1
|
Hani U, Choudhary VT, Ghazwani M, Alghazwani Y, Osmani RAM, Kulkarni GS, Shivakumar HG, Wani SUD, Paranthaman S. Nanocarriers for Delivery of Anticancer Drugs: Current Developments, Challenges, and Perspectives. Pharmaceutics 2024; 16:1527. [PMID: 39771506 PMCID: PMC11679327 DOI: 10.3390/pharmaceutics16121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer, the most common condition worldwide, ranks second in terms of the number of human deaths, surpassing cardiovascular diseases. Uncontrolled cell multiplication and resistance to cell death are the traditional features of cancer. The myriad of treatment options include surgery, chemotherapy, radiotherapy, and immunotherapy to treat this disease. Conventional chemotherapy drug delivery suffers from issues such as the risk of damage to benign cells, which can cause toxicity, and a few tumor cells withstand apoptosis, thereby increasing the likelihood of developing tolerance. The side effects of cancer chemotherapy are often more pronounced than its benefits. Regarding drugs used in cancer chemotherapy, their bioavailability and stability in the tumor microenvironment are the most important issues that need immediate addressing. Hence, an effective and reliable drug delivery system through which both rapid and precise targeting of treatment can be achieved is urgently needed. In this work, we discuss the development of various nanobased carriers in the advancement of cancer therapy-their properties, the potential of polymers for drug delivery, and recent advances in formulations. Additionally, we discuss the use of tumor metabolism-rewriting nanomedicines in strengthening antitumor immune responses and mRNA-based nanotherapeutics in inhibiting tumor progression. We also examine several issues, such as nanotoxicological studies, including their distribution, pharmacokinetics, and toxicology. Although significant attention is being given to nanotechnology, equal attention is needed in laboratories that produce nanomedicines so that they can record themselves in clinical trials. Furthermore, these medicines in clinical trials display overwhelming results with reduced side effects, as well as their ability to modify the dose of the drug.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (M.G.)
| | - Vikram T. Choudhary
- Department of Pharmaceutics, The Oxford College of Pharmacy, Hongsandra, Bengaluru 560068, India;
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (M.G.)
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India; (R.A.M.O.); (H.G.S.)
| | - Gururaj S. Kulkarni
- Department of Pharmaceutics, The Oxford College of Pharmacy, Hongsandra, Bengaluru 560068, India;
| | - Hosakote G. Shivakumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India; (R.A.M.O.); (H.G.S.)
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar 190006, India;
| | - Sathishbabu Paranthaman
- Department of Cell Biology and Molecular Genetics, Sri Devraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Kolar 563103, India;
| |
Collapse
|
2
|
Dhamo L, Wegner KD, Würth C, Häusler I, Hodoroaba VD, Resch-Genger U. Assessing the influence of microwave-assisted synthesis parameters and stabilizing ligands on the optical properties of AIS/ZnS quantum dots. Sci Rep 2022; 12:22000. [PMID: 36539585 PMCID: PMC9767924 DOI: 10.1038/s41598-022-25498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Luminescent semiconductor quantum dots (QDs) are frequently used in the life and material sciences as reporter for bioimaging studies and as active components in devices such as displays, light-emitting diodes, solar cells, and sensors. Increasing concerns regarding the use of toxic elements like cadmium and lead, and hazardous organic solvents during QD synthesis have meanwhile triggered the search for heavy-metal free QDs using green chemistry syntheses methods. Interesting candidates are ternary AgInS2 (AIS) QDs that exhibit broad photoluminescence (PL) bands, large effective Stokes shifts, high PL quantum yields (PL QYs), and long PL lifetimes, which are particularly beneficial for applications such as bioimaging, white light-emitting diodes, and solar concentrators. In addition, these nanomaterials can be prepared in high quality with a microwave-assisted (MW) synthesis in aqueous solution. The homogeneous heat diffusion and instant temperature rise of the MW synthesis enables a better control of QD nucleation and growth and thus increases the batch-to-batch reproducibility. In this study, we systematically explored the MW synthesis of AIS/ZnS QDs by varying parameters such as the order of reagent addition, precursor concentration, and type of stabilizing thiol ligand, and assessed their influence on the optical properties of the resulting AIS/ZnS QDs. Under optimized synthesis conditions, water-soluble AIS/ZnS QDs with a PL QY of 65% and excellent colloidal and long-term stability could be reproducible prepared.
Collapse
Affiliation(s)
- Lorena Dhamo
- grid.71566.330000 0004 0603 5458Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany ,grid.7468.d0000 0001 2248 7639Departments of Physics, Humboldt Universität Zu Berlin, 12489 Berlin, Germany
| | - K. David Wegner
- grid.71566.330000 0004 0603 5458Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Christian Würth
- grid.71566.330000 0004 0603 5458Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Ines Häusler
- grid.7468.d0000 0001 2248 7639Departments of Physics, Humboldt Universität Zu Berlin, 12489 Berlin, Germany
| | - Vasile-Dan Hodoroaba
- grid.71566.330000 0004 0603 5458Division Surface Analysis and Interfacial Chemistry, Federal Institute for Materials Research and Testing (BAM), 12203 Berlin, Germany
| | - Ute Resch-Genger
- grid.71566.330000 0004 0603 5458Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| |
Collapse
|
3
|
Sun J, Li H, Gu X, Tang BZ. Photoactivatable Biomedical Materials Based on Luminogens with Aggregation-Induced Emission (AIE) Characteristics. Adv Healthc Mater 2021; 10:e2101177. [PMID: 34637607 DOI: 10.1002/adhm.202101177] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Indexed: 12/17/2022]
Abstract
Fluorescence probes with aggregation-induced emission (AIE) property are fascinating and vital in biological fields due to their bright fluorescence in the solid state. In contrast, traditional AIE materials are obscured by the off-target effects and lack of spatial and temporal control. Photoactivatable materials with AIE characteristics, whose physicochemical behaviors can be remotely activated by light, provide great potential in biochemical information acquisition with high spatial and temporal resolution. By using AIE-featured photoactivatable fluorescence probes, accurate analysis of the targets of interest is possible. For example, where, when, and to what extent a process is started or stopped by manipulating the non-invasive light accurately. Thus, many researchers are enthusiastic about developing AIE-featured photoactivatable materials and mainly focus on developing novel molecules by rational molecular structure design, and exploring advanced applications by appropriate molecular functionalization. In this review, the recent achievements of photoactivatable materials with AIE characteristics from the aspects involving inherent mechanism of photoactivity, molecular design strategy, and the corresponding applications in biological fields, are summarized. The biological applications are highlighted and discussed, including photoactivatable bioimaging, diagnosis, and photo-controlled therapy. Finally, the challenges and prospects of the AIE-featured photoactivatable materials are also outlined and discussed.
Collapse
Affiliation(s)
- Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering School of Science and Engineering The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 China
| |
Collapse
|
4
|
Babu Kajjam A, Vaidyanathan S. Acenaphthene-imidazole based red-to-NIR Emissive Homoleptic and Heteroleptic Ir(III) complexes for OLEDs: Combined experimental and theoretical approach. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Wei W, Fan J, Xia Y, Yin X. Multi-mode fluorescence sensing detection based on one core-shell structure quantum dots via different types of mechanisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118630. [PMID: 32623300 DOI: 10.1016/j.saa.2020.118630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Multi-target sensing completed with single chemosensor is cost-effective and pretty attractive for the analysis of multiple analytes in single sample. CdTe/CdS QDs show high fluorescence quantum yield as a probe for the sensing purpose, but only single target is often detected. Here we proposed that three kinds of different response mechanisms were realized using CdTe/CdS QDs with the simultaneous sensing of Fe3+, Cr2O72-, and IO3- as model. The specific binding affinity was used to detect Fe3+ with the photo-induced electron transfer (PET) mechanism. CdTe/CdS QDs showed intensive fluorescent response to Cr2O72- owing to the inner filter effect (IFE). IO3- is an oxidant and reacts to surface functional groups of CdTe/CdS QDs with oxidation quenching (OQ) mechanism for the selective detection of IO3-. The three targets recorded with the three mechanisms were obviously clustered even they were tested at different concentrations. Thus, the targets could be differentiated with each other through their different responses of PET, IFE, and OQ. The linear ranges for the selective detection of Fe3+, Cr2O72-, and IO3- were 5.0-100.0, 20.0-140.0 and 1.0-80.0 μM, with the limits of detection as low as 4.1, 9.7, and 0.9 μM, respectively. The proposed methods were satisfactorily applied to accurately detect Fe3+, Cr2O72-, and IO3- in real samples and it was further detected iodate and the total amount of iodine in table salt samples. The proposed multi-target detection strategy with the single fluorescence single from single QDs will stimulate the application of the other matrix with abundant response with enhance sensing efficiency.
Collapse
Affiliation(s)
- Wei Wei
- Research Center for Analytical Science, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun Fan
- Research Center for Analytical Science, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Xia
- Research Center for Analytical Science, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xuebo Yin
- Research Center for Analytical Science, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Ahmad KS, Talat M, Jaffri SB, Shaheen N. Innovatory role of nanomaterials as bio-tools for treatment of cancer. REV INORG CHEM 2020. [DOI: 10.1515/revic-2020-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Conventional treatment modes like chemotherapy, thermal and radiations aimed at cancerous cells eradication are marked by destruction pointing the employment of nanomaterials as sustainable and auspicious materials for saving human lives. Cancer has been deemed as the second leading cause of death on a global scale. Nanomaterials employment in cancer treatment is based on the utilization of their inherent physicochemical characteristics in addition to their modification for using as nano-carriers and nano-vehicles eluted with anti-cancer drugs. Current work has reviewed the significant role of different types of nanomaterials in cancer therapeutics and diagnostics in a systematic way. Compilation of review has been done by analyzing voluminous investigations employing ERIC, MEDLINE, NHS Evidence and Web of Science databases. Search engines used were Google scholar, Jstore and PubMed. Current review is suggestive of the remarkable performance of nanomaterials making them candidates for cancer treatment for substitution of destructive treatment modes through investigation of their physicochemical characteristics, utilization outputs and long term impacts in patients.
Collapse
Affiliation(s)
- Khuram Shahzad Ahmad
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 Rawalpindi , Pakistan
| | - Muntaha Talat
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 Rawalpindi , Pakistan
| | - Shaan Bibi Jaffri
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 Rawalpindi , Pakistan
| | | |
Collapse
|
7
|
Li Q, Yang X, Zhang L, Wang Y, Kong J, Qi W, Liang Y, Su R, He Z. Thermally Induced Structural Transition of Peptide Nanofibers into Nanoparticles with Enhanced Fluorescence Properties. Chempluschem 2020; 85:1523-1528. [DOI: 10.1002/cplu.202000116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/24/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Xin Yang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Liwei Zhang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination TechnologyTianjin University Tianjin 300072 P. R. China
| | - Jia Kong
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination TechnologyTianjin University Tianjin 300072 P. R. China
| | - Yaoyu Liang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination TechnologyTianjin University Tianjin 300072 P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| |
Collapse
|
8
|
Lou Y, Ji J, Qin A, Liao L, Li Z, Chen S, Zhang K, Ou J. Cane Molasses Graphene Quantum Dots Passivated by PEG Functionalization for Detection of Metal Ions. ACS OMEGA 2020; 5:6763-6772. [PMID: 32258911 PMCID: PMC7114702 DOI: 10.1021/acsomega.0c00098] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
Poly(ethylene glycol) passivated graphene quantum dots (PEG-GQDs) were synthesized based on a green and effective strategy of the hydrothermal treatment of cane molasses. The prepared PEG-GQDs, with an average size of 2.5 nm, exhibit a brighter blue fluorescence and a higher quantum yield (QY) (up to approximately 21.32%) than the QY of GQDs without surface passivation (QY = 10.44%). The PEG-GQDs can be used to detect and quantify paramagnetic transition-metal ions including Fe3+, Cu2+, Co2+, Ni2+, Pb2+, and Mn2+. In the case of ethylenediaminetetraacetic acid (EDTA) solution as a masking agent, Fe3+ ions can be well selectively determined in a transition-metal ion mixture, following the lowest limit of detection (LOD) of 5.77 μM. The quenching mechanism of Fe3+ on PEG-GQDs belongs to dynamic quenching. Furthermore, Fe3+ in human serum can be successfully detected by the PEG-GQDs, indicating that the green prepared PEG-GQDs can be applied as a promising candidate for the selective detection of Fe3+ in clinics.
Collapse
Affiliation(s)
- Ying Lou
- Key
Lab New Processing Technology for Nonferrous Metals & Materials
Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Jianying Ji
- Key
Lab New Processing Technology for Nonferrous Metals & Materials
Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Aimiao Qin
- Key
Lab New Processing Technology for Nonferrous Metals & Materials
Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Lei Liao
- College
of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Ziyuan Li
- College
of Chemistry and Bioengineering, Guilin
University of Technology, Guilin 541004, P. R. China
| | - Shuoping Chen
- Key
Lab New Processing Technology for Nonferrous Metals & Materials
Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Kaiyou Zhang
- Key
Lab New Processing Technology for Nonferrous Metals & Materials
Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Jun Ou
- Key
Lab New Processing Technology for Nonferrous Metals & Materials
Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| |
Collapse
|
9
|
Suckey MM, Benza D, Arifuzzaman M, Millhouse PW, Anderson D, Heath J, DesJardins JD, Anker JN. Luminescent Spectral Rulers for Noninvasive Displacement Measurement through Tissue. ACS Sens 2020; 5:711-718. [PMID: 32096404 DOI: 10.1021/acssensors.9b01930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A luminescent spectral ruler was developed to measure micrometer to millimeter displacements through tissue. The spectral ruler has two components: a luminescent encoder patterned with alternating stripes of two spectrally distinct luminescent materials and an analyzer mask with periodic transparent windows the same width as the encoder stripes. The analyzer mask is placed over the encoder and held so that only one type of luminescent stripe is visible through the window; sliding the analyzer over the encoder modulates the luminescence spectrum acquired through the analyzer windows, enabling detection of small displacements without imaging. We prepared two types of spectral rulers, one with a fluorescent encoder and a second with an X-ray excited optical luminescent (XEOL) encoder. The fluorescent ruler used two types of quantum dots to form stripes that were excited with 633 nm light and emitted at 645 and 680 nm, respectively. Each ruler type was covered with chicken breast tissue to simulate implantation. The XEOL ruler generated a strong signal with negligible tissue autofluorescence but used ionizing radiation, while the fluorescence ruler used non-ionizing red light excitation but required spectral fitting to account for tissue autofluorescence. The precision for both types of luminescent spectral rulers (with 1 mm wide analyzer windows, and measured through 6 mm of tissue) was <2 μm, mostly limited by shot noise. The approach enabled high micrometer to millimeter displacement measurements through tissue and has applications in biomechanical and mechanochemical measurements (e.g., tracking postsurgical bone healing and implant-associated infection).
Collapse
Affiliation(s)
- Melissa M. Suckey
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Donald Benza
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Md. Arifuzzaman
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Paul W. Millhouse
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Dakotah Anderson
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Jonathan Heath
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - John D. DesJardins
- Department of BioEngineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Jeffrey N. Anker
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- Center for Optical Materials Science and Engineering Technology (COMSET) and Environmental Toxicology Program, Clemson University, Clemson, South Carolina 29634, United States
- Department of BioEngineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
10
|
Zhang ZQ, Yao WJ, Qiao LL, Yang X, Shi J, Zhao MX. A Lysosome-Targetable Fluorescence Probe Based on L-Cysteine-Polyamine-Morpholine-Modified Quantum Dots for Imaging in Living Cells. Int J Nanomedicine 2020; 15:1611-1622. [PMID: 32210555 PMCID: PMC7069590 DOI: 10.2147/ijn.s234927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Quantum dots (QDs) are used as fluorescent probes due to their high fluorescence intensity, longevity of fluorescence, strong light-resistant bleaching ability and high light stability. Therefore, we explore a more precise probe that can target an organelle. METHODS In the current study, a new class of fluorescence probes were developed using QDs capped with 4 different L-cysteine-polyamine-morpholine linked by mercapto groups. Ligands were characterised by Electrospray ionization mass spectrometry (ESI-MS), H-Nuclear Magnetic Resonance (1H NMR) spectroscopy, and 13C NMR spectroscopy. Modified QDs were characterized by Transmission Electron Microscope (TEM), Ultraviolet and visible spectrophotometry (UV-Vis), and fluorescence microscopy. And the biological activity of modified QDs was explored by using MTT assay with HeLa, SMMC-7721 and HepG2 cells. The fluorescence imaging of modified QDs was obtained by confocal laser scanning fluorescence microscopy (CLSM). RESULTS Synthesized QDs ranged between 4 to 5 nm and had strong optical emission properties. UV-Vis and fluorescence spectra demonstrated that the cysteine-polyamine-morpholine were successfully incorporated into QD nanoparticles. The MTT results demonstrated that modified QDs had lesser cytotoxicity when compared to unmodified QDs. In addition, modified QDs had strong fluorescence intensity in HeLa cells and targeted lysosomes of HeLa cells. CONCLUSION This study demonstrates the modified QDs efficiently entered cells and could be used as a potential lysosome-targeting fluorescent probe.
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Wen-Jing Yao
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Lu-Lu Qiao
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Xiaojing Yang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| |
Collapse
|
11
|
Dewangan PK, Khan F, Shrivas K, Sahu V. Determination of uranium in environmental sample by nanosensor graphene quantum dots. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06512-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Integration of Nanomaterials and Bioluminescence Resonance Energy Transfer Techniques for Sensing Biomolecules. BIOSENSORS-BASEL 2019; 9:bios9010042. [PMID: 30884844 PMCID: PMC6468577 DOI: 10.3390/bios9010042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 01/11/2023]
Abstract
Bioluminescence resonance energy transfer (BRET) techniques offer a high degree of sensitivity, reliability and ease of use for their application to sensing biomolecules. BRET is a distance dependent, non-radiative energy transfer, which uses a bioluminescent protein to excite an acceptor through the resonance energy transfer. A BRET sensor can quickly detect the change of a target biomolecule quantitatively without an external electromagnetic field, e.g., UV light, which normally can damage tissue. Having been developed quite recently, this technique has evolved rapidly. Here, different bioluminescent proteins have been reviewed. In addition to a multitude of bioluminescent proteins, this manuscript focuses on the recent development of BRET sensors by utilizing quantum dots. The special size-dependent properties of quantum dots have made the BRET sensing technique attractive for the real-time monitoring of the changes of target molecules and bioimaging in vivo. This review offers a look into the basis of the technique, donor/acceptor pairs, experimental applications and prospects.
Collapse
|
13
|
Lee BH, Suresh S, Ekpenyong A. Fluorescence intensity modulation of CdSe/ZnS quantum dots assesses reactive oxygen species during chemotherapy and radiotherapy for cancer cells. JOURNAL OF BIOPHOTONICS 2019; 12:e201800172. [PMID: 30315626 DOI: 10.1002/jbio.201800172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/02/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Quantum dots (QDs) are semiconductor nanoparticles ranging in size from 2 to 10 nm. QDs are increasingly being developed for biomedical imaging, targeted drug delivery and green energy technology. These have led to much research on QD interactions with various physical, chemical and biological systems. For biological systems, research has focused on the biocompatibility/cytotoxicity of QDs in the context of imaging/therapy. However, there is a paucity of work on how biological systems and bioactive molecules might be used to alter the optoelectronic properties of QDs. Here, it is shown that these properties can be altered by reactive oxygen species (ROS) from chemotherapeutic media and biological cells following controlled changes in cellular activities. Using CdSe/ZnS core-shell QDs, spectroscopic analysis of optically excited QDs with HL60, K562 and T98G cancer cell lines is performed. Our results show statistically significant (P < 0.0001) modulation of the fluorescence emission spectra of the QDs due to the ROS produced by common chemotherapeutic drugs, daunorubicin and doxorubicin and by cells following chemotherapy/radiotherapy. This optical modulation, in addition to assessing ROS generation, will possibly enhance applications of QDs in simultaneous diagnostic imaging and nanoparticle-mediated drug delivery as well as simultaneous ROS assessment and radiosensitization for improved outcomes in cancer treatments. Reactive molecular species produced by biological cells and chemotherapeutic drugs can create electric fields that alter the photophysical properties of QDs, and this can be used for concurrent monitoring of cellular activities, while inducing changes in those cellular activities.
Collapse
Affiliation(s)
- Bong H Lee
- Department of Physics, Creighton University, Omaha, Nebraska
| | - Sindhuja Suresh
- Department of Computer Science, Creighton University, Omaha, Nebraska
| | | |
Collapse
|
14
|
Istomina M, Pechnikova N, Korolev D, Pochkayeva E, Mazing D, Galagudza M, Moshnikov V, Shlyakhto E. ZAIS-based colloidal QDs as fluorescent labels for theranostics: physical properties, biodistribution and biocompatibility. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2018. [DOI: 10.24075/brsmu.2018.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years there has been an increase in interest in the use of colloidal quantum dots (QDs) in biology and medicine. In particular, QDs can be a perspective nanoscale object for theranostics, in which due to the specific accumulation of drug-loaded QDs in the pathological focus, its simultaneous visualization and targeted therapeutic influence occur. One of the serious limitations of the use of QDs in medicine is their potential toxicity, especially when the nanocrystal material contains elements such as cadmium or plumbum. Therefore, it is promising to develop labels based on QDs of relatively less toxic semiconductors of group I-III-VI, such as CuInS2 and AgInS2. In this study, biodistribution and biocompatibility of QDs based on the AgInS2 compound with a ZnS shell (ZAIS) are considered. In the study of biodistribution, the accumulation of QDs in organs such as liver, lungs, heart and kidneys was revealed. It was shown that QDs in the dose range from 2 • 10–7 to 4 • 10–6 M/L at intravenous administration in rats does not have a significant effect on body mass dynamics and basic hematological parameters for 30 days. Thus, ZAIS QDs can be used to visualize tissues and organs in various pathological processes, and immobilization of the drugs on their surface will allow to approach their application for theranostics.
Collapse
Affiliation(s)
- M.S. Istomina
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg; Department of Micro- and Nanoelectronics, St. Petersburg State Electrotechnical University “LETI”, St. Petersburg
| | - N.A. Pechnikova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg; Center of Experimental Pharmacology, St. Petersburg State Chemical Pharmaceutical Academy, St. Petersburg; Zoological Institute of Russian Academy of Sciences, St. Petersburg
| | - D.V. Korolev
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg
| | - E.I. Pochkayeva
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg
| | - D.S. Mazing
- Department of Micro- and Nanoelectronics, St. Petersburg State Electrotechnical University “LETI”, St. Petersburg
| | - M.M. Galagudza
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg; Department of Pathophysiology, Pavlov First St. Petersburg State Medical University, St. Petersburg
| | - V.A. Moshnikov
- Department of Micro- and Nanoelectronics, St. Petersburg State Electrotechnical University “LETI”, St. Petersburg
| | - E.V. Shlyakhto
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg
| |
Collapse
|
15
|
Abbandonato G, Hoffmann K, Resch-Genger U. Determination of quantum yields of semiconductor nanocrystals at the single emitter level via fluorescence correlation spectroscopy. NANOSCALE 2018; 10:7147-7154. [PMID: 29616686 DOI: 10.1039/c7nr09332b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Comparing the photoluminescence (PL) properties of ensembles of nanocrystals like semiconductor quantum dots (QDs) with single particle studies is of increasing interest for many applications of these materials as reporters in bioimaging studies performed under very dilute conditions or even at the single particle level. Particularly relevant is here the PL quantum yield (ΦF), which determines the signal size together with the reporter's molar extinction coefficient and is a direct measure for nanocrystal quality, especially for the inorganic surface passivation shell and its tightness, which can be correlated also with nanocrystal stability and the possible release of heavy metal ions. Exemplarily for red and green emitting CdTe nanocrystals, we present a method for the determination of ΦF of nanoparticle dispersions at ultralow concentration compared to cuvette measurements using fluorescence correlation spectroscopy (FCS), a single molecule method, and compared to molecular dyes with closely matching spectral properties and known ΦF. Our results underline the potential of this approach, provided that material-inherent limitations like ligand- and QD-specific aggregation affecting particle diffusion and QD drawbacks such as their complex and power-dependent blinking behavior are properly considered as shown here.
Collapse
Affiliation(s)
- Gerardo Abbandonato
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany.
| | | | | |
Collapse
|
16
|
Zheng H, Mortensen LJ, Ravichandran S, Bentley K, DeLouise LA. Effect of Nanoparticle Surface Coating on Cell Toxicity and Mitochondria Uptake. J Biomed Nanotechnol 2018; 13:155-66. [PMID: 29377103 DOI: 10.1166/jbn.2017.2337] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report on the effect of surface charge and the ligand coating composition of CdSe/ZnS core/shell quantum dot (QD) nanoparticles on human keratinocyte toxicity using fluorescent microscopy, flow cytometry, transmission electron microscopy. Two commonly reported positive charged (cysteamine, polyethylenimine) and two negative charged (glutathione, dihydrolipoic acid) ligands were studied. The QDs were fully characterized by UV-vis absorption spectroscopy, fluorescence emission spectroscopy, dynamic light scattering and zeta potential. Differences in surface coatings and charges were evaluated against cellular uptake, ROS generation, cytotoxicity, and mitochondrial targeting. Results show that the negative charged QDs coated with GSH exhibit excellent water solubility, high quantum yield and low cytotoxicity. Ligand composition is more important in ROS generation than surface charge whereas surface charge is an important driver of cytotoxicity. Most importantly we observe the selective accumulation of glutathione coated QDs in vesicles in the mitochondria matrix. This observation suggests a new strategy for developing mitochondria-targeted nanomaterials for drug/gene delivery.
Collapse
|
17
|
Properties of POPC/POPE supported lipid bilayers modified with hydrophobic quantum dots on polyelectrolyte cushions. Colloids Surf B Biointerfaces 2017; 158:667-674. [PMID: 28763774 DOI: 10.1016/j.colsurfb.2017.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/19/2017] [Accepted: 07/19/2017] [Indexed: 11/21/2022]
Abstract
The formation and properties of supported lipid bilayers (SLB) containing hydrophobic nanoparticles (NP) was studied in relation to underlying cushion obtained from selected polyelectrolyte multilayers. Lipid vesicles were formed from zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in phosphate buffer (PBS). As hydrophobic nanoparticles - quantum dots (QD) with size of 3.8nm (emission wavelength of 420nm) were used. Polyelectrolyte multilayers (PEM) were constructed by the sequential, i.e., layer-by-layer (LbL) adsorption of alternately charged polyelectrolytes from their solutions. Liposomes and Liposome-QDs complexes were studied with Transmission Cryo-Electron Microscopy (Cryo-TEM) to verify the quality of vesicles and the position of QD within lipid bilayer. Deposition of liposomes and liposomes with quantum dots on polyelectrolyte films was studied in situ using quartz crystal microbalance with dissipation (QCM-D) technique. The fluorescence emission spectra were analyzed for both: suspension of liposomes with nanoparticles and for supported lipid bilayers containing QD on PEM. It was demonstrated that quantum dots are located in the hydrophobic part of lipid bilayer. Moreover, we proved that such QD-modified liposomes formed supported lipid bilayers and their final structure depended on the type of underlying cushion.
Collapse
|
18
|
Wu Y, Zeng G, Lvyue N, Wu W, Jiang T, Wu R, Guo W, Li X, Fan X. Triethylene glycol-modified iridium(iii) complexes for fluorescence imaging of Schistosoma japonicum. J Mater Chem B 2017; 5:4973-4980. [PMID: 32264013 DOI: 10.1039/c7tb00662d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Schistosomiasis, an infectious disease caused by the Schistosoma parasitic worm, presents a serious public health issue. To date, investigation of anti-Schistosomiasis drug mechanisms through fluorescence imaging remains challenging due to the lack of appropriate dyes as fluorescent probes. Phosphorescent Ir(iii) complexes have been attracting substantial attention among various classes of fluorophores given their excellent photophysical properties. Herein, four phosphorescent Ir(iii) complexes were synthesized, two of which contained a triethylene glycol (TEG) hydrophilic group. The phosphorescent emission range of the four complexes lay between 500 and 750 nm, and their quantum yields ranged from 0.031 to 0.146. Furthermore, under the experimental concentration conditions, the TEG-modified complexes had low cytotoxicity. Cell fluorescence labeling experiments indicated that the TEG-modified complexes had good membrane permeability. Finally, the TEG-modified complexes showed remarkable labeling effects in adult Schistosoma fluorescence imaging. Thus, TEG-modified Ir(iii) complexes could be used as a new class of bilharzial fluorescent probes.
Collapse
Affiliation(s)
- Yongquan Wu
- School of Chemistry and Chemical Engineering & Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi 341000, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhao Y, Zhang Y, Qin G, Cheng J, Zeng W, Liu S, Kong H, Wang X, Wang Q, Qu H. In vivo biodistribution and behavior of CdTe/ZnS quantum dots. Int J Nanomedicine 2017; 12:1927-1939. [PMID: 28331316 PMCID: PMC5352250 DOI: 10.2147/ijn.s121075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The unique features of quantum dots (QDs) make them desirable fluorescent tags for cell and developmental biology applications that require long-term, multitarget, and highly sensitive imaging. In this work, we imaged fluorescent cadmium telluride/zinc sulfide (CdTe/ZnS) QDs in organs, tissues, and cells, and analyzed the mechanism of their lymphatic uptake and cellular distribution. We observed that the fluorescent CdTe/ZnS QDs were internalized by lymph nodes in four cell lines from different tissue sources. We obtained the fluorescence intensity–QD concentrations curve by quantitative analysis. Our results demonstrate that cells containing QDs can complete mitosis normally and that distribution of QDs was uniform across cell types and involved the vesicular transport system, including the endoplasmic reticulum. This capacity for CdTe/ZnS QD targeting provides insights into the applicability and limitations of fluorescent QDs for imaging biological specimens.
Collapse
Affiliation(s)
- Yan Zhao
- School of Basic Medical Sciences
| | | | | | | | | | | | - Hui Kong
- School of Basic Medical Sciences
| | | | | | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
20
|
Girma WM, Fahmi MZ, Permadi A, Abate MA, Chang JY. Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots. J Mater Chem B 2017; 5:6193-6216. [DOI: 10.1039/c7tb01156c] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review, we discuss recent advances of I–III–VI QDs with a major focus on synthesis and biomedical applications; advantages include low toxicity and fluorescent tuning in the biological window.
Collapse
Affiliation(s)
- Wubshet Mekonnen Girma
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | | | - Adi Permadi
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | - Mulu Alemayehu Abate
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| |
Collapse
|
21
|
Yang X, Yan D. Direct white-light-emitting and near-infrared phosphorescence of zeolitic imidazolate framework-8. Chem Commun (Camb) 2017; 53:1801-1804. [DOI: 10.1039/c6cc09706e] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Zeolitic imidazolate framework-8 can directly exhibit unexpected white-light emission and near-infrared phosphorescence, due to the host–guest interaction and the alternation of electron-density distribution, as confirmed by both experimental and computational studies.
Collapse
Affiliation(s)
- Xiaogang Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| |
Collapse
|
22
|
Pal AK, Cordes DB, Slawin AMZ, Momblona C, Pertegás A, Ortí E, Bolink HJ, Zysman-Colman E. Simple design to achieve red-to-near-infrared emissive cationic Ir(iii) emitters and their use in light emitting electrochemical cells. RSC Adv 2017. [DOI: 10.1039/c7ra06347d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Two cationic Ir(iii) complexes bearing bithiazole-type ancillary ligands have been synthesised and tested as deep red-to-near-infrared emitters in solution-processed electroluminescent devices.
Collapse
Affiliation(s)
- Amlan K. Pal
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- Fife KY16 9ST
- UK
| | - David B. Cordes
- EaStCHEM School of Chemistry
- University of St Andrews
- Fife KY16 9ST
- UK
| | | | - Cristina Momblona
- Instituto de Ciencia Molecular
- Universidad de Valencia
- 46980 Paterna
- Spain
| | - Antonio Pertegás
- Instituto de Ciencia Molecular
- Universidad de Valencia
- 46980 Paterna
- Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular
- Universidad de Valencia
- 46980 Paterna
- Spain
| | - Henk J. Bolink
- Instituto de Ciencia Molecular
- Universidad de Valencia
- 46980 Paterna
- Spain
| | - Eli Zysman-Colman
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- Fife KY16 9ST
- UK
| |
Collapse
|
23
|
Liu Y, Zhang P, Fang X, Wu G, Chen S, Zhang Z, Chao H, Tan W, Xu L. Near-infrared emitting iridium(iii) complexes for mitochondrial imaging in living cells. Dalton Trans 2017; 46:4777-4785. [DOI: 10.1039/c7dt00255f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two NIR-emitting cationic iridium(iii) complexes with phenylbenzo[g]quinoline ligands were found to selectively accumulate in mitochondria, superior photostability, low cytotoxicity. Thus they were demonstrated to have good potential as NIR-emitting mitochondrial imaging agents.
Collapse
Affiliation(s)
- Yuying Liu
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan 528458
- P. R. China
| | - Peipei Zhang
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan 528458
- P. R. China
| | - Xiaoqiang Fang
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan 528458
- P. R. China
| | - Gongqing Wu
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan 528458
- P. R. China
| | - Shuting Chen
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan 528458
- P. R. China
| | - Zhina Zhang
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan 528458
- P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Wenying Tan
- School of Food Science
- Guangdong Pharmaceutical University
- Zhongshan 528458
- P. R. China
| | - Li Xu
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan 528458
- P. R. China
| |
Collapse
|
24
|
Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun'ko YK. Application of semiconductor quantum dots in bioimaging and biosensing. J Mater Chem B 2017; 5:6701-6727. [DOI: 10.1039/c7tb01425b] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review we present new concepts and recent progress in the application of semiconductor quantum dots (QD) as labels in two important areas of biology, bioimaging and biosensing.
Collapse
Affiliation(s)
- I. V. Martynenko
- BAM Federal Institute for Materials Research and Testing
- 12489 Berlin
- Germany
- ITMO University
- St. Petersburg
| | | | | | | | | | - Y. K. Gun'ko
- ITMO University
- St. Petersburg
- Russia
- School of Chemistry and CRANN
- Trinity College Dublin
| |
Collapse
|
25
|
Chiu SH, Gedda G, Girma WM, Chen JK, Ling YC, Ghule AV, Ou KL, Chang JY. Rapid fabrication of carbon quantum dots as multifunctional nanovehicles for dual-modal targeted imaging and chemotherapy. Acta Biomater 2016; 46:151-164. [PMID: 27662808 DOI: 10.1016/j.actbio.2016.09.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022]
Abstract
Herein, we synthesized an S, N, and Gd tri-element doped magnetofluorescent carbon quantum dots (GdNS@CQDs) within 10min by using a one-pot microwave method. Our results showed that these magnetofluorescent GdNS@CQDs have excellent fluorescent and magnetic properties. Moreover, GdNS@CQDs exhibited high stability at physiological conditions and ionic strength. These magnetofluorescent GdNS@CQDs were conjugated with a folic acid, denoted as FA-GdNS@CQDs, for targeting dual modal fluorescence/magnetic resonance (MR) imaging. The in vitro and in vivo studies confirmed the high biocompatibility and low toxicity of FA-GdNS@CQDs. FA-GdNS@CQDs enhanced the MR response as compared to that for commercial Gd-DTPA. The targeting capabilities of FA-GdNS@CQDs were confirmed in HeLa and HepG2 cells using in vitro fluorescence and MR dual modality imaging. Additionally, an anticancer drug, doxorubicin, was incorporated into the FA-GdNS@CQDs forming FA-GdNS@CQDs-DOX, which enables targeted drug delivery. Importantly, the prepared FA-GdNS@CQDs-DOX showed a high quantity of doxorubicin loading capacity (about 80%) and pH-sensitive drug release. The uptake into cancer cells and the intracellular location of the FA-GdNS@CQDs were observed by confocal laser scanning microscopy. We also successfully demonstrated in vivo fluorescence bio imaging of the FA-GdNS@CQDs, using zebrafish as an animal model. STATEMENT OF SIGNIFICANCE In this manuscript, we reported a facial, rapid, and environmental friendly method to fabricate hetero atoms including gadolinium, nitrogen, and sulfur doped multi-functional magnetofluorescent carbon quantum dots (GdNS@CQDs) nanocomposite. These multifunctional GdNS@CQDs were conjugated with a folic acid for targeting dual modal fluorescence/magnetic resonance imaging. Additionally, an anticancer drug, doxorubicin, was incorporated into the nanocomposite forming FA-GdNS@CQDs-DOX, which enables targeted drug delivery. We have developed GdNS@CQDs with integrated functions for simultaneous in vitro cell imaging, targeting, and pH-sensitive controlled drug release in HeLa cells. Furthermore, we successfully demonstrated the use of this material for in vivo fluorescence imaging, using zebrafish as an animal model.
Collapse
Affiliation(s)
- Sheng-Hui Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan
| | - Gangaraju Gedda
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan
| | - Wubshet Mekonnen Girma
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Anil V Ghule
- Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416004, India.
| | - Keng-Liang Ou
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; School of Dentistry, College of Medicine, China Medical University, Taichung 404, Taiwan; 3D Global Biotechnology Inc., New Taipei City 221, Taiwan; Department of Dentistry, Taipei Medical University-Shuang-Ho Hospital, New Taipei City 235, Taiwan.
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan.
| |
Collapse
|
26
|
Li Y, Zhou H, Chen J, Anjum Shahzad S, Yu C. Controlled self-assembly of small molecule probes and the related applications in bioanalysis. Biosens Bioelectron 2016; 76:38-53. [DOI: 10.1016/j.bios.2015.06.067] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 10/23/2022]
|
27
|
Kalita H, Mohapatra J, Pradhan L, Mitra A, Bahadur D, Aslam M. Efficient synthesis of rice based graphene quantum dots and their fluorescent properties. RSC Adv 2016. [DOI: 10.1039/c5ra25706a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We present a facile green approach to synthesize monodisperse graphene quantum dots (GQDs) of sizes 2–6.5 nm using rice grains as a carbon source.
Collapse
Affiliation(s)
- Hemen Kalita
- Department of Physics
- IIT Bombay
- Mumbai
- India 400076
| | - Jeotikanta Mohapatra
- Centre for Research in Nanotechnology & Science (CRNTS)
- IIT Bombay
- Mumbai
- India 400076
| | - Lina Pradhan
- Centre for Research in Nanotechnology & Science (CRNTS)
- IIT Bombay
- Mumbai
- India 400076
| | - Arijit Mitra
- Department of Physics
- IIT Bombay
- Mumbai
- India 400076
| | - Dhirendra Bahadur
- Department of Metallurgical Engineering and Materials Science
- IIT Bombay
- Mumbai
- India 400076
| | | |
Collapse
|
28
|
Zhang Q, Xu G, Gong L, Dai H, Zhang S, Li Y, Lin Y. An enzyme-assisted electrochemiluminescent biosensor developed on order mesoporous carbons substrate for ultrasensitive glyphosate sensing. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Lee J, Choi KJ, Choi Y, Ali BA, Al-Khedhairy AA, Kim S. Sperm DNA-mediated reduction of nonspecific fluorescence during cellular imaging with quantum dots. Chem Commun (Camb) 2015; 51:11584-11586. [PMID: 26096719 DOI: 10.1039/c5cc04503g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Salmon sperm DNA was used as a blocking agent to reduce background fluorescence signals from gelatin-coated cell culture dishes.
Collapse
Affiliation(s)
- Jonghwan Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 270-701, Republic of Korea.
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea
| | - Kyung-Ju Choi
- Department of Radiation Oncology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea
| | - Youngsok Choi
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea
| | - Bahy A Ali
- Al-Jeraisy DNA Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Nucleic Acids Research, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | | | - Soonhag Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 270-701, Republic of Korea.
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea
| |
Collapse
|
30
|
Pandey V, Pandey G, Tripathi VK, Yadav S, Mudiam MKR. Nucleation temperature-controlled synthesis and in vitro toxicity evaluation of L-cysteine-capped Mn:ZnS quantum dots for intracellular imaging. LUMINESCENCE 2015; 31:341-347. [PMID: 26179189 DOI: 10.1002/bio.2965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/04/2015] [Accepted: 06/04/2015] [Indexed: 11/11/2022]
Abstract
Quantum dots (QDs), one of the fastest developing and most exciting fluorescent materials, have attracted increasing interest in bioimaging and biomedical applications. The long-term stability and emission in the visible region of QDs have proved their applicability as a significant fluorophore in cell labelling. In this study, an attempt has been made to explore the efficacy of L-cysteine as a capping agent for Mn-doped ZnS QD for intracellular imaging. A room temperature nucleation strategy was adopted to prepare non-toxic, water-dispersible and biocompatible Mn:ZnS QDs. Aqueous and room temperature QDs with L-cysteine as a capping agent were found to be non-toxic even at a concentration of 1500 µg/mL and have wide applications in intracellular imaging.
Collapse
Affiliation(s)
- Vivek Pandey
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India.,Department of Applied Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Gajanan Pandey
- Department of Applied Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Vinay Kumar Tripathi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India
| | - Sapna Yadav
- Pesticide Toxicology, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India
| | - Mohana Krishna Reddy Mudiam
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India.,Pesticide Toxicology, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India.,Academy of Scientific and Innovative Research, Council of Scientific & Industrial Research, PO Box 80, MG Marg, Lucknow, 226001, India
| |
Collapse
|
31
|
Liu X, Hu R, Lian H, Liu Y, Liu J, Liu J, Lin G, Liu L, Duan X, Yong KT, Ye L. Dual-color immunofluorescent labeling with quantum dots of the diabetes-associated proteins aldose reductase and Toll-like receptor 4 in the kidneys of diabetic rats. Int J Nanomedicine 2015; 10:3651-62. [PMID: 26056446 PMCID: PMC4445876 DOI: 10.2147/ijn.s81395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Diabetes is one of the major chronic diseases diagnosed worldwide with a common complication of diabetic nephropathy (DN). There are multiple possible mechanisms associated with DN. Aldose reductase (AR) and Toll-like receptor 4 (TLR4) may be involved in the occurrence and development of DN. Here, we describe the distribution of AR and TLR4 in cells and renal tissues of diabetic rats through a quantum dot (QD)-based immunofluorescence technique and conventional immunohistochemistry. As a new type of nanosized fluorophore, QDs have been recognized in imaging applications and have broad prospects in biomedical research. The results of the reported study demonstrate that both the AR and the TLR4 proteins were upregulated in the renal tissues of diabetic rats. Further, to explore the relationship between AR and TLR4 in the pathogenesis of DN, a dual-color immunofluorescent labeling technique based on QDs was applied, where the expressions of AR and TLR4 in the renal tissues of diabetic rats were simultaneously observed – for the first time, as far as we are aware. The optimized QD-based immunofluorescence technique has not only shown a satisfying sensitivity and specificity for the detection of biomarkers in cells and tissues, but also is a valuable supplement of immu-nohistochemistry. The QD-based multiplexed imaging technology provides a new insight into the mechanistic study of the correlation among biological factors as well as having potential applications in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Xiaomin Liu
- Institute of Gerontology and Geriatrics, Chinese PLA General Hospital, Beijing Key Lab of Aging and Geriatrics, Beijing, People's Republic of China
| | - Rui Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hongwei Lian
- Institute of Gerontology and Geriatrics, Chinese PLA General Hospital, Beijing Key Lab of Aging and Geriatrics, Beijing, People's Republic of China ; Department of Emergency Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yang Liu
- Department of Geriatric Nephrology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jing Liu
- Institute of Gerontology and Geriatrics, Chinese PLA General Hospital, Beijing Key Lab of Aging and Geriatrics, Beijing, People's Republic of China
| | - Jianwei Liu
- Institute of Gerontology and Geriatrics, Chinese PLA General Hospital, Beijing Key Lab of Aging and Geriatrics, Beijing, People's Republic of China
| | - Guimiao Lin
- Key Lab of Biomedical Engineering, School of Medical Sciences, Shenzhen University, Shenzhen, People's Republic of China
| | - Liwei Liu
- School of Science, Changchun University of Science and Technology, Changchun, People's Republic of China
| | - Xiaojian Duan
- Institute of Gerontology and Geriatrics, Chinese PLA General Hospital, Beijing Key Lab of Aging and Geriatrics, Beijing, People's Republic of China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ling Ye
- Institute of Gerontology and Geriatrics, Chinese PLA General Hospital, Beijing Key Lab of Aging and Geriatrics, Beijing, People's Republic of China
| |
Collapse
|
32
|
Hatami S, Würth C, Kaiser M, Leubner S, Gabriel S, Bahrig L, Lesnyak V, Pauli J, Gaponik N, Eychmüller A, Resch-Genger U. Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd(1-x)Hg(x)Te and PbS quantum dots--method- and material-inherent challenges. NANOSCALE 2015; 7:133-143. [PMID: 25407424 DOI: 10.1039/c4nr04608k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bright emitters with photoluminescence in the spectral region of 800-1600 nm are increasingly important as optical reporters for molecular imaging, sensing, and telecommunication and as active components in electrooptical and photovoltaic devices. Their rational design is directly linked to suitable methods for the characterization of their signal-relevant properties, especially their photoluminescence quantum yield (Φ(f)). Aiming at the development of bright semiconductor nanocrystals with emission >1000 nm, we designed a new NIR/IR integrating sphere setup for the wavelength region of 600-1600 nm. We assessed the performance of this setup by acquiring the corrected emission spectra and Φ(f) of the organic dyes Itrybe, IR140, and IR26 and several infrared (IR)-emissive Cd(1-x)Hg(x)Te and PbS semiconductor nanocrystals and comparing them to data obtained with two independently calibrated fluorescence instruments absolutely or relative to previously evaluated reference dyes. Our results highlight special challenges of photoluminescence studies in the IR ranging from solvent absorption to the lack of spectral and intensity standards together with quantum dot-specific challenges like photobrightening and photodarkening and the size-dependent air stability and photostability of differently sized oleate-capped PbS colloids. These effects can be representative of lead chalcogenides. Moreover, we redetermined the Φ(f) of IR26, the most frequently used IR reference dye, to 1.1 × 10(-3) in 1,2-dichloroethane DCE with a thorough sample reabsorption and solvent absorption correction. Our results indicate the need for a critical reevaluation of Φ(f) values of IR-emissive nanomaterials and offer guidelines for improved Φ(f) measurements.
Collapse
Affiliation(s)
- Soheil Hatami
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 2015; 44:4792-4834. [DOI: 10.1039/c4cs00532e] [Citation(s) in RCA: 578] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Colourful cells and tissues: semiconductor quantum dots and their versatile applications in multiplexed bioimaging research.
Collapse
Affiliation(s)
- K. David Wegner
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| | - Niko Hildebrandt
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| |
Collapse
|
34
|
Shi W, Fan H, Ai S, Zhu L. Preparation of fluorescent graphene quantum dots from humic acid for bioimaging application. NEW J CHEM 2015. [DOI: 10.1039/c5nj00760g] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Humic acid as a raw material was applied for the preparation of graphene quantum dots by a one-step hydrothermal method.
Collapse
Affiliation(s)
- Weijie Shi
- College of Chemistry and Material Science
- Shandong Agricultural University
- Taian
- P. R. China
- College of Resources and Environment
| | - Hai Fan
- College of Chemistry and Material Science
- Shandong Agricultural University
- Taian
- P. R. China
| | - Shiyun Ai
- College of Chemistry and Material Science
- Shandong Agricultural University
- Taian
- P. R. China
| | - Lusheng Zhu
- College of Resources and Environment
- Shandong Agricultural University
- Taian
- P. R. China
| |
Collapse
|
35
|
Tharkar P, Madani AU, Lasham A, Shelling AN, Al-Kassas R. Nanoparticulate carriers: an emerging tool for breast cancer therapy. J Drug Target 2014; 23:97-108. [DOI: 10.3109/1061186x.2014.958844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Abstract
It has been demonstrated that nanoparticles used for follicular delivery provide some advantages over conventional pathways, including improved skin bioavailability, enhanced penetration depth, prolonged residence duration, fast transport into the skin and tissue targeting. This review describes recent developments using nanotechnology approaches for drug delivery into the follicles. Different types of nanosystems may be employed for management of follicular permeation, such as polymeric nanoparticles, metallic nanocrystals, liposomes, and lipid nanoparticles. This review systematically introduces the mechanisms of follicles for nanoparticulate penetration, highlighting the therapeutic potential of drug-loaded nanoparticles for treating skin diseases. Special attention is paid to the use of nanoparticles in treating appendage-related disorders, in particular, nanomedical strategies for treating alopecia, acne, and transcutaneous immunization.
Collapse
|
37
|
Lacroix LM, Delpech F, Nayral C, Lachaize S, Chaudret B. New generation of magnetic and luminescent nanoparticles for in vivo real-time imaging. Interface Focus 2014; 3:20120103. [PMID: 24427542 DOI: 10.1098/rsfs.2012.0103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A new generation of optimized contrast agents is emerging, based on metallic nanoparticles (NPs) and semiconductor nanocrystals for, respectively, magnetic resonance imaging (MRI) and near-infrared (NIR) fluorescent imaging techniques. Compared with established contrast agents, such as iron oxide NPs or organic dyes, these NPs benefit from several advantages: their magnetic and optical properties can be tuned through size, shape and composition engineering, their efficiency can exceed by several orders of magnitude that of contrast agents clinically used, their surface can be modified to incorporate specific targeting agents and antifolding polymers to increase blood circulation time and tumour recognition, and they can possibly be integrated in complex architecture to yield multi-modal imaging agents. In this review, we will report the materials of choice based on the understanding of the basic physics of NIR and MRI techniques and their corresponding syntheses as NPs. Surface engineering, water transfer and specific targeting will be highlighted prior to their first use for in vivo real-time imaging. Highly efficient NPs that are safer and target specific are likely to enter clinical application in a near future.
Collapse
Affiliation(s)
- Lise-Marie Lacroix
- INSA, UPS, LPCNO (Laboratoire de Physique et Chimie des Nano-Objets) , Université de Toulouse , Toulouse 31077 France ; UMR 5215, LPCNO , CNRS , Toulouse 31077 , France
| | - Fabien Delpech
- INSA, UPS, LPCNO (Laboratoire de Physique et Chimie des Nano-Objets) , Université de Toulouse , Toulouse 31077 France ; UMR 5215, LPCNO , CNRS , Toulouse 31077 , France
| | - Céline Nayral
- INSA, UPS, LPCNO (Laboratoire de Physique et Chimie des Nano-Objets) , Université de Toulouse , Toulouse 31077 France ; UMR 5215, LPCNO , CNRS , Toulouse 31077 , France
| | - Sébastien Lachaize
- INSA, UPS, LPCNO (Laboratoire de Physique et Chimie des Nano-Objets) , Université de Toulouse , Toulouse 31077 France ; UMR 5215, LPCNO , CNRS , Toulouse 31077 , France
| | - Bruno Chaudret
- INSA, UPS, LPCNO (Laboratoire de Physique et Chimie des Nano-Objets) , Université de Toulouse , Toulouse 31077 France ; UMR 5215, LPCNO , CNRS , Toulouse 31077 , France
| |
Collapse
|
38
|
Quantiosomes as a Multimodal Nanocarrier for Integrating Bioimaging and Carboplatin Delivery. Pharm Res 2014; 31:2664-76. [DOI: 10.1007/s11095-014-1363-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/15/2014] [Indexed: 12/30/2022]
|
39
|
Bareket-Keren L, Hanein Y. Novel interfaces for light directed neuronal stimulation: advances and challenges. Int J Nanomedicine 2014; 9 Suppl 1:65-83. [PMID: 24872704 PMCID: PMC4024977 DOI: 10.2147/ijn.s51193] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Light activation of neurons is a growing field with applications ranging from basic investigation of neuronal systems to the development of new therapeutic methods such as artificial retina. Many recent studies currently explore novel methods for optical stimulation with temporal and spatial precision. Novel materials in particular provide an opportunity to enhance contemporary approaches. Here we review recent advances towards light directed interfaces for neuronal stimulation, focusing on state-of-the-art nanoengineered devices. In particular, we highlight challenges and prospects towards improved retinal prostheses.
Collapse
Affiliation(s)
- Lilach Bareket-Keren
- School of Electrical Engineering, Tel-Aviv University, Tel-Aviv University, Tel-Aviv, Israel ; Tel-Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel-Aviv University, Tel-Aviv University, Tel-Aviv, Israel ; Tel-Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
40
|
Xia HX, Yang XQ, Song JT, Chen J, Zhang MZ, Yan DM, Zhang L, Qin MY, Bai LY, Zhao YD, Ma ZY. Folic acid-conjugated silica-coated gold nanorods and quantum dots for dual-modality CT and fluorescence imaging and photothermal therapy. J Mater Chem B 2014; 2:1945-1953. [PMID: 32261631 DOI: 10.1039/c3tb21591a] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multifunctional nanoparticles (NPs) have great potential for multimodal cancer imaging and effective therapy. We have developed multifunctional NPs (GNR@SiO2@QDs) by incorporating gold nanorods (GNRs) and CdSe/ZnS quantum dots (QDs) into silica. Folic acid (FA) as a targeting ligand was covalently conjugated on the surfaces of GNR@SiO2@QDs with a silane coupling agent. Cell viability assay showed that these NPs had low cytotoxicity. And confocal fluorescence images illustrated that they could selectively target HeLa cells overexpressing folate receptors (FRs) rather than FR-deficient A549 cells. In vitro cell imaging experiments revealed that these NPs exhibited strong X-ray attenuation for X-ray computed tomography (CT) imaging and strong fluorescence for fluorescence imaging. They also showed an enhanced photothermal therapy (PTT) effect for cancer cells due to GNRs' high absorption coefficient in the near infrared (NIR) region and a better heat generation rate. All results show that they have great potential in theranostic applications such as for targeted tumor imaging and therapy.
Collapse
Affiliation(s)
- Hong-Xing Xia
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yeh YC, Saha K, Yan B, Miranda OR, Yu X, Rotello VM. The role of ligand coordination on the cytotoxicity of cationic quantum dots in HeLa cells. NANOSCALE 2013; 5:12140-12143. [PMID: 24173625 PMCID: PMC3858971 DOI: 10.1039/c3nr04037b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The effect of ligand structure on the cytotoxicity of cationic CdSe/ZnS quantum dots (QDs) was systematically investigated using mono- and bidentate ligands. Monothiol-functionalized QDs are more cytotoxic than dithiol-functionalized QDs.
Collapse
Affiliation(s)
- Yi-Cheun Yeh
- Department of Chemistry, 710 North Pleasant St, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Krishnendu Saha
- Department of Chemistry, 710 North Pleasant St, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Bo Yan
- Department of Chemistry, 710 North Pleasant St, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Oscar R. Miranda
- Department of Chemistry, 710 North Pleasant St, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xi Yu
- Department of Chemistry, 710 North Pleasant St, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Vincent M. Rotello
- Department of Chemistry, 710 North Pleasant St, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
42
|
Zhang G, Zhang H, Gao Y, Tao R, Xin L, Yi J, Li F, Liu W, Qiao J. Near-Infrared-Emitting Iridium(III) Complexes as Phosphorescent Dyes for Live Cell Imaging. Organometallics 2013. [DOI: 10.1021/om400676h] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Guoliang Zhang
- Key Lab of Organic Optoelectronics and Molecular
Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Huiyuan Zhang
- MOE Key Laboratory
of Protein Science, School
of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yuan Gao
- Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Ran Tao
- Key Lab of Organic Optoelectronics and Molecular
Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Lijun Xin
- Key Lab of Organic Optoelectronics and Molecular
Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Junyang Yi
- MOE Key Laboratory
of Protein Science, School
of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Fuyou Li
- Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Wanli Liu
- MOE Key Laboratory
of Protein Science, School
of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
- Collaborative Innovation Center
for Diagnosis
and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis
and Treatment of Infectious Diseases, The First Affiliated Hospital,
College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Juan Qiao
- Key Lab of Organic Optoelectronics and Molecular
Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
43
|
Abstract
Brain tumors are one of the most challenging disorders encountered, and early and accurate diagnosis is essential for the management and treatment of these tumors. In this article, diagnostic modalities including single-photon emission computed tomography, positron emission tomography, magnetic resonance imaging, and optical imaging are reviewed. We mainly focus on the newly emerging, specific imaging probes, and their potential use in animal models and clinical settings.
Collapse
Affiliation(s)
- Huile Gao
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xinguo Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
44
|
Abstract
Significant progress has been made in nanoscale drugs and delivery systems employing diverse chemical formulations to facilitate the rate of drug delivery and to improve its pharmacokinetics. Biocompatible nanomaterials have been used as biological markers, contrast agents for imaging, healthcare products, pharmaceuticals, drug-delivery systems as well as in detection, diagnosis and treatment of various types of diseases. The classification of drug delivery nanosystems (DDnSs) is a crucial issue and fundamental efforts on this subject are missing from the literature. This article deals with the classification of DDnSs with a modulatory controlled release profile (MCR) denoted as modulatory controlled release nanosystems (MCRnSs). Conventional (c) and advanced (a) DDnSs are denoted by the acronyms cDDnSs and aDDnSs, and can be composed of a single or more than one biomaterials, respectively. The classification was based on their characteristics such as: surface functionality (f), the nature of biomaterials used and the kind of interactions between biomaterials. The aDDnSs can be classified as hybridic (Hy-) or chimeric (Chi-) based on the nature - same or different respectively - of biomaterials and inorganic materials used. The nature of the elements used for producing advanced biomaterials is of great importance and medicinal chemistry contributes effectively to the production of aDDnSs.
Collapse
Affiliation(s)
- Costas Demetzos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou, University of Athens , Athens , Greece
| | | |
Collapse
|
45
|
Nurunnabi M, Khatun Z, Nafiujjaman M, Lee DG, Lee YK. Surface coating of graphene quantum dots using mussel-inspired polydopamine for biomedical optical imaging. ACS APPLIED MATERIALS & INTERFACES 2013; 5:8246-8253. [PMID: 23879568 DOI: 10.1021/am4023863] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Because of the superiority of GQDs (graphene quantum dots) in biomedical imaging, in terms of biocompatibility and toxicity of semiconductor quantum dots, GQDs bring new opportunities for the diagnosis and detection of diseases. In this study, we synthesized photoluminescent (PL) graphene quantum dots (GQDs) through a simple exfoliation and oxidation process, and then coated them with polydopamine (pDA) for enhanced stability in water and low toxicity in vivo. From the results, the GQDs coated with pDA showed an excellent stability of PL intensity. It showed that the PL intensity of noncoated GQDs in PBS solution rapidly decreased with time, resulting in a 45% reduction of the PL intensity for 14 days of incubation in PBS solution. After coating with polydopamine, PL intensities of polydopamine-coated GQDs was maintained more stably for 14 days compared with uncoated GQDs. We have observed the in vitro and in vivo biocompatibility of pDA-coated GQDs in nude mice. The overall observation revealed that pDA-coated GQDs could be used as a long-term optical imaging agent as well as a biocompatible drug carrier.
Collapse
Affiliation(s)
- Md Nurunnabi
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 380-702 Republic of Korea
| | | | | | | | | |
Collapse
|
46
|
Wen CJ, Sung CT, Aljuffali IA, Huang YJ, Fang JY. Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes. NANOTECHNOLOGY 2013; 24:325101. [PMID: 23867977 DOI: 10.1088/0957-4484/24/32/325101] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Multifunctional liposomes loaded with quantum dots (QDs) and anticancer drugs were prepared for simultaneous bioimaging and drug delivery. Different formulations, including cationic, PEGylated and deformable liposomes, were compared for their theranostic efficiency. We had evaluated the physicochemical characteristics of these liposomes. The developed liposomes were examined using experimental platforms of cytotoxicity, cell migration, cellular uptake, in vivo melanoma imaging and drug accumulation in tumors. The average size of various nanocomposite liposomes was found to be 92–134 nm. Transmission electron microscopy confirmed the presence of QDs within liposomal bilayers. The incorporation of polyethylene glycol (PEG) and Span 20 into the liposomes greatly increased the fluidity of the bilayers. The liposomes provided sustained release of camptothecin and irinotecan. The cytotoxicity and cell migration assay demonstrated superior activity of cationic liposomes compared with other carriers. Cationic liposomes also showed a significant fluorescence signal in melanoma cells after internalization. The liposomes were intratumorally administered to a melanoma-bearing mouse. Cationic liposomes showed the brightest fluorescence in tumors, followed by classical liposomes. This signal could last for up to 24 h for cationic nanosystems. Intratumoral accumulation of camptothecin from free control was 35 nmol g(−1); it could be increased to 50 nmol g(−1) after loading with cationic liposomes. However, encapsulation of irinotecan into liposomes did not further increase intratumoral drug accumulation. Cationic liposomes were preferable to other liposomes as nanocarriers in both bioimaging and therapeutic approaches.
Collapse
Affiliation(s)
- Chih-Jen Wen
- School of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
47
|
Tan X, Jin R. Ultrasmall metal nanoclusters for bio‐related applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:569-81. [DOI: 10.1002/wnan.1237] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/09/2013] [Accepted: 06/19/2013] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaohong Tan
- Department of Chemistry Carnegie Mellon University Pittsburgh PA USA
- Center for Nucleic Acids Science and Technology Carnegie Mellon University Pittsburgh PA USA
| | - Rongchao Jin
- Department of Chemistry Carnegie Mellon University Pittsburgh PA USA
| |
Collapse
|
48
|
Hsu SH, Wen CJ, Al-Suwayeh SA, Huang YJ, Fang JY. Formulation design and evaluation of quantum dot-loaded nanostructured lipid carriers for integrating bioimaging and anticancer therapy. Nanomedicine (Lond) 2013; 8:1253-69. [DOI: 10.2217/nnm.12.170] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: The authors studied the bioimaging and delivery of drug-entrapped, nanostructured lipid carriers with quantum dots (QDs), called QDNLCs, for integrating imaging and therapy. Materials & methods: Nanostructured lipid carriers consisting of QDs, including lipophilic QDs, carboxyl-function QDs or PEG QDs were prepared. Application of the nanocarriers was evaluated by cytotoxicity, cell migration, cellular uptake, in vivo real-time tumor monitoring and drug accumulation in tumors. Results: All QDNLCs exhibited a size of 245 nm with camptothecin encapsulation of >99%. Cytotoxicity of the nanoparticles against melanoma cells was superior to that of free camptothecin. Carboxylic acid-conjugated QDNLCs (C-QDNLCs) showed the highest cell internalization and in vivo fluorescence labeling compared with the other carriers. Real-time bioimaging demonstrated that C-QDNLCs maintained signaling in tumors for at least 24 h. The camptothecin accumulation in melanomas increased by 6.4-fold after incorporation into C-QDNLCs. Conclusion: For the first time, nanostructured lipid carriers were coordinated with QDs and an anticancer drug to provide efficient tumor imaging and drug delivery. Original submitted 1 May 2012; Revised submitted 30 August 2012; Published online 5 February 2013
Collapse
Affiliation(s)
- Shu-Hui Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy & Science, Tainan City, Taiwan
- Department of Research & Development, Standard Chemical & Pharmaceutical Company, Sinying, Tainan City, Taiwan
| | - Chih-Jen Wen
- Department of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Center for Vascularized Composite Allotransplantation, Chang Gung Medical Foundation, Kweishan, Taoyuan, Taiwan
| | - Saleh A Al-Suwayeh
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yu-Jie Huang
- Department of Pharmacy, Chia Nan University of Pharmacy & Science, Tainan City, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Cosmetic Science, Chang Gung University of Science & Technology, Kweishan, Taoyuan, Taiwan
- Research Center for Industry of Human Ecology, Chang Gung University of Science & Technology, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
49
|
Sen K, Mandal M. Second generation liposomal cancer therapeutics: transition from laboratory to clinic. Int J Pharm 2013; 448:28-43. [PMID: 23500602 DOI: 10.1016/j.ijpharm.2013.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 03/03/2013] [Accepted: 03/06/2013] [Indexed: 01/10/2023]
Abstract
Recent innovations and developments in nanotechnology have revolutionized cancer therapeutics. Engineered nanomaterials are the current workhorses in the emerging field of cancer nano-therapeutics. Lipid vesicles bearing anti-tumor drugs have turned out to be a clinically feasible and promising nano-therapeutic approach to treat cancer. Efficient entrapment of therapeutics, biocompatibility, biodegradability, low systemic toxicity, low immunogenicity and ability to bypass multidrug resistance mechanisms has made liposomes a versatile drug/gene delivery system in cancer chemotherapy. The present review attempts to explore the recent key advances in liposomal research and the vast arsenal of liposomal formulations currently being utilized in treatment and diagnosis of cancer.
Collapse
Affiliation(s)
- Kacoli Sen
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | | |
Collapse
|
50
|
Carregal-Romero S, Caballero-Díaz E, Beqa L, Abdelmonem AM, Ochs M, Hühn D, Suau BS, Valcarcel M, Parak WJ. Multiplexed sensing and imaging with colloidal nano- and microparticles. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2013; 6:53-81. [PMID: 23451718 DOI: 10.1146/annurev-anchem-062012-092621] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sensing and imaging with fluorescent, plasmonic, and magnetic colloidal nano- and microparticles have improved during the past decade. In this review, we describe the concepts and applications of how these techniques can be used in the multiplexed mode, that is, sensing of several analytes in parallel or imaging of several labels in parallel.
Collapse
|