteriological DNA sequences. The transfer of these tools from basic research to routine analysis, their broad acceptance in regulated areas, and their use in medical practice requires suitable calibration tools for regular control of instrument performance in addition to internal assay controls. Here, we present the development of a novel assay-adapted calibration slide for a commercialized DNA-based assay platform, consisting of precisely arranged fluorescent areas of various intensities obtained by incorporating different concentrations of a "green" dye and a "red" dye in a polymer matrix. These dyes present "Cy3" and "Cy5" analogues with improved photostability, chosen based upon their spectroscopic properties closely matching those of common labels for the green and red channel of microarray scanners. This simple tool allows to efficiently and regularly assess and control the performance of the microarray scanner provided with the biochip platform and to compare different scanners. It will be eventually used as fluorescence intensity scale for referencing of assays results and to enhance the overall comparability of diagnostic tests.
Collapse
Affiliation(s)
- C Brunner
- Division Biophotonics, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Würth C, Geißler D, Behnke T, Kaiser M, Resch-Genger U. Critical review of the determination of photoluminescence quantum yields of luminescent reporters. Anal Bioanal Chem 2014; 407:59-78. [DOI: 10.1007/s00216-014-8130-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 12/13/2022]
|
11
|
Chemiluminescence microarrays in analytical chemistry: a critical review. Anal Bioanal Chem 2014; 406:5589-612. [DOI: 10.1007/s00216-014-7968-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/14/2014] [Accepted: 06/12/2014] [Indexed: 12/26/2022]
|
12
|
Shi S, Wang X, Sun W, Wang X, Yao T, Ji L. Label-free fluorescent DNA biosensors based on metallointercalators and nanomaterials. Methods 2013; 64:305-14. [DOI: 10.1016/j.ymeth.2013.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022] Open
|
13
|
Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat Protoc 2013; 8:1535-50. [DOI: 10.1038/nprot.2013.087] [Citation(s) in RCA: 670] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Moschallski M, Evers A, Brandstetter T, Rühe J. Sensitivity of microarray based immunoassays using surface-attached hydrogels. Anal Chim Acta 2013; 781:72-9. [DOI: 10.1016/j.aca.2013.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 12/19/2022]
|
15
|
Wutz K, Meyer VK, Wacheck S, Krol P, Gareis M, Nölting C, Struck F, Soutschek E, Böcher O, Niessner R, Seidel M. New route for fast detection of antibodies against zoonotic pathogens in sera of slaughtered pigs by means of flow-through chemiluminescence immunochips. Anal Chem 2013; 85:5279-85. [PMID: 23611726 DOI: 10.1021/ac400781t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The research on fast screening methods for antibodies against zoonotic pathogens in slaughter animals is important for food safety in farming and meat-processing industries. As a proof-of-concept study, antibodies against the emerging zoonotic pathogen hepatitis E virus (HEV) and enteropathogenic Yersinia spp. were analyzed in parallel using immobilized recombinant antigens (rAgs) of HEV genotypes 1 and 3 and Yersinia outer protein D (YopD) on a flow-through chemiluminescence immunochip. These rAgs are usually part of commercially available line immunoassays (LIAs) used for human diagnostics. In this study, sera from slaughtered pigs were tested on the microarray analysis platform MCR 3 to detect anti-HEV and anti-Yersinia IgG. The new method was characterized regarding signal reproducibility and specificity. The analytical performance was compared with in-house enzyme-linked immunosorbent assay (ELISA) and a LIA based on recomLine HEV (Mikrogen) or the ELISA test kit pigtype Yersinia Ab (Qiagen), respectively. The immunochip revealed the highest analytical sensitivity and was processed in 9 min automatically on the MCR 3. A comparative screening of swine serum samples from Bavarian slaughterhouses regarding anti-HEV and anti-Yersinia IgG seroprevalence was conducted. By using the LIA, 78% of the sera were tested positive for HEV antibodies. The immunochip and the ELISA identified anti-HEV IgG in 96% and 93% of the tested samples using the O2C-gt1 and O2C-gt3 rAg, respectively. The screening for anti-Yersinia IgG resulted in 86% positive findings using the immunochip and 57% and 48% for the ELISA methods, respectively, indicating a higher detection capability of the new method. Serum samples of slaughtered pigs could be analyzed faster and in an automated way on the microarray analysis platform MCR 3 which shows the great potential of the new immunochip assay format for multiplexed serum screening purposes.
Collapse
Affiliation(s)
- Klaus Wutz
- Chair for Analytical Chemistry and Institute of Hydrochemistry, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Protein Function Microarrays: Design, Use and Bioinformatic Analysis in Cancer Biomarker Discovery and Quantitation. TRANSLATIONAL BIOINFORMATICS 2013. [DOI: 10.1007/978-94-007-5811-7_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Time-Resolved Förster Resonance Energy Transfer-Based Technologies to Investigate G Protein-Coupled Receptor Machinery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 113:275-312. [DOI: 10.1016/b978-0-12-386932-6.00007-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Laopa PS, Vilaivan T, Hoven VP. Positively charged polymer brush-functionalized filter paper for DNA sequence determination following Dot blot hybridization employing a pyrrolidinyl peptide nucleic acid probe. Analyst 2012; 138:269-77. [PMID: 23125969 DOI: 10.1039/c2an36133g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As inspired by the Dot blot analysis, a well known technique in molecular biology and genetics for detecting biomolecules, a new paper-based platform for colorimetric detection of specific DNA sequences employing peptide nucleic acid (PNA) as a probe has been developed. In this particular study, a pyrrolidinyl PNA bearing a conformationally rigid d-prolyl-2-aminocyclopentanecarboxylic acid backbone (acpcPNA) was used as a probe. The filter paper was modified to be positively charged with grafted polymer brushes of quaternized poly(dimethylamino)ethyl methacrylate (QPDMAEMA) prepared by surface-initiated polymerization of 2-(dimethylamino)ethyl methacrylate from the filter paper via ARGET ATRP followed by quaternization with methyl iodide. Following the Dot blot format, a DNA target was first immobilized via electrostatic interactions between the positive charges of the QPDMAEMA brushes and negative charges of the phosphate backbone of DNA. Upon hybridization with the biotinylated pyrrolidinyl peptide nucleic acid (b-PNA) probe, the immobilized DNA can be detected by naked eye observation of the yellow product generated by the enzymatic reaction employing HRP-labeled streptavidin. It has been demonstrated that this newly developed assay was capable of discriminating between complementary and single base mismatch targets at a detection limit of at least 10 fmol. In addition, the QPDMAEMA-grafted filter paper exhibited a superior performance to the commercial membranes, namely Nylon 66 and nitrocellulose.
Collapse
Affiliation(s)
- Praethong S Laopa
- Program in Petrochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | | | | |
Collapse
|
19
|
Asanov A, Zepeda A, Vaca L. A platform for combined DNA and protein microarrays based on total internal reflection fluorescence. SENSORS 2012; 12:1800-15. [PMID: 22438738 PMCID: PMC3304140 DOI: 10.3390/s120201800] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/13/2012] [Accepted: 02/02/2012] [Indexed: 11/20/2022]
Abstract
We have developed a novel microarray technology based on total internal reflection fluorescence (TIRF) in combination with DNA and protein bioassays immobilized at the TIRF surface. Unlike conventional microarrays that exhibit reduced signal-to-background ratio, require several stages of incubation, rinsing and stringency control, and measure only end-point results, our TIRF microarray technology provides several orders of magnitude better signal-to-background ratio, performs analysis rapidly in one step, and measures the entire course of association and dissociation kinetics between target DNA and protein molecules and the bioassays. In many practical cases detection of only DNA or protein markers alone does not provide the necessary accuracy for diagnosing a disease or detecting a pathogen. Here we describe TIRF microarrays that detect DNA and protein markers simultaneously, which reduces the probabilities of false responses. Supersensitive and multiplexed TIRF DNA and protein microarray technology may provide a platform for accurate diagnosis or enhanced research studies. Our TIRF microarray system can be mounted on upright or inverted microscopes or interfaced directly with CCD cameras equipped with a single objective, facilitating the development of portable devices. As proof-of-concept we applied TIRF microarrays for detecting molecular markers from Bacillus anthracis, the pathogen responsible for anthrax.
Collapse
Affiliation(s)
- Alexander Asanov
- TIRF Technologies, 951 Aviation Parkway, Suite 700, Morrisville, NC 27560, USA
- Authors to whom correspondence should be addressed; E-Mails: (A.A.); (A.Z.); Tel.: +525-5622-9215 (A.Z.); Fax: +525-5622-9182 (A.Z.)
| | - Angélica Zepeda
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, DF 04510, México
- Authors to whom correspondence should be addressed; E-Mails: (A.A.); (A.Z.); Tel.: +525-5622-9215 (A.Z.); Fax: +525-5622-9182 (A.Z.)
| | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, DF 04510, México; E-Mail:
| |
Collapse
|
20
|
Ouadahi K, Sbargoud K, Allard E, Larpent C. FRET-mediated pH-responsive dual fluorescent nanoparticles prepared via click chemistry. NANOSCALE 2012; 4:727-732. [PMID: 22179667 DOI: 10.1039/c2nr11413e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Herein, we report an easy preparation of azide-coated polystyrene-based nanoparticles (15 nm in diameter) and their surface functionalization via CuAAC with fluorophores in water. Resultant dual fluorescent nanoparticles coated with dansyl and pH-sensitive fluorescein moieties as the donor/acceptor FRET pair show a ratiometric response to pH upon excitation at a single wavelength.
Collapse
Affiliation(s)
- Karima Ouadahi
- Institut Lavoisier de Versailles UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | | | | | | |
Collapse
|
21
|
Dey D, Goswami T. Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication. J Biomed Biotechnol 2011; 2011:348218. [PMID: 22131802 PMCID: PMC3205924 DOI: 10.1155/2011/348218] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/09/2011] [Indexed: 11/17/2022] Open
Abstract
The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.
Collapse
Affiliation(s)
- D Dey
- Department of Engineering Physics, Tripura Institute of Technology, Narsingarh, Tripura-799009, India.
| | | |
Collapse
|
22
|
Lai SL, Yang KL. Detecting DNA targets through the formation of DNA/CTAB complex and its interactions with liquid crystals. Analyst 2011; 136:3329-34. [PMID: 21738932 DOI: 10.1039/c1an15173h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we report the formation of a DNA/cetyl trimethylammonium bromide (CTAB) complex on a solid surface and its interaction with a thin layer of liquid crystals (LC) supported on the surface. Our results show that when the surface is decorated with DNA only, the LC gives a bright image, but when the surface is decorated with the DNA/CTAB complex, the LC becomes dark when the surface density of CTAB is above 5.25 ± 0.13 × 10(13)/cm(2). To exploit this phenomenon for detecting DNA targets, we used a surface decorated with electroneutral PNA probes for capturing DNA targets, and then treated the surface with 0.1 mM of CTAB. In the presence of DNA targets, a PNA/DNA/CTAB complex is formed and that leads to a dark image on the thin layer of the LC supported on the surface. Moreover, DNA targets with a complementary, 1-base mismatch and non-complementary sequence can be differentiated by using this method. This study provides a new principle for the label-free detection of DNA targets without any fluorescent labels.
Collapse
Affiliation(s)
- Siok Lian Lai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| | | |
Collapse
|
23
|
Simultaneous determination of four different antibiotic residues in honey by chemiluminescence multianalyte chip immunoassays. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0548-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Mussardo P, Corda E, González-Ruiz V, Rajesh J, Girotti S, Martín MA, Olives AI. Study of non-covalent interactions of luotonin A derivatives and the DNA minor groove as a first step in the study of their analytical potential as DNA probes. Anal Bioanal Chem 2011; 400:321-7. [PMID: 21243339 DOI: 10.1007/s00216-010-4640-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/14/2010] [Accepted: 12/21/2010] [Indexed: 11/30/2022]
Abstract
The interaction between DNA and several newly synthesized derivatives of the natural anticancer compound luotonin A has been studied. The results from our work reveal an effective and selective alkaloid/double-stranded DNA (ds-DNA) interaction. In the presence of increasing amounts of ds-DNA, a noticeable fluorescence quenching of the luotonin A derivatives under study was observed. However, this effect did not take place when single-stranded DNA (ss-DNA) was employed. The association constant alkaloids/ds-DNA was calculated by quantitation of such a quenching effect. The influence of other quenchers, namely Co(2+) and Br(-) on the native fluorescence of luotonin A and derivatives was also studied, and a remarkable quenching effect was observed for both ions. We have also investigated how by binding DNA the alkaloids could get protected from the external Co(2+) and Br(-) quenchers. The Stern-Volmer constants (K (SV)) for Co(2+) and Br(-) quenching effect on the studied alkaloids were considerably reduced (10-50%) after incubation of the compounds in the presence of DNA with regard to the K (SV) values in absence of DNA. An increase in the fluorescence anisotropy values of luotonins was also produced only in the presence of ds-DNA but not in the case of ss-DNA. To better characterize the nature of that interaction, viscosimetry assays and ethidium bromide displacement studies were conducted. With regard to DNA reference solutions, the viscosity of solutions containing DNA and luotonin A derivatives was reduced or not significantly increased. It was also observed that the studied compounds were unable to displace the intercalating agent ethidium bromide. All of these results, together with the obtained association constants values (K (ass) = 2.2 × 10(2) - 1.3 × 10(3)), support that neither covalent nor intercalating interactions luotonin A derivatives/ds-DNA are produced, leading to the conclusion that these alkaloids bind ds-DNA through the minor groove. The specific changes in the fluorescence behavior of luotonin A and derivatives distinguishing between ss-DNA and ds-DNA binding, lead us to propose these compounds as attractive turn-off probes to detect DNA hybridization.
Collapse
Affiliation(s)
- Pierluigi Mussardo
- S. D. Química Analítica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Schäferling M, Nagl S. Förster resonance energy transfer methods for quantification of protein-protein interactions on microarrays. Methods Mol Biol 2011; 723:303-20. [PMID: 21370073 DOI: 10.1007/978-1-61779-043-0_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methods based on Förster (or fluorescence) resonance energy transfer (FRET) are widely used in various areas of bioanalysis and molecular biology, such as fluorescence microscopy, quantitative real-time polymerase chain reaction (PCR), immunoassays, or enzyme activity assays, just to name a few. In the last years, these techniques were successfully implemented to multiplex biomolecular screening on microarrays. In this review, some fundamental considerations and practical approaches are outlined and it is demonstrated how this very sensitive (and distance-dependent) method can be utilized for microarray-based high-throughput screening (HTS) with a focus on protein microarrays. The advantages and also the demands of this dual-label technique in miniaturized multiplexed formats are discussed with respect to its potential readout modes, such as intensity, dual wavelength, and time-resolved FRET detection.
Collapse
Affiliation(s)
- Michael Schäferling
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
26
|
Yao J, Schachermeyer S, Yin Y, Zhong W. Cation exchange in ZnSe nanocrystals for signal amplification in bioassays. Anal Chem 2010; 83:402-8. [PMID: 21117624 DOI: 10.1021/ac102688s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ZnSe nanocrystals (NCs), possessing low native luminescence but high biocompatibility, were employed as labeling tags in bioassays. They were able to amplify each target recognition event thousands of times through a cation-exchange reaction (CXAmp) that released over 3000 encapsulated Zn(2+) from one single NC. The freed cations in turn triggered strong fluorescence from the Zn-responsive dyes. The present study demonstrated that CXAmp with ZnSe delivered superior detection performance in comparison to the conventional labeling methods. The overall fluorescence intensity of CXAmp using 5 nM ZnSe NCs was 30 times higher than that from 5 nM core-shell CdSe/ZnS quantum dots (QDs). The limit of detection (LOD) obtained with ZnSe-based CXAmp was 10-fold lower than with horseradish peroxidase (HRP) labeling, and the detection sensitivity, represented by the slope of the signal-versus-concentration curve, was 20-fold higher. When applied to detect immunoglobulin E (IgE) in a sandwich format, a LOD of 1 ng/mL was achieved. The highly sensitive CXAmp also allowed detection of the total IgE content in dilute human serum, in which the abundant matrix proteins exhibited less interference and more accurate quantification could be performed. Besides high signal amplification efficiency and good biocompatibility, CXAmp with ZnSe could be easily adapted to common laboratory settings and act as a universal labeling system for reliable detection of low-abundance targets.
Collapse
Affiliation(s)
- Jingjing Yao
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | | | | | | |
Collapse
|
27
|
Houck JA, Hojgaard A, Piesman J, Kuchta RD. Low-density microarrays for the detection of Borrelia burgdorferi s.s. (the Lyme disease spirochete) in nymphal Ixodes scapularis. Ticks Tick Borne Dis 2010; 2:27-36. [PMID: 21771534 DOI: 10.1016/j.ttbdis.2010.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/05/2010] [Accepted: 10/15/2010] [Indexed: 11/29/2022]
Abstract
Lyme disease is the most common tick-borne disease in Europe and North America. In the hyperendemic Lyme disease regions of the eastern United States, nymphal Ixodes scapularis are the principal ticks transmitting the Lyme disease spirochete, Borrelia burgdorferi sensu stricto (s.s.). Approximately 25% of questing nymphs in endemic regions are infected with spirochetes. High throughput-sensitive and specific methods for testing nymphal I. scapularis for infection with B. burgdorferi are clearly needed. In the current study, we evaluated whether low-density microarrays could be adapted for the rapid and accurate detection and characterization of spirochetes in nymphal I. scapularis. Three different microarray platforms were developed and tested for the detection of spirochetes in ticks. They could both detect and differentiate different Borrelia genospecies, in one case detecting as few as a single copy of Borrelia DNA.
Collapse
Affiliation(s)
- Julie A Houck
- Department of Chemistry and Biochemistry, UCB 215, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
28
|
Giraud G, Schulze H, Li DU, Bachmann TT, Crain J, Tyndall D, Richardson J, Walker R, Stoppa D, Charbon E, Henderson R, Arlt J. Fluorescence lifetime biosensing with DNA microarrays and a CMOS-SPAD imager. BIOMEDICAL OPTICS EXPRESS 2010; 1:1302-1308. [PMID: 21258550 PMCID: PMC3018131 DOI: 10.1364/boe.1.001302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/12/2010] [Accepted: 10/30/2010] [Indexed: 05/07/2023]
Abstract
Fluorescence lifetime of dye molecules is a sensitive reporter on local microenvironment which is generally independent of fluorophores concentration and can be used as a means of discrimination between molecules with spectrally overlapping emission. It is therefore a potentially powerful multiplexed detection modality in biosensing but requires extremely low light level operation typical of biological analyte concentrations, long data acquisition periods and on-chip processing capability to realize these advantages. We report here fluorescence lifetime data obtained using a CMOS-SPAD imager in conjunction with DNA microarrays and TIRF excitation geometry. This enables acquisition of single photon arrival time histograms for a 320 pixel FLIM map within less than 26 seconds exposure time. From this, we resolve distinct lifetime signatures corresponding to dye-labelled HCV and quantum-dot-labelled HCMV nucleic acid targets at concentrations as low as 10 nM.
Collapse
Affiliation(s)
- Gerard Giraud
- COSMIC & School of Physics and Astronomy,
SUPA, The University of Edinburgh, The King’s
Buildings,
EH9 3JZ Edinburgh, UK
| | - Holger Schulze
- Division of Pathway Medicine, College of Medicine and
Veterinary Medicine, The University of Edinburgh, Chancellor’s
Building, Little France Crescent, EH16 4SB Edinburgh, UK
| | - Day-Uei Li
- The Institute for Integrated Micro and Nano Systems,
School of Engineering and Electronics, The University
of Edinburgh,
The King’s Buildings, EH9 3JL Edinburgh, UK
| | - Till T. Bachmann
- Division of Pathway Medicine, College of Medicine and
Veterinary Medicine, The University of Edinburgh, Chancellor’s
Building, Little France Crescent, EH16 4SB Edinburgh, UK
| | - Jason Crain
- COSMIC & School of Physics and Astronomy,
SUPA, The University of Edinburgh, The King’s
Buildings,
EH9 3JZ Edinburgh, UK
- National Physical Laboratory, Hampton Road,
Teddington, Middlesex TW11 0LW, UK
| | - David Tyndall
- The Institute for Integrated Micro and Nano Systems,
School of Engineering and Electronics, The University
of Edinburgh,
The King’s Buildings, EH9 3JL Edinburgh, UK
| | - Justin Richardson
- Imaging Division, ST Microelectronics, Edinburgh EH12
7BF, UK
- Currently at Selex Galileo, A Finmeccanica Company, 2
Crewe Road North, Edinburgh, EH5 2XS, UK
| | - Richard Walker
- The Institute for Integrated Micro and Nano Systems,
School of Engineering and Electronics, The University
of Edinburgh,
The King’s Buildings, EH9 3JL Edinburgh, UK
| | - David Stoppa
- Smart Optical Sensors and Interfaces, Fondazione
Bruno Kessler, Trento, Italy
| | - Edoardo Charbon
- EEMCS Faculty, Delft University of Technology,
Mekelweg 4, 2628CD Delft, Netherlands
| | - Robert Henderson
- The Institute for Integrated Micro and Nano Systems,
School of Engineering and Electronics, The University
of Edinburgh,
The King’s Buildings, EH9 3JL Edinburgh, UK
| | - Jochen Arlt
- COSMIC & School of Physics and Astronomy,
SUPA, The University of Edinburgh, The King’s
Buildings,
EH9 3JZ Edinburgh, UK
| |
Collapse
|
29
|
Duer R, Lund R, Tanaka R, Christensen DA, Herron JN. In-Plane Parallel Scanning: A Microarray Technology for Point-of-Care Testing. Anal Chem 2010; 82:8856-65. [DOI: 10.1021/ac101571b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Reuven Duer
- PLC Diagnostics, Inc., 192 Odebolt Drive, Thousand Oaks, California 91360, United States, Departments of Bioengineering and Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Russell Lund
- PLC Diagnostics, Inc., 192 Odebolt Drive, Thousand Oaks, California 91360, United States, Departments of Bioengineering and Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Richard Tanaka
- PLC Diagnostics, Inc., 192 Odebolt Drive, Thousand Oaks, California 91360, United States, Departments of Bioengineering and Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Douglas A. Christensen
- PLC Diagnostics, Inc., 192 Odebolt Drive, Thousand Oaks, California 91360, United States, Departments of Bioengineering and Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - James N. Herron
- PLC Diagnostics, Inc., 192 Odebolt Drive, Thousand Oaks, California 91360, United States, Departments of Bioengineering and Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
30
|
Protein microarray assay for the screening of SH3 domain interactions. Anal Bioanal Chem 2010; 398:1937-46. [PMID: 20859618 DOI: 10.1007/s00216-010-4202-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022]
Abstract
Analysis of cellular signal transduction processes increasingly focuses on the systematic characterization of complete protein interaction networks. Understanding the interplay of signaling components enables insight into the molecular basis of diverse diseases such as cancer. This paves the way for the rational design of specific therapeutics. Protein interactions are often mediated by conserved modular domains, e.g., SH3-domains, which recognize proline-rich sequences in their cognate ligands. In the course of this study, different microarray formats (reactive silane monolayers and nitrocellulose on glass slides) and assay work flows were evaluated to develop a microarray based screening assay that permits the reliable identification of interactions between certain target proteins with a set of SH3 domains. Nine representative SH3 domains which were produced and purified as GST-fusion proteins were spotted on the microarray substrates and probed with two well-characterized ligands, the Nef protein from HIV-1 and the human protein Sam68. The best results from these low-density model arrays were obtained with nitrocellulose slides. We show that a straightforward and highly robust detection of ligand binding is achieved by staining with a fluorescently labeled antibody directed against the N-terminal His-tag attached to these proteins. The optimized assay protocol reported here allows for the identification of SH3-interactions with high reproducibility and adequate signal-to-background and signal-to-noise ratios, as well as the quantitative determination of relative binding affinities.
Collapse
|
31
|
Widengren J. Fluorescence-based transient state monitoring for biomolecular spectroscopy and imaging. J R Soc Interface 2010; 7:1135-44. [PMID: 20375039 PMCID: PMC2894879 DOI: 10.1098/rsif.2010.0146] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 03/15/2010] [Indexed: 11/12/2022] Open
Abstract
To increase read-out speed, sensitivity or specificity, an often applied strategy in fluorescence-based biomolecular spectroscopy and imaging is to simultaneously record two or more of the fluorescence parameters: intensity, lifetime, polarization or wavelength. This review highlights how additional, to-date largely unexploited, information can be extracted by monitoring long-lived, photo-induced transient states of organic dyes and their dynamics. Two major approaches are presented, where the transient state information is obtained either from fluorescence fluctuation analysis or by recording the time-averaged fluorescence response to a time-modulated excitation. The two approaches combine the detection sensitivity of the fluorescence signal with the environmental sensitivity of the long-lived transient states. For both techniques, proof-of-principle experiments are reviewed, and advantages, limitations and possible applications for biomolecular cellular biology studies are discussed.
Collapse
Affiliation(s)
- Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology (KTH), Albanova University Center, Stockholm 106 91, Sweden.
| |
Collapse
|
32
|
|
33
|
Spielmann T, Blom H, Geissbuehler M, Lasser T, Widengren J. Transient State Monitoring by Total Internal Reflection Fluorescence Microscopy. J Phys Chem B 2010; 114:4035-46. [DOI: 10.1021/jp911034v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thiemo Spielmann
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Albanova University Center, 106 91 Stockholm, Sweden, and Laboratoire d’Optique Biomédicalé, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Hans Blom
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Albanova University Center, 106 91 Stockholm, Sweden, and Laboratoire d’Optique Biomédicalé, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Matthias Geissbuehler
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Albanova University Center, 106 91 Stockholm, Sweden, and Laboratoire d’Optique Biomédicalé, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Theo Lasser
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Albanova University Center, 106 91 Stockholm, Sweden, and Laboratoire d’Optique Biomédicalé, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Albanova University Center, 106 91 Stockholm, Sweden, and Laboratoire d’Optique Biomédicalé, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Ghafari H, Zhou Y, Ali S, Hanley QS. Confocal detection of planar homogeneous and heterogeneous immunosorbent assays. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:064022. [PMID: 20059260 DOI: 10.1117/1.3268772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Optically sectioned detection of fluorescence immunoassays using a confocal microscope enables the creation of both homo- and heterogeneous planar format assays. We report a set assays requiring optically sectioned detection using a model system and analysis procedures for separating signals of a surface layer from an overlying solution. A model sandwich assay with human immunoglobulin G as the target antigen is created on a glass substrate. The prepared surfaces are exposed to antigen and a FITC-labeled secondary antibody. The resulting preparations are either read directly to provide a homogeneous assay or after wash steps, giving a heterogeneous assay. The simplicity of the object shapes arising from the planar format makes the decomposition of analyte signals from the thin film bound to the surface and overlayer straightforward. Measured response functions of the thin film and overlayer fit well to the Cauchy-Lorentz and cumulative Cauchy-Lorentz functions, respectively, enabling the film and overlayer to be separated. Under the conditions used, the detection limits for the homogeneous and heterogeneous forms of the assay are 2.2 and 5.5 ng/ml, respectively. Planar format, confocally read fluorescence assays enable wash-free detection of antigens and should be applicable to a wide range of assays involving surface-bound species.
Collapse
Affiliation(s)
- Homanaz Ghafari
- Nottingham Trent University, School of Science and Technology, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | | | | | | |
Collapse
|
35
|
Grabolle M, Kapusta P, Nann T, Shu X, Ziegler J, Resch-Genger U. Fluorescence Lifetime Multiplexing with Nanocrystals and Organic Labels. Anal Chem 2009; 81:7807-13. [DOI: 10.1021/ac900934a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Markus Grabolle
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany, PicoQuant GmbH, Rudower Chaussee 29, 12489 Berlin, Germany, and School of Chemistry, University of East Anglia (UEA), Norwich NR4 7TJ, U.K
| | - Peter Kapusta
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany, PicoQuant GmbH, Rudower Chaussee 29, 12489 Berlin, Germany, and School of Chemistry, University of East Anglia (UEA), Norwich NR4 7TJ, U.K
| | - Thomas Nann
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany, PicoQuant GmbH, Rudower Chaussee 29, 12489 Berlin, Germany, and School of Chemistry, University of East Anglia (UEA), Norwich NR4 7TJ, U.K
| | - Xu Shu
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany, PicoQuant GmbH, Rudower Chaussee 29, 12489 Berlin, Germany, and School of Chemistry, University of East Anglia (UEA), Norwich NR4 7TJ, U.K
| | - Jan Ziegler
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany, PicoQuant GmbH, Rudower Chaussee 29, 12489 Berlin, Germany, and School of Chemistry, University of East Anglia (UEA), Norwich NR4 7TJ, U.K
| | - Ute Resch-Genger
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany, PicoQuant GmbH, Rudower Chaussee 29, 12489 Berlin, Germany, and School of Chemistry, University of East Anglia (UEA), Norwich NR4 7TJ, U.K
| |
Collapse
|
36
|
Frigoli M, Ouadahi K, Larpent C. A Cascade FRET-Mediated Ratiometric Sensor for Cu2+Ions Based on Dual Fluorescent Ligand-Coated Polymer Nanoparticles. Chemistry 2009; 15:8319-30. [DOI: 10.1002/chem.200900475] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Fluorescence lifetime imaging of quantum dot labeled DNA microarrays. Int J Mol Sci 2009; 10:1930-1941. [PMID: 19468347 PMCID: PMC2680655 DOI: 10.3390/ijms10041930] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/16/2009] [Accepted: 04/21/2009] [Indexed: 11/16/2022] Open
Abstract
Quantum dot (QD) labeling combined with fluorescence lifetime imaging microscopy is proposed as a powerful transduction technique for the detection of DNA hybridization events. Fluorescence lifetime analysis of DNA microarray spots of hybridized QD labeled target indicated a characteristic lifetime value of 18.8 ns, compared to 13.3 ns obtained for spots of free QD solution, revealing that QD labels are sensitive to the spot microenvironment. Additionally, time gated detection was shown to improve the microarray image contrast ratio by 1.8, achieving femtomolar target sensitivity. Finally, lifetime multiplexing based on Qdot525 and Alexa430 was demonstrated using a single excitation-detection readout channel.
Collapse
|
38
|
Cagnin S, Caraballo M, Guiducci C, Martini P, Ross M, SantaAna M, Danley D, West T, Lanfranchi G. Overview of electrochemical DNA biosensors: new approaches to detect the expression of life. SENSORS (BASEL, SWITZERLAND) 2009; 9:3122-48. [PMID: 22574066 PMCID: PMC3348825 DOI: 10.3390/s90403122] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 04/20/2009] [Accepted: 04/23/2009] [Indexed: 12/25/2022]
Abstract
DNA microarrays are an important tool with a variety of applications in gene expression studies, genotyping, pharmacogenomics, pathogen classification, drug discovery, sequencing and molecular diagnostics. They are having a strong impact in medical diagnostics for cancer, toxicology and infectious disease applications. A series of papers have been published describing DNA biochips as alternative to conventional microarray platforms to facilitate and ameliorate the signal readout. In this review, we will consider the different methods proposed for biochip construction, focusing on electrochemical detection of DNA. We also introduce a novel single-stranded DNA platform performing high-throughput SNP detection and gene expression profiling.
Collapse
Affiliation(s)
- Stefano Cagnin
- CRIBI Biotechnology Centre and Department of Biology, University of Padova, via U. Bassi 58/B 35121 Padova, Italy; E-Mails: ;
| | - Marcelo Caraballo
- CombiMatrix Corporation, 6500 Harbour Heights Pkwy, 301, Mukilteo, WA 98275, USA; E-Mails: ; ; ; ;
| | - Carlotta Guiducci
- DEIS Dipartimento di Elettronica, Informatica e Sistemistica, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy; E-Mail:
- IBI-EPFL, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Station 15 CH-1015 Lausanne, Switzerland
| | - Paolo Martini
- CRIBI Biotechnology Centre and Department of Biology, University of Padova, via U. Bassi 58/B 35121 Padova, Italy; E-Mails: ;
| | - Marty Ross
- CombiMatrix Corporation, 6500 Harbour Heights Pkwy, 301, Mukilteo, WA 98275, USA; E-Mails: ; ; ; ;
| | - Mark SantaAna
- CombiMatrix Corporation, 6500 Harbour Heights Pkwy, 301, Mukilteo, WA 98275, USA; E-Mails: ; ; ; ;
| | - David Danley
- CombiMatrix Corporation, 6500 Harbour Heights Pkwy, 301, Mukilteo, WA 98275, USA; E-Mails: ; ; ; ;
| | - Todd West
- CombiMatrix Corporation, 6500 Harbour Heights Pkwy, 301, Mukilteo, WA 98275, USA; E-Mails: ; ; ; ;
| | - Gerolamo Lanfranchi
- CRIBI Biotechnology Centre and Department of Biology, University of Padova, via U. Bassi 58/B 35121 Padova, Italy; E-Mails: ;
| |
Collapse
|
39
|
Roth L, Zagon J, Ehlers A, Kroh LW, Broll H. A novel approach for the detection of DNA using immobilized peptide nucleic acid (PNA) probes and signal enhancement by real-time immuno-polymerase chain reaction (RT-iPCR). Anal Bioanal Chem 2009; 394:529-37. [DOI: 10.1007/s00216-009-2724-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 02/12/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
|
40
|
Souplet V, Desmet R, Melnyk O. In Situ Ligation between Peptides and Silica Nanoparticles for Making Peptide Microarrays on Polycarbonate. Bioconjug Chem 2009; 20:550-7. [DOI: 10.1021/bc800474g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vianney Souplet
- Institut de Biologie de Lille, UMR CNRS 8161, Universités de Lille 1 et 2, Institut Pasteur de Lille, IFR 142, 1 rue du Professeur Calmette, 59021 Lille Cedex, France
| | - Rémi Desmet
- Institut de Biologie de Lille, UMR CNRS 8161, Universités de Lille 1 et 2, Institut Pasteur de Lille, IFR 142, 1 rue du Professeur Calmette, 59021 Lille Cedex, France
| | - Oleg Melnyk
- Institut de Biologie de Lille, UMR CNRS 8161, Universités de Lille 1 et 2, Institut Pasteur de Lille, IFR 142, 1 rue du Professeur Calmette, 59021 Lille Cedex, France
| |
Collapse
|
41
|
Lai SL, Huang S, Bi X, Yang KL. Optical imaging of surface-immobilized oligonucleotide probes on DNA microarrays using liquid crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:311-6. [PMID: 19067505 DOI: 10.1021/la802672b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this paper, we report a new label-free method for the imaging of immobilized oligonucleotide probes on DNA microarrays. The imaging principle is based on the disruption of orientations of nematic liquid crystals (LCs), 4-cyano-4'-pentylbiphenyl (5CB), by the immobilized oligonucleotides on a surface. Because LCs are birefringent materials, disruption of their orientations by the immobilized oligonucleotides can manifest as optical signals visible to the naked eye. LC cells with two homeotropic boundary conditions, which align 5CB perpendicularly to both surfaces, were developed to deliver a distinct contrast between a dark background and a bright image caused by the immobilized oligonucleotides. This design also allows the quantification of immobilized oligonucleotide concentrations through the interference colors of LCs. The LC-based imaging method has a good signal-to-noise ratio and a clear distinction between positive and negative results and is nondestructive to the immobilized oligonucleotides. These advantages make it a promising means of assessing the quality of DNA microarrays.
Collapse
Affiliation(s)
- Siok Lian Lai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| | | | | | | |
Collapse
|
42
|
Golden JP, Sapsford KE. Fluoroimmunoassays using the NRL array biosensor. Methods Mol Biol 2009; 503:273-292. [PMID: 19151947 DOI: 10.1007/978-1-60327-567-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Array-based biosensor technology offers the user the ability to detect and quantify multiple targets in multiple samples simultaneously (Analytical Sciences 23:5-10, 2007). The NRL Array Biosensor has been developed with the aim of creating a system for sensitive, rapid, on-site screening for multiple targets of interest. This system is fluorescence-based, using evanescent illumination of a waveguide, and has demonstrated the use of both sandwich and competitive immunoassays for the detection of both high and low molecular weight targets, respectively. The current portable, automated system has demonstrated detection of a wide variety of analytes ranging from simple chemical compounds to entire bacterial cells, with applications in food safety, disease diagnosis, homeland security and environmental monitoring.
Collapse
Affiliation(s)
- Joel P Golden
- Center for Bio/Molecular Science & Engineering, US Naval Research Laboratory, Washington, DC, USA
| | | |
Collapse
|
43
|
High-throughput SPR sensor for food safety. Biosens Bioelectron 2009; 24:1399-404. [DOI: 10.1016/j.bios.2008.08.012] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 07/25/2008] [Accepted: 08/05/2008] [Indexed: 11/19/2022]
|
44
|
Abstract
Microarrays are frequently prepared on microscope glass slides. However, glass substrates can break or cut and thus can lead to the contamination of the manipulator during the analysis of biological samples. Alternately, bisphenol A polycarbonate (PC) is shock-resistant and, in addition, is easily eliminated by incineration. We show here that PC is a useful substrate for peptide microarray preparation. We describe in particular the preparation of peptide microarrays on PC using semicarbazide-functionalized silica nanoparticles and in situ semicarbazone ligation with glyoxylyl-peptides. The microarrays were used for the detection of antibodies using fluorescence detection.
Collapse
Affiliation(s)
- Vianney Souplet
- UMR CNRS 8161 Institut de Biologie de Lille 1, Lille Cedex, France
| | | | | |
Collapse
|
45
|
Sandén T, Persson G, Widengren J. Transient State Imaging for Microenvironmental Monitoring by Laser Scanning Microscopy. Anal Chem 2008; 80:9589-96. [DOI: 10.1021/ac8018735] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tor Sandén
- Department of Applied Physics, Experimental Biomolecular Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Gustav Persson
- Department of Applied Physics, Experimental Biomolecular Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Jerker Widengren
- Department of Applied Physics, Experimental Biomolecular Physics, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
46
|
Sagarzazu G, Bedu M, Martinelli L, Pelletier N, Safarov VI, Weisbuch C, Gacoin T, Benisty H. Quantitative analysis of enhanced light irradiance in waveguide-based fluorescent microarrays. Biosens Bioelectron 2008; 24:2281-4. [PMID: 19110414 DOI: 10.1016/j.bios.2008.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/30/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
Probing microarray assays in the presence of a hybridization mix retrieves precious information on hybridization kinetics. However, in common detection schemes, useful surface signals compete with the high supernatant background from labelled targets in the mix. A known solution consists in exciting specifically the microarray surface with evanescent fields. Configurations using planar optical waveguides to produce such fields are shown here to present also a dramatic excitation irradiance enhancement at the guide/surrounding matter interface. We compare theoretically and experimentally a guided excitation with a classical external excitation. A full electromagnetic analysis predicts an irradiance increase higher than 10(4) for adequately tailored waveguides. We deposited high-index TiO(2) sol-gel waveguides on glass substrates according to best simulations. Quantitative enhancement analysis exploiting actual biological fluorescent spots perfectly confirms the irradiance amplification effect of a thin waveguide. The impact of amplification on the design of biochip readers is discussed since it leaves ample margin for simple and low-cost light couplers, advantageous in affordable readers and sensor systems.
Collapse
|
47
|
Microarray analysis of protein–protein interactions based on FRET using subnanosecond-resolved fluorescence lifetime imaging. Biosens Bioelectron 2008; 24:397-402. [DOI: 10.1016/j.bios.2008.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/14/2008] [Accepted: 04/21/2008] [Indexed: 11/23/2022]
|
48
|
Mayer-Enthart E, Sialelli J, Rurack K, Resch-Genger U, Köster D, Seitz H. Toward improved biochips based on rolling circle amplification--influences of the microenvironment on the fluorescence properties of labeled DNA oligonucleotides. Ann N Y Acad Sci 2008; 1130:287-92. [PMID: 18596361 DOI: 10.1196/annals.1430.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Microarrays have become an increasingly important tool for biotechnology and molecular diagnostics. Despite many advantages, their sensitivity is still insufficient for such tasks as the analysis of small sample quantities and for the detection of alterations in gene expression of low-abundance genes. Accordingly, amplification strategies are necessary. Approaches to amplify the signal intensity include the increase of the number of dye molecules per target through either particle labels or rolling circle amplification, as used for this study.
Collapse
Affiliation(s)
- Elke Mayer-Enthart
- Federal Institute for Materials Research and Testing (BAM), I.5 Bioanalytics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Seidel M, Niessner R. Automated analytical microarrays: a critical review. Anal Bioanal Chem 2008; 391:1521-44. [PMID: 18504563 PMCID: PMC7080066 DOI: 10.1007/s00216-008-2039-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/25/2008] [Accepted: 02/28/2008] [Indexed: 11/24/2022]
Abstract
Microarrays provide a powerful analytical tool for the simultaneous detection of multiple analytes in a single experiment. The specific affinity reaction of nucleic acids (hybridization) and antibodies towards antigens is the most common bioanalytical method for generating multiplexed quantitative results. Nucleic acid-based analysis is restricted to the detection of cells and viruses. Antibodies are more universal biomolecular receptors that selectively bind small molecules such as pesticides, small toxins, and pharmaceuticals and to biopolymers (e.g. toxins, allergens) and complex biological structures like bacterial cells and viruses. By producing an appropriate antibody, the corresponding antigenic analyte can be detected on a multiplexed immunoanalytical microarray. Food and water analysis along with clinical diagnostics constitute potential application fields for multiplexed analysis. Diverse fluorescence, chemiluminescence, electrochemical, and label-free microarray readout systems have been developed in the last decade. Some of them are constructed as flow-through microarrays by combination with a fluidic system. Microarrays have the potential to become widely accepted as a system for analytical applications, provided that robust and validated results on fully automated platforms are successfully generated. This review gives an overview of the current research on microarrays with the focus on automated systems and quantitative multiplexed applications.
Collapse
Affiliation(s)
- Michael Seidel
- Chair for Analytical Chemistry and Institute of Hydrochemistry, Technische Universität München, Marchioninistrasse 17, 81377, München, Germany.
| | | |
Collapse
|
50
|
Cannizzo C, Amigoni‐Gerbier S, Frigoli M, Larpent C. A versatile preparation of azobenzene‐dye functionalized colored polymer nanoparticles by surface modification. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/pola.22679] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Caroline Cannizzo
- Institut Lavoisier UMR‐CNRS 8180, Université de Versailles‐Saint‐Quentin‐en‐Yvelines, 45 Avenue des Etats‐Unis, 78035 Versailles Cedex, France
| | - Sonia Amigoni‐Gerbier
- Institut Lavoisier UMR‐CNRS 8180, Université de Versailles‐Saint‐Quentin‐en‐Yvelines, 45 Avenue des Etats‐Unis, 78035 Versailles Cedex, France
| | - Michel Frigoli
- Institut Lavoisier UMR‐CNRS 8180, Université de Versailles‐Saint‐Quentin‐en‐Yvelines, 45 Avenue des Etats‐Unis, 78035 Versailles Cedex, France
| | - Chantal Larpent
- Institut Lavoisier UMR‐CNRS 8180, Université de Versailles‐Saint‐Quentin‐en‐Yvelines, 45 Avenue des Etats‐Unis, 78035 Versailles Cedex, France
| |
Collapse
|