1
|
Attaluri S, Dharavath R. Novel plant disease detection techniques-a brief review. Mol Biol Rep 2023; 50:9677-9690. [PMID: 37823933 DOI: 10.1007/s11033-023-08838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Plant pathogens cause severe losses to agricultural yield worldwide. Tracking plant health and early disease detection is important to reduce the disease spread and thus economic loss. Though visual scouting has been practiced from former times, detection of asymptomatic disease conditions is difficult. So, DNA-based and serological methods gained importance in plant disease detection. The progress in advanced technologies challenges the development of rapid, non-invasive, and on-field detection techniques such as spectroscopy. This review highlights various direct and indirect ways of detecting plant diseases like Enzyme-linked immunosorbent assay, Lateral flow assays, Polymerase chain reaction, spectroscopic techniques and biosensors. Although these techniques are sensitive and pathogen-specific, they are more laborious and time-intensive. As a consequence, a lot of interest is gained in in-field adaptable point-of-care devices with artificial intelligence-assisted pathogen detection at an early stage. More recently computer-aided techniques like neural networks are gaining significance in plant disease detection by image processing. In addition, a concise report on the latest progress achieved in plant disease detection techniques is provided.
Collapse
|
2
|
Nanotechnology for Nanophytopathogens: From Detection to the Management of Plant Viruses. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8688584. [PMID: 36225980 PMCID: PMC9550482 DOI: 10.1155/2022/8688584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
Plant viruses are the most destructive pathogens which cause devastating losses to crops due to their diversity in the genome, rapid evolution, mutation or recombination in the genome, and lack of management options. It is important to develop a reliable remedy to improve the management of plant viral diseases in economically important crops. Some reports show the efficiency of metal nanoparticles and engineered nanomaterials and their wide range of applications in nanoagriculture. Currently, there are reports for the use of nanoparticles as an antibacterial and antifungal agent in plants and animals too, but few reports as plant antiviral. “Nanophytovirology” has been emerged as a new branch that covers nanobased management approaches to deal with devastating plant viruses. Varied nanoparticles have specific physicochemical properties that help them to interact in various unique and useful ways with viruses and their vectors along with the host plants. To explore the antiviral role of nanoparticles and for the effective management of plant viruses, it is imperative to understand all minute details such as the concentration/dosage of nanoparticles, time of application, application interval, and their mechanism of action. This review focused on different aspects of metal nanoparticles and metal oxides such as their interaction with plant viruses to explore the antiviral role and the multidimensional perspective of nanotechnology in plant viral disease detection, treatment, and management.
Collapse
|
3
|
Hazarika A, Yadav M, Yadav DK, Yadav HS. An overview of the role of nanoparticles in sustainable agriculture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Quantum Dot-Based White Organic Light-Emitting Diodes Excited by a Blue OLED. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, white organic light-emitting diodes (OLEDs) consisting of red quantum dots (RQD) and green quantum dots (GQD) were investigated. These are the most exciting new lighting technologies that have grown rapidly in recent years. The white OLED development processes used consisted of the following methods: (a) fabrication of a blue single-emitting layer OLED, (b) nanoimprinting into QD photoresists, and (c) green and red QD photoresists as color conversion layers (CCL) excited by blue OLEDs. To fabricate the blue OLED, the HATCN/TAPC pair was selected for the hole injection/transport layer on ITO and TPBi for the electron transport layer. For blue-emitting material, we used a novel polycyclic framework of thermally activated delayed fluorescence (TADF) material, ν-DABNA, which does not utilize any heavy metals and has a sharp and narrow (FWHM 28 nm) electroluminescence spectrum. The device structure was ITO/HATCN (20 nm)/TAPC (30 nm)/MADN: ν-DABNA (40 nm)/TPBi (30 nm)/LiF (0.8 nm)/Al (150 nm) with an emitting area of 1 cm × 1 cm. The current density, luminance, and efficiency of blue OLEDs at 8 V are 87.68 mA/cm2, 963.9 cd/m2, and 1.10 cd/A, respectively. Next, the bottom emission side of the blue OLED was attached to nanoimprinted RQD and GQD photoresists, which were excited by the blue OLED in order to generate an orange and a green color, respectively, and combined with blue light to achieve a nearly white light. In this study, two different excitation architectures were tested: BOLED→GQD→RQD and BOLED→RQD→GQD. The EL spectra showed that the BOLED→GQD→RQD architecture had stronger green emissions than BOLED→RQD→GQD because the blue OLED excited the GQD PR first then RQD PR. Due to the energy gap architectures in BOLED-GQD-RQD, the green QD absorbed part of the blue light emitted from the BOLED, and the remaining blue light penetrated the GQD to reach the RQD. These excited spectra were very close to the white light, which resulted in three peaks emitting at 460, 530, and 620 nm. The original blue CIE coordinates were (0.15, 0.07). After the excitation combination, the CIE coordinates were (0.42, 0.33), which was close to the white light position.
Collapse
|
5
|
Ali Q, Zheng H, Rao MJ, Ali M, Hussain A, Saleem MH, Nehela Y, Sohail MA, Ahmed AM, Kubar KA, Ali S, Usman K, Manghwar H, Zhou L. Advances, limitations, and prospects of biosensing technology for detecting phytopathogenic bacteria. CHEMOSPHERE 2022; 296:133773. [PMID: 35114264 DOI: 10.1016/j.chemosphere.2022.133773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 05/22/2023]
Abstract
Phytopathogenic bacteria cause severe economic losses in agricultural production worldwide. The spread rates, severity, and emerging plant bacterial diseases have become serious threat to the sustainability of food sources and the fruit industry. Detection and diagnosis of plant diseases are imperative in order to manage plant diseases in field conditions, greenhouses, and food storage conditions as well as to maximize agricultural productivity and sustainability. To date, various techniques including, serological, observation-based, and molecular methods have been employed for plant disease detection. These methods are sensitive and specific for genetic identification of bacteria. However, these methods are specific for genetic identification of bacteria. Currently, the innovative biosensor-based disease detection technique is an attractive and promising alternative. A biosensor system involves biological recognition and transducer active receptors based on sensors used in plant-bacteria diagnosis. This system has been broadly used for the rapid diagnosis of plant bacterial pathogens. In the present review, we have discussed the conventional methods of bacterial-disease detection, however, the present review mainly focuses on the applications of different biosensor-based techniques along with point-of-care (POC), robotics, and cell phone-based systems. In addition, we have also discussed the challenges and limitations of these techniques.
Collapse
Affiliation(s)
- Qurban Ali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, 210095, China.
| | - Hongxia Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Junaid Rao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., 8, Nanning, Guangxi, 530004, PR China
| | - Mohsin Ali
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Amjad Hussain
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA; Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Muhammad Aamir Sohail
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Agha Mushtaque Ahmed
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University Tando Jam, Sindh, Pakistan
| | - Kashif Ali Kubar
- Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Balochistan, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China.
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
6
|
Jyoti MMS, Rana MR, Ali MH, Tokumoto T. Establishment of a steroid binding assay for membrane progesterone receptor alpha (PAQR7) by using graphene quantum dots (GQDs). Biochem Biophys Res Commun 2022; 592:1-6. [PMID: 35007844 DOI: 10.1016/j.bbrc.2022.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
Currently, semiconductor nanoparticles known as quantum dots (QDs) have attracted interest in various application fields such as those requiring sensing properties, binding assays, and cellular imaging and are the very important in the acceleration of drug discovery due to their unique photophysical properties. Here, we applied graphene quantum dots (GQDs) for the binding assay of membrane progesterone receptor alpha (mPRα), one of the probable membrane receptors that have potential in drug discovery applications. By coupling the amino groups of mPRα with GQDs, we prepared fluorogenic GQD-conjugated mPRα (GQD-mPRα). When mixed with a progesterone-BSA-fluorescein isothiocyanate conjugate (P4-BSA-FITC) to check the ligand receptor binding activity of GQD-mPRα, fluorescence at 520 nm appeared. The fluorescence at 520 nm was reduced by the addition of free progesterone into the reaction mixture. GQD-coupled BSA (GQD-BSA) did not show a reduction in fluorescence at 520 nm. The results demonstrated the formation of a complex of GQD-mPRα and P4-BSA-FITC with ligand receptor binding. We established a ligand binding assay for membrane steroid receptors that is applicable for high-throughput assays.
Collapse
Affiliation(s)
- Md Maisum Sarwar Jyoti
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Rubel Rana
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Hasan Ali
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
7
|
Procházková M, Killinger M, Prokeš L, Klepárník K. Miniaturized bioluminescence technology for single-cell quantification of caspase-3/7. J Pharm Biomed Anal 2021; 209:114512. [PMID: 34891005 DOI: 10.1016/j.jpba.2021.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/25/2022]
Abstract
Correct determination of the instantaneous level and changes of relevant proteins inside individual cells is essential for correct interpretation and understanding of physiological, diagnostic, and therapeutic events. Thus, single-cell analyses are important for quantification of natural cellular heterogeneity, which cannot be evaluated from averaged data of a cell population measurements. Here, we developed an original highly sensitive and selective instrumentation and methodology based on homogeneous single-step bioluminescence assay to quantify caspases and evaluate their heterogeneity in individual cells. Individual suspended cells are selected under microscope and reliably transferred into the 7 µl detection vials by a micromanipulator. The sensitivity of the method is given by implementation of photomultiplying tube with a cooled photocathode working in the photon counting mode. By optimization of our device and methodology, the limits of detection and quantitation were decreased down to 2.1 and 7.0 fg of recombinant caspase-3, respectively. These masses are lower than average amounts of caspase-3/7 in individual apoptotic and even non-apoptotic cells. As a proof of concept, the content of caspase-3/7 in single treated and untreated HeLa cells was determined to be 154 and 25 fg, respectively. Based on these results, we aim to use the technology for investigations of non-apoptotic functions of caspases.
Collapse
Affiliation(s)
- Markéta Procházková
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, Brno 611 37, Czech Republic.
| | - Michael Killinger
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, Brno 611 37, Czech Republic.
| | - Lubomír Prokeš
- Department of Physics, Chemistry and Vocational Education, Faculty of Education, Masaryk University, Poříčí 7, Brno 603 00, Czech Republic.
| | - Karel Klepárník
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic.
| |
Collapse
|
8
|
Gvozdev DA, Maksimov EG, Strakhovskaya MG, Pashchenko VZ, Rubin AB. Hybrid Complexes of Photosensitizers with Luminescent Nanoparticles: Design of the Structure. Acta Naturae 2021; 13:24-37. [PMID: 34707895 PMCID: PMC8526191 DOI: 10.32607/actanaturae.11379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/14/2021] [Indexed: 11/20/2022] Open
Abstract
Increasing the efficiency of the photodynamic action of the dyes used in photodynamic therapy is crucial in the field of modern biomedicine. There are two main approaches used to increase the efficiency of photosensitizers. The first one is targeted delivery to the object of photodynamic action, while the second one is increasing the absorption capacity of the molecule. Both approaches can be implemented by producing dye-nanoparticle conjugates. In this review, we focus on the features of the latter approach, when nanoparticles act as a light-harvesting agent and nonradiatively transfer the electronic excitation energy to a photosensitizer molecule. We will consider the hybrid photosensitizer-quantum dot complexes with energy transfer occurring according to the inductive-resonance mechanism as an example. The principle consisting in optimizing the design of hybrid complexes is proposed after an analysis of the published data; the parameters affecting the efficiency of energy transfer and the generation of reactive oxygen species in such systems are described.
Collapse
Affiliation(s)
- D. A. Gvozdev
- M.V. Lomonosov Moscow State University, Department of Biology, Moscow, 119991 Russia
| | - E. G. Maksimov
- M.V. Lomonosov Moscow State University, Department of Biology, Moscow, 119991 Russia
| | - M. G. Strakhovskaya
- M.V. Lomonosov Moscow State University, Department of Biology, Moscow, 119991 Russia
| | - V. Z. Pashchenko
- M.V. Lomonosov Moscow State University, Department of Biology, Moscow, 119991 Russia
| | - A. B. Rubin
- M.V. Lomonosov Moscow State University, Department of Biology, Moscow, 119991 Russia
| |
Collapse
|
9
|
Gao R, Kodaimati MS, Yan D. Recent advances in persistent luminescence based on molecular hybrid materials. Chem Soc Rev 2021; 50:5564-5589. [PMID: 33690765 DOI: 10.1039/d0cs01463j] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecular persistently luminescent materials have received recent attention due to their promising applications in optical displays, biological imaging, chemical sensing, and security systems. In this review, we systematically summarize recent advances in establishing persistently luminescent materials-specifically focusing on materials composed of molecular hybrids for the first time. We describe the main strategies for synthesizing these hybrid materials, namely: (i) inorganics/organics, (ii) organics/organics, and (iii) organics/polymer systems and demonstrate how molecular hybrids provide synergistic effects, while improving luminescence lifetimes and efficiencies. These hybrid materials promote new methods for tuning key physical properties such as singlet-triplet excited state energies by controlling the chemical interactions and molecular orientations in the solid state. We review new advances in these materials from the perspective of examining experimental and theoretical approaches to room-temperature phosphorescence and thermally-activated delayed fluorescence. Finally, this review concludes by summarizing the current challenges and future opportunities for these hybrid materials.
Collapse
Affiliation(s)
- Rui Gao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China.
| | | | | |
Collapse
|
10
|
Highly Sensitive Fluorescent Probe for Detection of Paraquat Based on Nanocrystals. J Fluoresc 2021; 31:559-567. [PMID: 33464455 DOI: 10.1007/s10895-020-02679-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Paraquat is one of the most toxic materials widely applied in agriculture in most countries. In the present study, a simple, innovative and inexpensive nano biosensor which is based on a thioglycolic acid (TGA) - CdTe@CdS core-shell nanocrystals (NCs) to detect paraquat, is suggested. The NCs based biosensor shows a linear working range of 10-100 nM, and limited detection of 3.5 nM. The proposed sensor that has been well used for the detection and determination of paraquat in natural water samples is collected from corn field and a canal located near to the corn field yielding recoveries as high as 98%. According to our findings, the developed biosensor shows reproducibility and high sensitivity to determine paraquat in natural water samples in which the amount of paraquat has low levels. The suggested method is efficiently applied to paraquat determination in the samples of natural water that are collected from a tap water and a canal located near to the cornfield.
Collapse
|
11
|
Kazemifard N, Ensafi AA, Dehkordi ZS. A review of the incorporation of QDs and imprinting technology in optical sensors – imprinting methods and sensing responses. NEW J CHEM 2021. [DOI: 10.1039/d1nj01104a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review aims to cover the simultaneous method of using molecularly imprinted technology and quantum dots (QDs) as well as its application in the field of optical sensors.
Collapse
Affiliation(s)
- Nafiseh Kazemifard
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Ali A. Ensafi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | | |
Collapse
|
12
|
Hajipour F, Asad S, Amoozegar MA, Javidparvar AA, Tang J, Zhong H, Khajeh K. Developing a Fluorescent Hybrid Nanobiosensor Based on Quantum Dots and Azoreductase Enzyme forMethyl Red Monitoring. IRANIAN BIOMEDICAL JOURNAL 2020; 25:8-20. [PMID: 33129235 PMCID: PMC7748117 DOI: 10.29252/ibj.25.1.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Azo dyes are the most widely used synthetic colorants in the textile, food, pharmaceutical, cosmetic, and other industries, accounting for nearly 70% of all dyestuffs consumed. Recently, much research attention has been paid to efficient monitoring of these hazardous chemicals and their related metabolites because of their potentially harmful effect on environmental issues. In contrast to the complex and expensive instrumental procedures, the detection system based on the QDs with the superior optochemical properties provides a new era in the pollution sensing and prevention. Methods: We have developed a QD-enzyme hybrid system to probe MR in aqueous solutions using a fluorescence quenching procedure. Results: The azoreductase enzyme catalyzed the reduction of azo group in MR, which can efficiently decrease the FRET between the QDs and MR molecules. The correlation between the QDs photoluminescence recovery and MR enzymatic decolorization at the neutral phosphate buffer permitted the creation of a fluorescence quenching-based sensor. The synthesized biosensor can be used for the accurate detection of MR in a linear calibration over MR concentrations of 5-84 μM, with the LOD of 0.5 μM in response time of three minutes. Conclusion: Our findings revealed that this fluorometric sensor has the potential to be successfully applied for monitoring a wide linear range of MR concentration with the relative standard deviation of 4% rather than the other method.
Collapse
Affiliation(s)
- Fahimeh Hajipour
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Ali Asghar Javidparvar
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Jialun Tang
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Haizheng Zhong
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Huang YM, Singh KJ, Liu AC, Lin CC, Chen Z, Wang K, Lin Y, Liu Z, Wu T, Kuo HC. Advances in Quantum-Dot-Based Displays. NANOMATERIALS 2020; 10:nano10071327. [PMID: 32640754 PMCID: PMC7407652 DOI: 10.3390/nano10071327] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 11/16/2022]
Abstract
In terms of their use in displays, quantum dots (QDs) exhibit several advantages, including high illumination efficiency and color rendering, low-cost, and capacity for mass production. Furthermore, they are environmentally friendly. Excellent luminescence and charge transport properties of QDs led to their application in QD-based light-emitting diodes (LEDs), which have attracted considerable attention in display and solid-state lighting applications. In this review, we discuss the applications of QDs which are used on color conversion filter that exhibit high efficiency in white LEDs, full-color micro-LED devices, and liquid-type structure devices, among others. Furthermore, we discuss different QD printing processes and coating methods to achieve the full-color micro-LED. With the rise in popularity of wearable and see-through red, green, and blue (RGB) full-color displays, the flexible substrate is considered as a good potential candidate. The anisotropic conductive film method provides a small controllable linewidth of electrically conductive particles. Finally, we discuss the advanced application for flexible full-color and highly efficient QD micro-LEDs. The general conclusion of this study also involves the demand for a more straightforward QD deposition technique, whose breakthrough is expected.
Collapse
Affiliation(s)
- Yu-Ming Huang
- Department of Photonics & Graduate Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan; (Y.-M.H.); (K.J.S.); (A.-C.L.); (H.-C.K.)
- Institute of Photonic System, National Chiao Tung University, Tainan 71150, Taiwan
| | - Konthoujam James Singh
- Department of Photonics & Graduate Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan; (Y.-M.H.); (K.J.S.); (A.-C.L.); (H.-C.K.)
| | - An-Chen Liu
- Department of Photonics & Graduate Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan; (Y.-M.H.); (K.J.S.); (A.-C.L.); (H.-C.K.)
| | - Chien-Chung Lin
- Institute of Photonic System, National Chiao Tung University, Tainan 71150, Taiwan
- Correspondence: (C.-C.L.); (T.W.); Tel.: +886-6303-2121-57754 (C.-C.L.)
| | - Zhong Chen
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China; (Z.C.); (Y.L.)
| | - Kai Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Xili, Nanshan, Shenzhen 518055, China; (K.W.); (Z.L.)
| | - Yue Lin
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China; (Z.C.); (Y.L.)
| | - Zhaojun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Xili, Nanshan, Shenzhen 518055, China; (K.W.); (Z.L.)
| | - Tingzhu Wu
- Department of Electronic Science, Fujian Engineering Research Center for Solid-State Lighting, Xiamen University, Xiamen 361005, China; (Z.C.); (Y.L.)
- Correspondence: (C.-C.L.); (T.W.); Tel.: +886-6303-2121-57754 (C.-C.L.)
| | - Hao-Chung Kuo
- Department of Photonics & Graduate Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan; (Y.-M.H.); (K.J.S.); (A.-C.L.); (H.-C.K.)
| |
Collapse
|
14
|
Yang C, Liu Y, Xu C, Bai A, Hu Y. A sensitive fluorescent sensor based on the photoinduced electron transfer mechanism for cefixime and ctDNA. J Mol Recognit 2020; 33:e2816. [DOI: 10.1002/jmr.2816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Cheng‐Zhang Yang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi PR China
| | - Yong‐Chang Liu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi PR China
| | - Cheng Xu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi PR China
| | - Ai‐Min Bai
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi PR China
| | - Yan‐Jun Hu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi PR China
| |
Collapse
|
15
|
Quantum Dots and Gold Nanoparticles as Scaffolds for Enzymatic Enhancement: Recent Advances and the Influence of Nanoparticle Size. Catalysts 2020. [DOI: 10.3390/catal10010083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nanoparticle scaffolds can impart multiple benefits onto immobilized enzymes including enhanced stability, activity, and recoverability. The magnitude of these benefits is modulated by features inherent to the scaffold–enzyme conjugate, amongst which the size of the nanoscaffold itself can be critically important. In this review, we highlight the benefits of enzyme immobilization on nanoparticles and the factors affecting these benefits using quantum dots and gold nanoparticles as representative materials due to their maturity. We then review recent literature on the use of these scaffolds for enzyme immobilization and as a means to dissect the underlying mechanisms. Detailed analysis of the literature suggests that there is a “sweet-spot” for scaffold size and the ratio of immobilized enzyme to scaffold, with smaller scaffolds and lower enzyme:scaffold ratios generally providing higher enzymatic activities. We anticipate that ongoing studies of enzyme immobilization onto nanoscale scaffolds will continue to sharpen our understanding of what gives rise to beneficial characteristics and allow for the next important step, namely, that of translation to large-scale processes that exploit these properties.
Collapse
|
16
|
Nanomaterials: new weapons in a crusade against phytopathogens. Appl Microbiol Biotechnol 2020; 104:1437-1461. [DOI: 10.1007/s00253-019-10334-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
|
17
|
Petazzi RA, Aji AK, Chiantia S. Fluorescence microscopy methods for the study of protein oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:1-41. [DOI: 10.1016/bs.pmbts.2019.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Gvozdev DA, Ramonova АА, Slonimskiy YB, Maksimov ЕG, Moisenovich ММ, Paschenko VZ. Modification by transferrin increases the efficiency of delivery and the photodynamic effect of the quantum dot-phthalocyanine complex on A431 cells. Arch Biochem Biophys 2019; 678:108192. [PMID: 31733214 DOI: 10.1016/j.abb.2019.108192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022]
Abstract
Hybrid complexes of fluorescent nanoparticles and tetrapyrrole dyes are currently considered as promising third-generation photosensitizers for photodynamic therapy, including cancer treatment. Using nanoparticles as a platform for delivery of photosensitizers to target cells can increase the efficiency of photodynamic action. In this work, we synthesized a complex of polymer-coated CdSe/ZnS quantum dots, substituted phthalocyanines and human transferrin. Such complexes effectively enter human epidermoid carcinoma cells (A431) due to transferrin-mediated endocytosis and are localized in the perinuclear compartment. We observed an efficient excitation energy transfer from the quantum dot to phthalocyanine in the cells, which indicates stability of the complex upon its internalization. It was shown that the photodynamic activity of hybrid complexes covalently bonded to transferrin is 15% higher than the activity of unmodified hybrid complexes. Our results confirm the feasibility of using fluorescent nanoparticles to enhance the photodynamic properties of photosensitizers based on tetrapyrrole dyes.
Collapse
Affiliation(s)
- D A Gvozdev
- Department of Biophysics, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia.
| | - А А Ramonova
- Bioengineering Department, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Y B Slonimskiy
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Е G Maksimov
- Department of Biophysics, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - М М Moisenovich
- Bioengineering Department, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - V Z Paschenko
- Department of Biophysics, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| |
Collapse
|
19
|
Dai Y, Wang B, Sun Z, Cheng J, Zhao H, Wu K, Sun P, Shen Q, Li M, Fan Q. Multifunctional Theranostic Liposomes Loaded with a Hypoxia-Activated Prodrug for Cascade-Activated Tumor Selective Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39410-39423. [PMID: 31578854 DOI: 10.1021/acsami.9b11080] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy (PDT) is becoming a promising therapeutic regimen but is limited by the hypoxic microenvironment in solid tumors and the undesirable post-treatment phototoxicity side effects on normal tissues. To overcome these restrictions and enhance the antitumor therapeutic effect, near-infrared (NIR) light-activated, cancer cell-specific, hypoxia prodrug-loaded chlorin e6 liposomes were developed for tumor selective combination therapy guided by multimodal imaging. The photothermal agent indocyanine green (ICG) and hypoxia-activated prodrug tirapazamine (TPZ) were coencapsulated into the liposomes, followed by modification with cRGD and conjugation with GdIII to form ICG/TPZ@Ce6-GdIII theranostic liposomes (ITC-GdIII TLs). In the ITC-GdIII TLs, both the fluorescence and photodynamic effect of Ce6 were quenched by ICG via fluorescence resonance energy transfer. The ITC-GdIII TLs can effectively reach the tumor site through the enhanced permeability and retention effect as well as the cRGD-mediated active targeting ability. The fluorescence and photodynamic effect of Ce6 can be activated by the photothermal effect of ICG under NIR light. Upon subsequent irradiation with a 660 nm laser, the released Ce6 could kill cancer cells by generating cytotoxic singlet oxygen. Furthermore, the PDT process would induce hypoxia, which in turn activated the antitumor activity of the codelivered hypoxia-activated prodrug TPZ for a combination antitumor effect. The TLs could be utilized for multimodal imaging (fluorescence/photoacoustic/magnetic resonance imaging)-guided cascade-activated tumor inhibition with optimized therapeutic efficiency and minimized side effects, holding great potential for constructing intelligent nanotheranostics.
Collapse
Affiliation(s)
- Yeneng Dai
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Bing Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Zhiquan Sun
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Juan Cheng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Honghai Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Kun Wu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Pengfei Sun
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Qingming Shen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Meixing Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , Nanjing 210023 , China
| |
Collapse
|
20
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
21
|
Smirnova TD, Shtykov SN, Zhelobitskaya EA. Energy transfer in liquid and solid nanoobjects: application in luminescent analysis. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-9981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
Radiationless resonance electronic excitation energy transfer (ET) is a fundamental physical phenomenon in luminescence spectroscopy playing an important role in natural processes, especially in photosynthesis and biochemistry. Besides, it is widely used in photooptics, optoelectronics, and protein chemistry, coordination chemistry of transition metals and lanthanides as well as in luminescent analysis. ET involves the transfer of electronic energy from a donor (D) (molecules or particles) which is initially excited, to an acceptor (A) at the ground state to emit it later. Fluorescence or phosphorescence of the acceptor that occurs during ET is known as sensitized. There do many kinds of ET exist but in all cases along with other factors the rate and efficiency of ET in common solvents depends to a large extent on the distance between the donor and the acceptor. This dependency greatly limits the efficiency of ET and, correspondingly, does not allow the determination of analytes in highly diluted (10–9–10–15 M) solutions. To solve the problem of distance-effect, the effects of concentrating and bring close together the donor and acceptor in surfactant micelles (liquid nanosystems) or sorption on solid nanoparticles are used. Various approaches to promote the efficiency of ET for improvement determination selectivity and sensitivity using liquid and solid nanoobjects is reviewed and analyzed.
Collapse
|
22
|
Alizadeh-Ghodsi M, Pourhassan-Moghaddam M, Zavari-Nematabad A, Walker B, Annabi N, Akbarzadeh A. State-of-the-Art and Trends in Synthesis, Properties, and Application of Quantum Dots-Based Nanomaterials. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2019; 36:1800302. [PMID: 38716148 PMCID: PMC11075971 DOI: 10.1002/ppsc.201800302] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Indexed: 02/02/2025]
Abstract
Quantum dots (QDs) with a nanoscale size range have attracted significant attention in various areas of nanotechnology due to their unique properties. Different strategies for the synthesis of QD nanoparticles are reported in which various factors, such as size, impurities, shape, and crystallinity, affect the QDs fundamental properties. Consequently, to obtain QDs with appropriate physical properties, it is required to select a synthesis method which allows enough control over the surface chemistry of QDs through fine-tuning of the synthesis parameters. Moreover, QDs nanocrystals are recently used in multidisciplinary research integrated with biological interfaces. The state-of-the-art methods for synthesizing QDs and bioconjugation strategies to provide insight into various applications of these nanomaterials are discussed herein.
Collapse
Affiliation(s)
- Mohammadreza Alizadeh-Ghodsi
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, The University of Adelaide, Adelaide, 5000 SA, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Mohammad Pourhassan-Moghaddam
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Zavari-Nematabad
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Brian Walker
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Abolfazl Akbarzadeh
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
23
|
Onoshima D, Yukawa H, Baba Y. Nanobiodevices for Cancer Diagnostics and Stem Cell Therapeutics. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Das P, Krull UJ. Detection of a cancer biomarker protein on modified cellulose paper by fluorescence using aptamer-linked quantum dots. Analyst 2018; 142:3132-3135. [PMID: 28765842 DOI: 10.1039/c7an00624a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of point-of-care bioassays for sensitive screening of protein-based cancer biomarkers would improve the opportunity for early stage diagnosis. A strategy for a fluorescence resonance energy transfer (FRET)-based bioassay has been investigated that makes use of modified cellulose paper for the detection of an epithelial cell adhesion molecule (EpCAM), which is a transmembrane glycoprotein that is overexpressed in several tumors of epithelial origin. The paper matrix was a substrate for immobilized aptamer-linked quantum dots (QDs-Apt) and Cy3 labeled complementary DNA (cDNA), which served as a donor and an acceptor, respectively. Competitive binding of EpCAM displaced the cDNA, resulting in the reduction of FRET. The paper-based bioassay was able to detect EpCAM in buffer solution as well as in 10% bovine serum solution using a reaction time of no more than 60 minutes. The dynamic range was 1-100 nM in buffer with a precision better than 4%, and the limit of detection was 250 pM in buffer and 600 pM in 10% serum.
Collapse
Affiliation(s)
- Pradip Das
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada.
| | | |
Collapse
|
25
|
Datinská V, Klepárník K, Belšánová B, Minárik M, Foret F. Capillary electrophoresis, a method for the determination of nucleic acid ligands covalently attached to quantum dots representing a donor of Förster resonance energy transfer. J Sep Sci 2018; 41:2961-2968. [PMID: 29742317 DOI: 10.1002/jssc.201800248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/24/2023]
Abstract
The synthesis and determination of the structure of a Förster resonance energy transfer probe intended for the detection of specific nucleic acid sequences are described here. The probe is based on the hybridization of oligonucleotide modified quantum dots with a fluorescently labeled nucleic acid sample resulting in changes of the fluorescence emission due to the energy transfer effect. The stoichiometry distribution of oligonucleotides conjugated to quantum dots was determined by capillary electrophoresis separation. The results indicate that one to four molecules of oligonucleotide are conjugated to the surface of a single nanoparticle. This conclusion is confirmed by the course of the dependence of Förster resonance energy transfer efficiency on the concentration of fluorescently labeled complementary single-stranded nucleic acid, showing saturation. While the energy transfer efficiency of the probe hybridized with complementary nucleic acid strands was 30%, negligible efficiency was observed with a noncomplementary strand.
Collapse
Affiliation(s)
- Vladimíra Datinská
- Institute of Analytical Chemistry of the CAS v. v. i., Brno, Czech Republic.,Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Klepárník
- Institute of Analytical Chemistry of the CAS v. v. i., Brno, Czech Republic
| | - Barbora Belšánová
- Center for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Prague, Czech Republic
| | - Marek Minárik
- Center for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Prague, Czech Republic.,Department of Analytical Chemistry, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry of the CAS v. v. i., Brno, Czech Republic
| |
Collapse
|
26
|
Zhang Z, Qi X, Chai J, Wu P, Lv X, Cheng S, Li X. Detection of glycan-binding proteins using glycan-functionalized quantum dots and gold nanoparticles. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2018.1451875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Zhenxing Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing, China
| | - Xiaoxiao Qi
- Lanzhou Institute of Animal Science and Veterinary Pharmaceutics, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Jinfeng Chai
- School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road, Changchun, China
| | - Peixing Wu
- Lanzhou Institute of Animal Science and Veterinary Pharmaceutics, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Shuihong Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing, China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Chaoyang District, Beijing, China
| |
Collapse
|
27
|
Wang W, Zou Y, Yan J, Liu J, Chen H, Li S, Zhang L. Ultrasensitive colorimetric immunoassay for hCG detection based on dual catalysis of Au@Pt core-shell nanoparticle functionalized by horseradish peroxidase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:102-108. [PMID: 29223051 DOI: 10.1016/j.saa.2017.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/11/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
In this paper, an ultrasensitive colorimetric biosensor for human chorionic gonadotrophin (hCG) detection was designed from bottom-up method based on the dual catalysis of the horseradish peroxidase (HRP) and Au@Pt nanoparticles (NPs) relative to H2O2-TEM system. HRP and monoclonal mouse anti-hCG antibody (β-submit, mAb1) were co-immobilized onto the Au@Pt NP surface to improve catalytic efficiency and specificity, which formed a dual functionalized Au@Pt-HRP probe with the mean size of 42.8nm (D50). The colorimetric immunoassay was developed for the hCG detection, and the Au@Pt-HRP probe featured a higher sensitivity in the concentration range of 0.4-12.8IUL-1 with a low limit of detection (LOD) of 0.1IUL-1 compared with the LODs of 0.8IUL-1 for BA-ELISA and of 2.0IUL-1 for Au@Pt, which indicated that the Au@Pt-HRP probe possessed higher catalytic efficiency with 2.8-fold increase over Au@Pt and 33.8-fold increase over HRP. Also, the Au@Pt-HRP probe exhibited good precision and reproducibility, high specificity and acceptable accuracy with CV being less than 15%. The dual functionalized Au@Pt-HRP probe as a type of signal amplified method was firstly applied in the colorimetric immunoassay for the hCG detection.
Collapse
Affiliation(s)
- Weiguo Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yake Zou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jinwu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jing Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Huixiong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510640, PR China; CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Shan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Lei Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
28
|
Anfossi L, Di Nardo F, Cavalera S, Giovannoli C, Spano G, Speranskaya ES, Goryacheva IY, Baggiani C. A lateral flow immunoassay for straightforward determination of fumonisin mycotoxins based on the quenching of the fluorescence of CdSe/ZnS quantum dots by gold and silver nanoparticles. Mikrochim Acta 2018; 185:94. [DOI: 10.1007/s00604-017-2642-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/28/2017] [Indexed: 02/06/2023]
|
29
|
Jiang H, Zhu J, Liu W, Cao F. High-sensitivity cardiac troponins I sandwich assay by immunomagnetic microparticle and quantum dots. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.flm.2017.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Resonance Energy Transfer-Based Nucleic Acid Hybridization Assays on Paper-Based Platforms Using Emissive Nanoparticles as Donors. Methods Mol Biol 2017. [PMID: 28281264 DOI: 10.1007/978-1-4939-6848-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Quantum dots (QDs) and upconverting nanoparticles (UCNPs) are luminescent nanoparticles (NPs) commonly used in bioassays and biosensors as resonance energy transfer (RET) donors. The narrow and tunable emissions of both QDs and UCNPs make them versatile RET donors that can be paired with a wide range of acceptors. Ratiometric signal processing that compares donor and acceptor emission in RET-based transduction offers improved precision, as it accounts for fluctuations in the absolute photoluminescence (PL) intensities of the donor and acceptor that can result from experimental and instrumental variations. Immobilizing NPs on a solid support avoids problems such as those that can arise with their aggregation in solution, and allows for facile layer-by-layer assembly of the interfacial chemistry. Paper is an attractive solid support for the development of point-of-care diagnostic assays given its ubiquity, low-cost, and intrinsic fluid transport by capillary action. Integration of nanomaterials with paper-based analytical devices (PADs) provides avenues to augment the analytical performance of PADs, given the unique optoelectronic properties of nanomaterials. Herein, we describe methodology for the development of PADs using QDs and UCNPs as RET donors for optical transduction of nucleic acid hybridization. Immobilization of green-emitting QDs (gQDs) on imidazole functionalized cellulose paper is described for use as RET donors with Cy3 molecular dye as acceptors for the detection of SMN1 gene fragment. We also describe the covalent immobilization of blue-emitting UCNPs on aldehyde modified cellulose paper for use as RET donors with orange-emitting QDs (oQDs) as acceptors for the detection of HPRT1 gene fragment. The data described herein is acquired using an epifluorescence microscope, and can also be collected using technology such as a typical electronic camera.
Collapse
|
31
|
Kanagasubbulakshmi S, Gopinath A, Kadirvelu K. Enzyme free Thiol capped CdS Quantum dots based sensing method for the detection of Malathion. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.matpr.2017.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Shojaei TR, Salleh MAM, Sijam K, Rahim RA, Mohsenifar A, Safarnejad R, Tabatabaei M. Detection of Citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 169:216-22. [PMID: 27380305 DOI: 10.1016/j.saa.2016.06.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 06/12/2016] [Accepted: 06/28/2016] [Indexed: 05/11/2023]
Abstract
Due to the low titer or uneven distribution of Citrus tristeza virus (CTV) in field samples, detection of CTV by using conventional detection techniques may be difficult. Therefore, in the present work, the cadmium-telluride quantum dots (QDs) was conjugated with a specific antibody against coat protein (CP) of CTV, and the CP were immobilized on the surface of gold nanoparticles (AuNPs) to develop a specific and sensitive fluorescence resonance energy transfer (FRET)-based nanobiosensor for detecting CTV. The maximum FRET efficiency for the developed nano-biosensor was observed at 60% in AuNPs-CP/QDs-Ab ratio of 1:8.5. The designed system showed higher sensitivity and specificity over enzyme linked immunosorbent assay (ELISA) with a limit of detection of 0.13μgmL(-1) and 93% and 94% sensitivity and specificity, respectively. As designed sensor is rapid, sensitive, specific and efficient in detecting CTV, this could be envisioned for diagnostic applications, surveillance and plant certification program.
Collapse
Affiliation(s)
- Taha Roodbar Shojaei
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamad Amran Mohd Salleh
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Kamaruzaman Sijam
- Department of Plant Protection, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Afshin Mohsenifar
- Research and Development Department, Nanozino, 16536-43181 Tehran, Iran
| | - Reza Safarnejad
- Department of Plant Viruses, Iranian Institute of Plant Protection, Tehran, Iran
| | - Meisam Tabatabaei
- Nanosystems Research Team (NRTeam), Microbial Biotechnology and Biosafety Dept., Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| |
Collapse
|
33
|
Harris RD, Bettis Homan S, Kodaimati M, He C, Nepomnyashchii AB, Swenson NK, Lian S, Calzada R, Weiss EA. Electronic Processes within Quantum Dot-Molecule Complexes. Chem Rev 2016; 116:12865-12919. [PMID: 27499491 DOI: 10.1021/acs.chemrev.6b00102] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The subject of this review is the colloidal quantum dot (QD) and specifically the interaction of the QD with proximate molecules. It covers various functions of these molecules, including (i) ligands for the QDs, coupled electronically or vibrationally to localized surface states or to the delocalized states of the QD core, (ii) energy or electron donors or acceptors for the QDs, and (iii) structural components of QD assemblies that dictate QD-QD or QD-molecule interactions. Research on interactions of ligands with colloidal QDs has revealed that ligands determine not only the excited state dynamics of the QD but also, in some cases, its ground state electronic structure. Specifically, the article discusses (i) measurement of the electronic structure of colloidal QDs and the influence of their surface chemistry, in particular, dipolar ligands and exciton-delocalizing ligands, on their electronic energies; (ii) the role of molecules in interfacial electron and energy transfer processes involving QDs, including electron-to-vibrational energy transfer and the use of the ligand shell of a QD as a semipermeable membrane that gates its redox activity; and (iii) a particular application of colloidal QDs, photoredox catalysis, which exploits the combination of the electronic structure of the QD core and the chemistry at its surface to use the energy of the QD excited state to drive chemical reactions.
Collapse
Affiliation(s)
- Rachel D Harris
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Stephanie Bettis Homan
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Mohamad Kodaimati
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Chen He
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | | | - Nathaniel K Swenson
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Shichen Lian
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Raul Calzada
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
34
|
Matsuoka Y, Yamato M, Yamada KI. Fluorescence probe for the convenient and sensitive detection of ascorbic acid. J Clin Biochem Nutr 2016. [PMID: 26798193 DOI: 10.3164/jcbn.15.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ascorbic acid is an important antioxidant that plays an essential role in the biosynthesis of numerous bioactive substances. The detection of ascorbic acid has traditionally been achieved using high-performance liquid chromatography and absorption spectrophotometry assays. However, the development of fluorescence probes for this purpose is highly desired because they provide a much more convenient and highly sensitive technique for the detection of this material. OFF-ON-type fluorescent probes have been developed for the detection of non-fluorescent compounds. Photo-induced electron transfer and fluorescence resonance energy transfer are the two main fluorescence quenching mechanisms for the detection of ascorbic acid, and several fluorescence probes have been reported based on redox-responsive metals and quantum dots. Profluorescent nitroxide compounds have also been developed as non-metal organic fluorescence probes for ascorbic acid. These nitroxide systems have a stable unpaired electron and can therefore react with ascorbic acid and a strong fluorescence quencher. Furthermore, recent synthetic advances have allowed for the synthesis of α-substituted nitroxides with varying levels of reactivity towards ascorbic acid. In this review, we have discussed the design strategies used for the preparation of fluorescent probes for ascorbic acid, with particular emphasis on profluorescent nitroxides, which are unique radical-based redox-active fluorescent probes.
Collapse
Affiliation(s)
- Yuta Matsuoka
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mayumi Yamato
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken-Ichi Yamada
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
35
|
Tashkhourian J, Absalan G, Jafari M, Zare S. A rapid and sensitive assay for determination of doxycycline using thioglycolic acid-capped cadmium telluride quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 152:119-125. [PMID: 26204505 DOI: 10.1016/j.saa.2015.07.063] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/24/2015] [Accepted: 07/12/2015] [Indexed: 05/20/2023]
Abstract
A rapid, simple and inexpensive spectrofluorimetric sensor for determination of doxycycline based on its interaction with thioglycolic acid-capped cadmium telluride quantum dots (TGA/CdTe QDs) has been developed. Under the optimum experimental conditions, the sensor exhibited a fast response time of <10s. The results revealed that doxycycline could quench the fluorescence of TGA/CdTe QDs via electron transfer from the QDs to doxycycline through a dynamic quenching mechanism. The sensor permitted determination of doxycycline in a concentration range of 1.9×10(-6)-6.1×10(-5)molL(-1) with a detection limit of 1.1×10(-7)molL(-1). The sensor was applied for determination of doxycycline in honey and human serum samples.
Collapse
Affiliation(s)
- Javad Tashkhourian
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran.
| | - Ghodratollah Absalan
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Marzieh Jafari
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Saber Zare
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| |
Collapse
|
36
|
Wang JC, Ku HY, Shieh DB, Chuang HS. A bead-based fluorescence immunosensing technique enabled by the integration of Förster resonance energy transfer and optoelectrokinetic concentration. BIOMICROFLUIDICS 2016; 10:014113. [PMID: 26865906 PMCID: PMC4733077 DOI: 10.1063/1.4940938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/17/2016] [Indexed: 05/04/2023]
Abstract
Bead-based immunosensing has been growing as a promising technology in the point-of-care diagnostics due to great flexibility. For dilute samples, functionalized particles can be used to collect dispersed analytes and act as carriers for particle manipulation. To realize rapid and visual immunosensing, Förster resonance energy transfer (FRET) was used herein to ensure only the diabetic biomarker, lipocalin 1, to be detected. The measurement was made in an aqueous droplet sandwiched between two parallel plate electrodes. With an electric field and a focused laser beam applying on the microchip simultaneously, the immunocomplexes in the droplet were further concentrated to enhance the FRET fluorescent signal. The optoelectrokinetic technique, termed rapid electrokinetic patterning (REP), has been proven to be excellent in dynamic and programmable particle manipulation. Therefore, the detection can be complete within several tens of seconds. The lower detection limit of the REP-enabled bead-based diagnosis reached nearly 5 nM. The combinative use of FRET and the optoelectrokinetic technique for the bead-based immunosensing enables a rapid measure to diagnose early stage diseases and dilute analytes.
Collapse
Affiliation(s)
| | - Hu-Yao Ku
- Department of Biomedical Engineering, National Cheng Kung University , Tainan, Taiwan
| | - Dar-Bin Shieh
- Medical Device Innovation Center, National Cheng Kung University , Tainan, Taiwan
| | | |
Collapse
|
37
|
Stem Cell Tracking with Nanoparticles for Regenerative Medicine Purposes: An Overview. Stem Cells Int 2015; 2016:7920358. [PMID: 26839568 PMCID: PMC4709786 DOI: 10.1155/2016/7920358] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/07/2015] [Accepted: 10/11/2015] [Indexed: 02/07/2023] Open
Abstract
Accurate and noninvasive stem cell tracking is one of the most important needs in regenerative medicine to determine both stem cell destinations and final differentiation fates, thus allowing a more detailed picture of the mechanisms involved in these therapies.
Given the great importance and advances in the field of nanotechnology for stem cell imaging, currently, several nanoparticles have become standardized products and have been undergoing fast commercialization. This review has been intended to summarize the current use of different engineered nanoparticles in stem cell tracking for regenerative medicine purposes, in particular by detailing their main features and exploring their biosafety aspects, the first step for clinical application. Moreover, this review has summarized the advantages and applications of stem cell tracking with nanoparticles in experimental and preclinical studies and investigated present limitations for their employment in the clinical setting.
Collapse
|
38
|
Matsuoka Y, Yamato M, Yamada KI. Fluorescence probe for the convenient and sensitive detection of ascorbic acid. J Clin Biochem Nutr 2015; 58:16-22. [PMID: 26798193 PMCID: PMC4706089 DOI: 10.3164/jcbn.15-105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022] Open
Abstract
Ascorbic acid is an important antioxidant that plays an essential role in the biosynthesis of numerous bioactive substances. The detection of ascorbic acid has traditionally been achieved using high-performance liquid chromatography and absorption spectrophotometry assays. However, the development of fluorescence probes for this purpose is highly desired because they provide a much more convenient and highly sensitive technique for the detection of this material. OFF-ON-type fluorescent probes have been developed for the detection of non-fluorescent compounds. Photo-induced electron transfer and fluorescence resonance energy transfer are the two main fluorescence quenching mechanisms for the detection of ascorbic acid, and several fluorescence probes have been reported based on redox-responsive metals and quantum dots. Profluorescent nitroxide compounds have also been developed as non-metal organic fluorescence probes for ascorbic acid. These nitroxide systems have a stable unpaired electron and can therefore react with ascorbic acid and a strong fluorescence quencher. Furthermore, recent synthetic advances have allowed for the synthesis of α-substituted nitroxides with varying levels of reactivity towards ascorbic acid. In this review, we have discussed the design strategies used for the preparation of fluorescent probes for ascorbic acid, with particular emphasis on profluorescent nitroxides, which are unique radical-based redox-active fluorescent probes.
Collapse
Affiliation(s)
- Yuta Matsuoka
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mayumi Yamato
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken-Ichi Yamada
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
39
|
Onoshima D, Yukawa H, Baba Y. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv Drug Deliv Rev 2015; 95:2-14. [PMID: 26344675 DOI: 10.1016/j.addr.2015.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/31/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022]
Abstract
A field of recent diagnostics and therapeutics has been advanced with quantum dots (QDs). QDs have developed into new formats of biomolecular sensing to push the limits of detection in biology and medicine. QDs can be also utilized as bio-probes or labels for biological imaging of living cells and tissues. More recently, QDs has been demonstrated to construct a multifunctional nanoplatform, where the QDs serve not only as an imaging agent, but also a nanoscaffold for diagnostic and therapeutic modalities. This review highlights the promising applications of multi-functionalized QDs as advanced nanosensors for diagnosing cancer and as innovative fluorescence probes for in vitro or in vivo stem cell imaging in regenerative medicine.
Collapse
|
40
|
Priem B, Tian C, Tang J, Zhao Y, Mulder WJM. Fluorescent nanoparticles for the accurate detection of drug delivery. Expert Opin Drug Deliv 2015; 12:1881-94. [PMID: 26292712 DOI: 10.1517/17425247.2015.1074567] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The application of intravenously administered nanoparticle (NP) therapies is increasingly being explored for a variety of diseases. The key to their success lies in a thorough understanding of nanoparticle pharmacological behavior, specificity and elimination kinetics. Fluorescent imaging techniques provide exciting opportunities to gain insight into such NP behavior in complex biological systems, at macroscopic as well as microscopic levels. AREAS COVERED In this review, we will summarize NP labeling methods in relation to their established and emerging fluorescent imaging modalities for in vitro, in vivo, and ex vivo studies of NP behavior. We will highlight novel applications and discuss recent developments in techniques such as fluorescence molecular tomography (FMT), Förster resonance energy transfer (FRET), and Raman imaging. Finally, we will provide a perspective on the challenges and future directions of NP-based fluorescent labeling and imaging in nanotherapeutics. EXPERT OPINION Commonly used in preclinical applications, fluorescent imaging of NPs can be achieved with minimal invasiveness and low toxicity in a multiplex fashion. Increasingly applied in the study of NP biodistribution, dissociation, and elimination behavior, fluorescent imaging allows fluid longitudinal tracking and visualization of NP interactions at the level of the whole animal, target organs/tissues, and individual cells.
Collapse
Affiliation(s)
- Bram Priem
- a 1 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, USA
| | - Cheng Tian
- a 1 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, USA
| | - Jun Tang
- a 1 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, USA
| | - Yiming Zhao
- a 1 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, USA
| | - Willem J M Mulder
- a 1 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai , New York, New York 10029, USA .,b 2 Department of Vascular Medicine, Academic Medical Center , Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
41
|
Fang Y, Ramasamy RP. Current and Prospective Methods for Plant Disease Detection. BIOSENSORS 2015; 5:537-61. [PMID: 26287253 PMCID: PMC4600171 DOI: 10.3390/bios5030537] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 01/08/2023]
Abstract
Food losses due to crop infections from pathogens such as bacteria, viruses and fungi are persistent issues in agriculture for centuries across the globe. In order to minimize the disease induced damage in crops during growth, harvest and postharvest processing, as well as to maximize productivity and ensure agricultural sustainability, advanced disease detection and prevention in crops are imperative. This paper reviews the direct and indirect disease identification methods currently used in agriculture. Laboratory-based techniques such as polymerase chain reaction (PCR), immunofluorescence (IF), fluorescence in-situ hybridization (FISH), enzyme-linked immunosorbent assay (ELISA), flow cytometry (FCM) and gas chromatography-mass spectrometry (GC-MS) are some of the direct detection methods. Indirect methods include thermography, fluorescence imaging and hyperspectral techniques. Finally, the review also provides a comprehensive overview of biosensors based on highly selective bio-recognition elements such as enzyme, antibody, DNA/RNA and bacteriophage as a new tool for the early identification of crop diseases.
Collapse
Affiliation(s)
- Yi Fang
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
42
|
Humbert C, Dahi A, Dalstein L, Busson B, Lismont M, Colson P, Dreesen L. Linear and nonlinear optical properties of functionalized CdSe quantum dots prepared by plasma sputtering and wet chemistry. J Colloid Interface Sci 2015; 445:69-75. [DOI: 10.1016/j.jcis.2014.12.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
|
43
|
Chen L, Neethirajan S. A homogenous fluorescence quenching based assay for specific and sensitive detection of influenza virus A hemagglutinin antigen. SENSORS 2015; 15:8852-65. [PMID: 25884789 PMCID: PMC4431298 DOI: 10.3390/s150408852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 11/16/2022]
Abstract
Influenza pandemics cause millions of deaths worldwide. Effective surveillance is required to prevent their spread and facilitate the development of appropriate vaccines. In this study, we report the fabrication of a homogenous fluorescence-quenching-based assay for specific and sensitive detection of influenza virus surface antigen hemagglutinins (HAs). The core of the assay is composed of two nanoprobes namely the glycan-conjugated highly luminescent quantum dots (Gly-QDs), and the HA-specific antibody-modified gold nanoparticle (Ab-Au NPs). When exposed to strain-specific HA, a binding event between the HA and the two nanoprobes takes place, resulting in the formation of a sandwich complex which subsequently brings the two nanoprobes closer together. This causes a decrease in QDs fluorescence intensity due to a non-radiative energy transfer from QDs to Au NPs. A resulting correlation between the targets HA concentrations and fluorescence changes can be observed. Furthermore, by utilizing the specific interaction between HA and glycan with sialic acid residues, the assay is able to distinguish HAs originated from viral subtypes H1 (human) and H5 (avian). The detection limits in solution are found to be low nanomolar and picomolar level for sensing H1-HA and H5-HA, respectively. Slight increase in assay sensitivity was found in terms of detection limit while exposing the assay in the HA spiked in human sera solution. We believe that the developed assay could serve as a feasible and sensitive diagnostic tool for influenza virus detection and discrimination, with further improvement on the architectures.
Collapse
Affiliation(s)
- Longyan Chen
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Suresh Neethirajan
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
44
|
Li N, Su X, Lu Y. Nanomaterial-based biosensors using dual transducing elements for solution phase detection. Analyst 2015; 140:2916-43. [PMID: 25763412 DOI: 10.1039/c4an02376e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Biosensors incorporating nanomaterials have demonstrated superior performance compared to their conventional counterparts. Most reported sensors use nanomaterials as a single transducer of signals, while biosensor designs using dual transducing elements have emerged as new approaches to further improve overall sensing performance. This review focuses on recent developments in nanomaterial-based biosensors using dual transducing elements for solution phase detection. The review begins with a brief introduction of the commonly used nanomaterial transducers suitable for designing dual element sensors, including quantum dots, metal nanoparticles, upconversion nanoparticles, graphene, graphene oxide, carbon nanotubes, and carbon nanodots. This is followed by the presentation of the four basic design principles, namely Förster Resonance Energy Transfer (FRET), Amplified Fluorescence Polarization (AFP), Bio-barcode Assay (BCA) and Chemiluminescence (CL), involving either two kinds of nanomaterials, or one nanomaterial and an organic luminescent agent (e.g. organic dyes, luminescent polymers) as dual transducers. Biomolecular and chemical analytes or biological interactions are detected by their control of the assembly and disassembly of the two transducing elements that change the distance between them, the size of the fluorophore-containing composite, or the catalytic properties of the nanomaterial transducers, among other property changes. Comparative discussions on their respective design rules and overall performances are presented afterwards. Compared with the single transducer biosensor design, such a dual-transducer configuration exhibits much enhanced flexibility and design versatility, allowing biosensors to be more specifically devised for various purposes. The review ends by highlighting some of the further development opportunities in this field.
Collapse
Affiliation(s)
- Ning Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, 117602 Singapore.
| | | | | |
Collapse
|
45
|
Lee HL, Dhenadhayalan N, Lin KC. Metal ion induced fluorescence resonance energy transfer between crown ether functionalized quantum dots and rhodamine B: selectivity of K+ ion. RSC Adv 2015. [DOI: 10.1039/c4ra10925b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A ratiometric fluorescent metal ion sensor based on the mechanism of fluorescence resonance energy transfer between 15-crown-5-ether capped CdSe/ZnS quantum dots and 15-crown-5-ether attached rhodamine B.
Collapse
Affiliation(s)
- Hsin-Lung Lee
- Department of Chemistry
- National Taiwan University
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 106
| | - Namasivayam Dhenadhayalan
- Department of Chemistry
- National Taiwan University
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 106
| | - King-Chuen Lin
- Department of Chemistry
- National Taiwan University
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 106
| |
Collapse
|
46
|
Wang LY, Dong LY, Chen L, Fan YB, Wu J, Wang XF, Xie MX. A novel water-soluble quantum dot–neutral red fluorescence resonance energy transfer probe for the selective detection of megestrol acetate. NEW J CHEM 2015. [DOI: 10.1039/c4nj01443j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Megestrol acetate can specifically quench the fluorescence intensity of the β-CD-QD–NR FRET probe at low concentration levels.
Collapse
Affiliation(s)
- Li-Yun Wang
- Analytical & Testing Center of Beijing Normal University
- Beijing 100875
- P. R. China
| | - Ling-Yu Dong
- Analytical & Testing Center of Beijing Normal University
- Beijing 100875
- P. R. China
| | - Luan Chen
- Analytical & Testing Center of Beijing Normal University
- Beijing 100875
- P. R. China
| | - Ya-Bing Fan
- Analytical & Testing Center of Beijing Normal University
- Beijing 100875
- P. R. China
| | - Jing Wu
- Analytical & Testing Center of Beijing Normal University
- Beijing 100875
- P. R. China
| | - Xiang-Feng Wang
- Analytical & Testing Center of Beijing Normal University
- Beijing 100875
- P. R. China
| | - Meng-Xia Xie
- Analytical & Testing Center of Beijing Normal University
- Beijing 100875
- P. R. China
| |
Collapse
|
47
|
Shi J, Tian F, Lyu J, Yang M. Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications. J Mater Chem B 2015; 3:6989-7005. [DOI: 10.1039/c5tb00885a] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanoparticle based FRET assays have higher energy transfer efficiency and better performance compared with traditional organic fluorophore based FRET assays.
Collapse
Affiliation(s)
- Jingyu Shi
- Interdisciplinary Division of Biomedical Engineering
- the Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Feng Tian
- Interdisciplinary Division of Biomedical Engineering
- the Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Jing Lyu
- Interdisciplinary Division of Biomedical Engineering
- the Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Mo Yang
- Interdisciplinary Division of Biomedical Engineering
- the Hong Kong Polytechnic University
- Kowloon
- P. R. China
| |
Collapse
|
48
|
Wu P, Hou X, Xu JJ, Chen HY. Electrochemically Generated versus Photoexcited Luminescence from Semiconductor Nanomaterials: Bridging the Valley between Two Worlds. Chem Rev 2014; 114:11027-59. [DOI: 10.1021/cr400710z] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Peng Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P.R. China
| |
Collapse
|
49
|
Shojaei TR, Mohd Salleh MA, Tabatabaei M, Ekrami A, Motallebi R, Rahmani-Cherati T, Hajalilou A, Jorfi R. Development of sandwich-form biosensor to detect Mycobacterium tuberculosis complex in clinical sputum specimens. Braz J Infect Dis 2014; 18:600-8. [PMID: 25181404 PMCID: PMC9425227 DOI: 10.1016/j.bjid.2014.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/06/2014] [Accepted: 05/19/2014] [Indexed: 10/29/2022] Open
Abstract
Mycobacterium tuberculosis, the causing agent of tuberculosis, comes second only after HIV on the list of infectious agents slaughtering many worldwide. Due to the limitations behind the conventional detection methods, it is therefore critical to develop new sensitive sensing systems capable of quick detection of the infectious agent. In the present study, the surface modified cadmium-telluride quantum dots and gold nanoparticles conjunct with two specific oligonucleotides against early secretory antigenic target 6 were used to develop a sandwich-form fluorescence resonance energy transfer-based biosensor to detect M. tuberculosis complex and differentiate M. tuberculosis and M. bovis Bacille Calmette-Guerin simultaneously. The sensitivity and specificity of the newly developed biosensor were 94.2% and 86.6%, respectively, while the sensitivity and specificity of polymerase chain reaction and nested polymerase chain reaction were considerably lower, 74.2%, 73.3% and 82.8%, 80%, respectively. The detection limits of the sandwich-form fluorescence resonance energy transfer-based biosensor were far lower (10 fg) than those of the polymerase chain reaction and nested polymerase chain reaction (100 fg). Although the cost of the developed nanobiosensor was slightly higher than those of the polymerase chain reaction-based techniques, its unique advantages in terms of turnaround time, higher sensitivity and specificity, as well as a 10-fold lower detection limit would clearly recommend this test as a more appropriate and cost-effective tool for large scale operations.
Collapse
Affiliation(s)
- Taha Roodbar Shojaei
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamad Amran Mohd Salleh
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Meisam Tabatabaei
- Nanosystems Research Team (NRTeam), Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Alireza Ekrami
- Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roya Motallebi
- Department of Plant Breeding and Biotechnology, College of Agriculture, Shahrekord University, P.O. Box 115, Shahrekord, Iran
| | | | - Abdollah Hajalilou
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Raheleh Jorfi
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
50
|
Guo J, Zhang Y, Luo Y, Shen F, Sun C. Efficient fluorescence resonance energy transfer between oppositely charged CdTe quantum dots and gold nanoparticles for turn-on fluorescence detection of glyphosate. Talanta 2014; 125:385-92. [PMID: 24840461 DOI: 10.1016/j.talanta.2014.03.033] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
We designed a turn-on fluorescence assay for glyphosate based on the fluorescence resonance energy transfer (FRET) between negatively charged CdTe quantum dots capped with thioglycolic acid (TGA-CdTe-QDs) and positively charged gold nanoparticles stabilized with cysteamine (CS-AuNPs). Oppositely charged TGA-CdTe-QDs and CS-AuNPs can form FRET donor-acceptor assemblies due to electrostatic interactions, which effectively quench the fluorescence intensity of TGA-CdTe-QDs. The presence of glyphosate could induce the aggregation of CS-AuNPs through electrostatic interactions, resulting in the fluorescence recovery of the quenched QDs. This FRET-based method has been successfully utilized to detect glyphosate in apples with satisfactory results. The detection limit for glyphosate was 9.8 ng/kg (3σ), with the linear range of 0.02-2.0 μg/kg. The attractive sensitivity was obtained due to the efficient FRET and the superior fluorescence properties of QDs. The proposed method is a promising approach for rapid screening of glyphosate in real samples.
Collapse
Affiliation(s)
- Jiajia Guo
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Yan Zhang
- Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China
| | - Yeli Luo
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Fei Shen
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Chunyan Sun
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China.
| |
Collapse
|