1
|
Noor A, Zafar S, Shafiq M, Younas N, Siegert A, Mann FA, Kruss S, Schmitz M, Dihazi H, Ferrer I, Zerr I. Molecular Profiles of Amyloid-β Proteoforms in Typical and Rapidly Progressive Alzheimer's Disease. Mol Neurobiol 2021; 59:17-34. [PMID: 34618331 PMCID: PMC8786784 DOI: 10.1007/s12035-021-02566-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/13/2021] [Indexed: 11/02/2022]
Abstract
The molecular determinants of atypical clinical variants of Alzheimer's disease, including the recently discovered rapidly progressive Alzheimer's disease (rpAD), are unknown to date. Fibrilization of the amyloid-β (Aβ) peptide is the most frequently studied candidate in this context. The Aβ peptide can exist as multiple proteoforms that vary in their post-translational processing, amyloidogenesis, and toxicity. The current study was designed to identify these variations in Alzheimer's disease patients exhibiting classical (sAD) and rapid progression, with the primary aim of establishing if these variants may constitute strains that underlie the phenotypic variability of Alzheimer's disease. We employed two-dimensional polyacrylamide gel electrophoresis and MALDI-ToF mass spectrometry to validate and identify the Aβ proteoforms extracted from targeted brain tissues. The biophysical analysis was conducted using RT-QuIC assay, confocal microscopy, and atomic force microscopy. Interactome analysis was performed by co-immunoprecipitation. We present a signature of 33 distinct pathophysiological proteoforms, including the commonly targeted Aβ40, Aβ42, Aβ4-42, Aβ11-42, and provide insight into their synthesis and quantities. Furthermore, we have validated the presence of highly hydrophobic Aβ seeds in rpAD brains that seeded reactions at a slower pace in comparison to typical Alzheimer's disease. In vitro and in vivo analyses also verified variations in the molecular pathways modulated by brain-derived Aβ. These variations in the presence, synthesis, folding, and interactions of Aβ among sAD and rpAD brains constitute important points of intervention. Further validation of reported targets and mechanisms will aid in the diagnosis of and therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Aneeqa Noor
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Saima Zafar
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany. .,Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Islamabad, H-12, 44000, Pakistan.
| | - Mohsin Shafiq
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Neelam Younas
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Anna Siegert
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Florian A Mann
- Institute of Physical Chemistry, Georg-August University, Tammannstraße 6, 37077, Göttingen, Germany
| | - Sebastian Kruss
- Institute of Physical Chemistry, Georg-August University, Tammannstraße 6, 37077, Göttingen, Germany
| | - Matthias Schmitz
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Georg-August University, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of BarcelonaCIBERNEDBellvitge University Hospital (IDIBELL), Carrer de la Feixa Llarga, 08907, Hospitalet de Llobregat, Spain
| | - Inga Zerr
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
3
|
Wang Q, Wang S, Shi Y, Yao M, Hou L, Jiang L. Reduction of Liver X Receptor β expression in primary rat neurons by antisense oligodeoxynucleotides decreases secreted amyloid β levels. Neurosci Lett 2014; 561:146-50. [PMID: 24394905 DOI: 10.1016/j.neulet.2013.12.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/26/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
Ligand-activated Liver X Receptor (LXR) is known to increase cholesterol efflux from cells and reduce the production of amyloid β (Aβ) from amyloid-beta precursor protein (APP). However, little is known about the effects of LXRβ, one subtype of LXR, on endogenous Aβ. In this study, we show that LXRβ inactivation with specific antisense oligodeoxynucleotides (As-ODN) significantly reduced secreted Aβ and decreased mRNA levels of APP(751+770), and α-, β-secretase (ADAM10, BACE1) in primary rat neurons. We also show that As-ODN down-regulated the LXR responsive genes ABCA1 and HMG-CoA reductase (HMGCR). These changes are associated with decreased cellular cholesterol levels. The effect of LXRβ inactivation on Aβ levels is likely due to the alteration of cholesterol production and APP processing. Thus, our data suggest that LXRβ has an important function in cholesterol homeostasis and endogenous Aβ maintenance in neurons.
Collapse
Affiliation(s)
- Qie Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Suling Wang
- Hebei Province Blood Center, Shijiazhuang, China
| | - Yun Shi
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Min Yao
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Lianguo Hou
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Lingling Jiang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
4
|
Taurines R, Dudley E, Grassl J, Warnke A, Gerlach M, Coogan AN, Thome J. Proteomic research in psychiatry. J Psychopharmacol 2011; 25:151-96. [PMID: 20142298 DOI: 10.1177/0269881109106931] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Psychiatric disorders such as Alzheimer's disease, schizophrenia and mood disorders are severe and disabling conditions of largely unknown origin and poorly understood pathophysiology. An accurate diagnosis and treatment of these disorders is often complicated by their aetiological and clinical heterogeneity. In recent years proteomic technologies based on mass spectrometry have been increasingly used, especially in the search for diagnostic and prognostic biomarkers in neuropsychiatric disorders. Proteomics enable an automated high-throughput protein determination revealing expression levels, post-translational modifications and complex protein-interaction networks. In contrast to other methods such as molecular genetics, proteomics provide the opportunity to determine modifications at the protein level thereby possibly being more closely related to pathophysiological processes underlying the clinical phenomenology of specific psychiatric conditions. In this article we review the theoretical background of proteomics and its most commonly utilized techniques. Furthermore the current impact of proteomic research on diverse psychiatric diseases, such as Alzheimer's disease, schizophrenia, mood and anxiety disorders, drug abuse and autism, is discussed. Proteomic methods are expected to gain crucial significance in psychiatric research and neuropharmacology over the coming decade.
Collapse
Affiliation(s)
- Regina Taurines
- Academic Unit of Psychiatry, The School of Medicine, Institute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | | | | | | | | | | | | |
Collapse
|
5
|
Mustafa MK, Nabok A, Parkinson D, Tothill IE, Salam F, Tsargorodskaya A. Detection of β-amyloid peptide (1-16) and amyloid precursor protein (APP770) using spectroscopic ellipsometry and QCM techniques: a step forward towards Alzheimers disease diagnostics. Biosens Bioelectron 2010; 26:1332-6. [PMID: 20692146 DOI: 10.1016/j.bios.2010.07.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/02/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
Abstract
A highly sensitive method of spectroscopic ellipsometry in total internal reflection mode (TIRE) was exploited for detecting β-amyloid peptide (Aβ(1-16)) in the direct immune reaction with monoclonal DE2 antibodies (raised against Aβ(1-16)) electrostatically immobilised on the surface of gold. A rapid detection of Aβ(1-16) in a wide range of concentrations from 5 μg/ml down to 0.05 ng/ml was achieved using a cost-effective and label-free direct immunoassay format. TIRE dynamic spectral measurements proved that the immune reaction between DE2 monoclonal antibodies and Aβ(1-16) is highly specific with the affinity constant K(D)=1.46×10(-8) mol/l. The same DE2 antibodies were utilised for detection of amyloid precursor protein APP(770), a larger protein containing Aβ(1-16) domain, using the quartz crystal microbalance (QCM) measurements in liquid. A combination of QCM and TIRE kinetics results allowed the evaluation of the originally unknown concentration of APP(770) in complete medium solution containing other proteins, salts, and amino acids.
Collapse
Affiliation(s)
- M K Mustafa
- Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, S1 1WB, UK.
| | | | | | | | | | | |
Collapse
|
6
|
Agrawal P, Kumar S, Das HR. Mass spectrometric characterization of isoform variants of peanut (Arachis hypogaea) stem lectin (SL-I). J Proteomics 2010; 73:1573-86. [PMID: 20348039 DOI: 10.1016/j.jprot.2010.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 02/11/2010] [Accepted: 03/10/2010] [Indexed: 12/31/2022]
Abstract
Matrix assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometric (MS) analysis of purified Arachis hypogaea stem lectin (SL-I) and its tryptic digests suggested it to be an isoformic glucose/mannose binding lectin. Two-dimensional gel electrophoresis of SL-I indicated six isoforms (A1-A6), which were confirmed by Western blotting and MALDI-TOF MS analysis. Comparative analysis of peptide mass spectra of the isoforms matched with A. hypogaea lectins with three different accession numbers (Q43376_ARAHY, Q43377_ARAHY, Q70DJ5_ARAHY). Tandem mass spectrometric (MS/MS) analysis of tryptic peptides revealed these to be isoformic variants with altered amino acid sequences. Among the peptides, the peptide T12 showed major variation. The (199)Val-Ser-Tyr-Asn(202) sequence in peptide T12 of A1 and A2 was replaced by (199)Leu-Ser-His-Glu(202) in A3 and A4 (T12') while in A5 and A6 this sequence was (199)Val-Ser-Tyr-Val(202) (T12''). Peptide T1 showed the presence of (10)Asn in the isoforms A1-A5 while in A6 this amino acid was replaced by (10)Lys (T1'). Overall amino acid sequence as identified by MS/MS showed a high degree of similarity between A1, A2 and among A3, A4, A5. Carbohydrate binding domain and adenine binding site seem to be conserved.
Collapse
Affiliation(s)
- Praveen Agrawal
- Proteomics and Structural Biology Division, Institute of Genomics and Integrative Biology, Delhi, India
| | | | | |
Collapse
|
7
|
Ray B, Banerjee PK, Greig NH, Lahiri DK. Memantine treatment decreases levels of secreted Alzheimer's amyloid precursor protein (APP) and amyloid beta (A beta) peptide in the human neuroblastoma cells. Neurosci Lett 2009; 470:1-5. [PMID: 19948208 DOI: 10.1016/j.neulet.2009.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/05/2023]
Abstract
Memantine, an uncompetitive NMDA receptor antagonist, is a FDA-approved drug used for the treatment of moderate-to-severe Alzheimer's disease (AD). Several studies have documented protective roles of memantine against amyloid beta (A beta) peptide-mediated damage to neurons in both in vitro and in vivo models. Memantine is also effective in reducing amyloid burden in the brain of APP transgenic mice. However, the exact mechanism by which memantine provides protection against A beta-mediated neurodegenerative cascade, including APP metabolism, remains to be elucidated. Herein, we investigated the effect of memantine on levels of the secreted form of A beta precursor protein (APP), secreted A beta and cell viability markers under short/acute conditions. We treated neuronal SK-N-SH cells with 10 microM memantine and measured levels of secreted total APP (sAPP), APP alpha isoform and A beta((1-40)) in a time dependent manner for up to 24h. Memantine significantly decreased the levels of the secreted form of sAPP, sAPP alpha and A beta((1-40)) compared to vehicle treated cells. This change started as early as 8h and continued for up to 24h of drug treatment. Unlike sAPP, a slight non-significant increase in total intracellular APP level was observed in 24-h treated memantine cells. Taken together, these results suggest a role for memantine in the transport or trafficking of APP molecules away from the site of their proteolytic cleavage by the secretase enzymes. Such a novel property of memantine warrants further study to define its therapeutic utility.
Collapse
Affiliation(s)
- Balmiki Ray
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|