1
|
Yuan X, Ouaskioud O, Yin X, Li C, Ma P, Yang Y, Yang PF, Xie L, Ren L. Epidermal Wearable Biosensors for the Continuous Monitoring of Biomarkers of Chronic Disease in Interstitial Fluid. MICROMACHINES 2023; 14:1452. [PMID: 37512763 PMCID: PMC10385734 DOI: 10.3390/mi14071452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Healthcare technology has allowed individuals to monitor and track various physiological and biological parameters. With the growing trend of the use of the internet of things and big data, wearable biosensors have shown great potential in gaining access to the human body, and providing additional functionality to analyze physiological and biochemical information, which has led to a better personalized and more efficient healthcare. In this review, we summarize the biomarkers in interstitial fluid, introduce and explain the extraction methods for interstitial fluid, and discuss the application of epidermal wearable biosensors for the continuous monitoring of markers in clinical biology. In addition, the current needs, development prospects and challenges are briefly discussed.
Collapse
Affiliation(s)
- Xichen Yuan
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Oumaima Ouaskioud
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xu Yin
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chen Li
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Pengyi Ma
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
| | - Peng-Fei Yang
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Xie
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Ren
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
2
|
Microdialysis techniques and microdialysis-based patient-near diagnostics. Anal Bioanal Chem 2022; 414:3165-3175. [PMID: 35028692 DOI: 10.1007/s00216-021-03830-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 01/04/2023]
Abstract
This article will debate the usefulness of POCT measurements and the contribution microdialysis can make to generating valuable information. A particular theme will be the rarely considered difference between ex vivo sampling, which typically generates only a static measure of concentration, and in vivo measurements that are subject to dynamic changes due to mass transfer. Those dynamic changes provide information about the patients' physiological state.
Collapse
|
3
|
Weber S, Tombelli S, Giannetti A, Trono C, O'Connell M, Wen M, Descalzo AB, Bittersohl H, Bietenbeck A, Marquet P, Renders L, Orellana G, Baldini F, Luppa PB. Immunosuppressant quantification in intravenous microdialysate - towards novel quasi-continuous therapeutic drug monitoring in transplanted patients. Clin Chem Lab Med 2020; 59:935-945. [PMID: 33554521 DOI: 10.1515/cclm-2020-1542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/06/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Therapeutic drug monitoring (TDM) plays a crucial role in personalized medicine. It helps clinicians to tailor drug dosage for optimized therapy through understanding the underlying complex pharmacokinetics and pharmacodynamics. Conventional, non-continuous TDM fails to provide real-time information, which is particularly important for the initial phase of immunosuppressant therapy, e.g., with cyclosporine (CsA) and mycophenolic acid (MPA). METHODS We analyzed the time course over 8 h of total and free of immunosuppressive drug (CsA and MPA) concentrations measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in 16 kidney transplant patients. Besides repeated blood sampling, intravenous microdialysis was used for continuous sampling. Free drug concentrations were determined from ultracentrifuged EDTA-plasma (UC) and compared with the drug concentrations in the respective microdialysate (µD). µDs were additionally analyzed for free CsA using a novel immunosensor chip integrated into a fluorescence detection platform. The potential of microdialysis coupled with an optical immunosensor for the TDM of immunosuppressants was assessed. RESULTS Using LC-MS/MS, the free concentrations of CsA (fCsA) and MPA (fMPA) were detectable and the time courses of total and free CsA comparable. fCsA and fMPA and area-under-the-curves (AUCs) in µDs correlated well with those determined in UCs (r≥0.79 and r≥0.88, respectively). Moreover, fCsA in µDs measured with the immunosensor correlated clearly with those determined by LC-MS/MS (r=0.82). CONCLUSIONS The new microdialysis-supported immunosensor allows real-time analysis of immunosuppressants and tailor-made dosing according to the AUC concept. It readily lends itself to future applications as minimally invasive and continuous near-patient TDM.
Collapse
Affiliation(s)
- Susanne Weber
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sara Tombelli
- Institute of Applied Physics "Nello Carrara", National Research Council, Sesto Fiorentino (FI), Italy
| | - Ambra Giannetti
- Institute of Applied Physics "Nello Carrara", National Research Council, Sesto Fiorentino (FI), Italy
| | - Cosimo Trono
- Institute of Applied Physics "Nello Carrara", National Research Council, Sesto Fiorentino (FI), Italy
| | | | - Ming Wen
- Department of Nephrology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ana B Descalzo
- Department of Organic Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Heike Bittersohl
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Andreas Bietenbeck
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Pierre Marquet
- U1248 IPPRITT, INSERM, University of Limoges, Limoges, CHU Limoges, France
| | - Lutz Renders
- Department of Nephrology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Centre for Infection Research (DZIF), Munich, Germany
| | - Guillermo Orellana
- Department of Organic Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Francesco Baldini
- Institute of Applied Physics "Nello Carrara", National Research Council, Sesto Fiorentino (FI), Italy
| | - Peter B Luppa
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
4
|
Poole JJ, Grandy JJ, Yu M, Boyaci E, Gómez-Ríos GA, Reyes-Garcés N, Bojko B, Heide HV, Pawliszyn J. Deposition of a Sorbent into a Recession on a Solid Support To Provide a New, Mechanically Robust Solid-Phase Microextraction Device. Anal Chem 2017; 89:8021-8026. [DOI: 10.1021/acs.analchem.7b01382] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Justen J. Poole
- Department
of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada
| | - Jonathan J. Grandy
- Department
of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada
| | - Miao Yu
- Department
of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada
| | - Ezel Boyaci
- Department
of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada
| | | | | | - Barbara Bojko
- Department
of Pharmacodynamics and Molecular Pharmacology, Faculty
of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń 85-089, Poland
| | | | - Janusz Pawliszyn
- Department
of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
5
|
Luppa PB, Bietenbeck A, Beaudoin C, Giannetti A. Clinically relevant analytical techniques, organizational concepts for application and future perspectives of point-of-care testing. Biotechnol Adv 2016; 34:139-60. [DOI: 10.1016/j.biotechadv.2016.01.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/15/2016] [Accepted: 01/17/2016] [Indexed: 01/19/2023]
|
6
|
Schaupp L, Feichtner F, Schaller-Ammann R, Mautner S, Ellmerer M, Pieber TR. Recirculation—a novel approach to quantify interstitial analytes in living tissue by combining a sensor with open-flow microperfusion. Anal Bioanal Chem 2013; 406:549-54. [DOI: 10.1007/s00216-013-7493-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 11/30/2022]
|
7
|
Grünert SC, Brichta CM, Krebs A, Clement HW, Rauh R, Fleischhaker C, Hennighausen K, Sass JO, Schwab KO. Diurnal variation of phenylalanine and tyrosine concentrations in adult patients with phenylketonuria: subcutaneous microdialysis is no adequate tool for the determination of amino acid concentrations. Nutr J 2013; 12:60. [PMID: 23672685 PMCID: PMC3660276 DOI: 10.1186/1475-2891-12-60] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metabolic control and dietary management of patients with phenylketonuria (PKU) are based on single blood samples obtained at variable intervals. Sampling conditions are often not well-specified and intermittent variation of phenylalanine concentrations between two measurements remains unknown. We determined phenylalanine and tyrosine concentrations in blood over 24 hours. Additionally, the impact of food intake and physical exercise on phenylalanine and tyrosine concentrations was examined. Subcutaneous microdialysis was evaluated as a tool for monitoring phenylalanine and tyrosine concentrations in PKU patients. METHODS Phenylalanine and tyrosine concentrations of eight adult patients with PKU were determined at 60 minute intervals in serum, dried blood and subcutaneous microdialysate and additionally every 30 minutes postprandially in subcutaneous microdialysate. During the study period of 24 hours individually tailored meals with defined phenylalanine and tyrosine contents were served at fixed times and 20 min bicycle-ergometry was performed. RESULTS Serum phenylalanine concentrations showed only minor variations while tyrosine concentrations varied significantly more over the 24-hour period. Food intake within the patients' individual diet had no consistent effect on the mean phenylalanine concentration but the tyrosine concentration increased up to 300% individually. Mean phenylalanine concentration remained stable after short-term bicycle-exercise whereas mean tyrosine concentration declined significantly. Phenylalanine and tyrosine concentrations in dried blood were significantly lower than serum concentrations. No close correlation has been found between serum and microdialysis fluid for phenylalanine and tyrosine concentrations. CONCLUSIONS Slight diurnal variation of phenylalanine concentrations in serum implicates that a single blood sample does reliably reflect the metabolic control in this group of adult patients. Phenylalanine concentrations determined by subcutaneous microdialysis do not correlate with the patients' phenylalanine concentrations in serum/blood.
Collapse
Affiliation(s)
- Sarah C Grünert
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Revuelto-Rey J, Egea-Guerrero JJ, Muñoz-Sánchez MA, Murillo-Cabezas F. [Cerebral microdialysis in the current clinical setting]. Med Intensiva 2011; 36:213-9. [PMID: 21999949 DOI: 10.1016/j.medin.2011.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/15/2011] [Accepted: 08/29/2011] [Indexed: 12/27/2022]
Abstract
Cerebral microdialysis, introduced in experimental studies 40 years ago, has been used clinically since 1992 for the neurochemical monitoring of patients in intensive care. The principles underlying this technique are closely related to brain metabolism. The study of the metabolites detected at brain interstitial tissue level, through the semipermeable membrane of the device, allows us to assess different physiological pathways in the brain, analyzing the changes that occur when they become less efficient in terms of energy, and also detecting waste products secondary to tissue damage. Despite its current limitations, this technique provides relevant information for research and the clinical management of critical neurological patients.
Collapse
Affiliation(s)
- J Revuelto-Rey
- Unidad de Gestión Clínica de Cuidados Críticos y Urgencias, Hospital Universitario Virgen del Rocío, Sevilla, España.
| | | | | | | |
Collapse
|