1
|
Lebas B, Paës G. Bioinspired Polymer Assemblies of Plant Cell Walls for Measuring Protein-Carbohydrate Interactions by FRAP. Methods Mol Biol 2023; 2657:151-162. [PMID: 37149529 DOI: 10.1007/978-1-0716-3151-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The interactions of proteins involved in plant cell wall hydrolysis, such as enzymes and CBMs, significantly determine their role and efficiency. In order to go beyond the characterization of interactions with simple ligands, bioinspired assemblies combined with the measurement of diffusion and interaction by FRAP offer a relevant alternative for highlighting the importance of different parameters related to the protein affinity and to the polymer type and organization in the assembly.
Collapse
Affiliation(s)
- Berangère Lebas
- Fractionation of AgroResources and Environment (FARE) laboratory, INRAE, Université de Reims Champagne-Ardenne, Reims, France
| | - Gabriel Paës
- Fractionation of AgroResources and Environment (FARE) laboratory, INRAE, Université de Reims Champagne-Ardenne, Reims, France.
| |
Collapse
|
2
|
Seven ES, Seven YB, Zhou Y, Poudel-Sharma S, Diaz-Rucco JJ, Kirbas Cilingir E, Mitchell GS, Van Dyken JD, Leblanc RM. Crossing the blood-brain barrier with carbon dots: uptake mechanism and in vivo cargo delivery. NANOSCALE ADVANCES 2021; 3:3942-3953. [PMID: 34263140 PMCID: PMC8243484 DOI: 10.1039/d1na00145k] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/30/2021] [Indexed: 06/10/2023]
Abstract
The blood-brain barrier (BBB) is a major obstacle for drug delivery to the central nervous system (CNS) such that most therapeutics lack efficacy against brain tumors or neurological disorders due to their inability to cross the BBB. Therefore, developing new drug delivery platforms to facilitate drug transport to the CNS and understanding their mechanism of transport are crucial for the efficacy of therapeutics. Here, we report (i) carbon dots prepared from glucose and conjugated to fluorescein (GluCD-F) cross the BBB in zebrafish and rats without the need of an additional targeting ligand and (ii) uptake mechanism of GluCDs is glucose transporter-dependent in budding yeast. Glucose transporter-negative strain of yeast showed undetectable GluCD accumulation unlike the glucose transporter-positive yeast, suggesting glucose-transporter-dependent GluCD uptake. We tested GluCDs' ability to cross the BBB using both zebrafish and rat models. Following the injection to the heart, wild-type zebrafish showed GluCD-F accumulation in the central canal consistent with the transport of GluCD-F across the BBB. In rats, following intravenous administration, GluCD-F was observed in the CNS. GluCD-F was localized in the gray matter (e.g. ventral horn, dorsal horn, and middle grey) of the cervical spinal cord consistent with neuronal accumulation. Therefore, neuron targeting GluCDs hold tremendous potential as a drug delivery platform in neurodegenerative disease, traumatic injury, and malignancies of the CNS.
Collapse
Affiliation(s)
- Elif S Seven
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Yasin B Seven
- Department of Physical Therapy, University of Florida 101 Newell Dr. Gainesville FL 32603 USA
- McKnight Brain Institute, University of Florida 1149 Newell Dr. Gainesville FL 32610 USA
| | - Yiqun Zhou
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Sijan Poudel-Sharma
- Department of Biology, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Juan J Diaz-Rucco
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Emel Kirbas Cilingir
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Gordon S Mitchell
- Department of Physical Therapy, University of Florida 101 Newell Dr. Gainesville FL 32603 USA
- McKnight Brain Institute, University of Florida 1149 Newell Dr. Gainesville FL 32610 USA
| | - J David Van Dyken
- Department of Biology, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| |
Collapse
|
3
|
Enzymes to unravel bioproducts architecture. Biotechnol Adv 2020; 41:107546. [PMID: 32275940 DOI: 10.1016/j.biotechadv.2020.107546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/20/2020] [Accepted: 04/03/2020] [Indexed: 11/20/2022]
Abstract
Enzymes are essential and ubiquitous biocatalysts involved in various metabolic pathways and used in many industrial processes. Here, we reframe enzymes not just as biocatalysts transforming bioproducts but also as sensitive probes for exploring the structure and composition of complex bioproducts, like meat tissue, dairy products and plant materials, in both food and non-food bioprocesses. This review details the global strategy and presents the most recent investigations to prepare and use enzymes as relevant probes, with a focus on glycoside-hydrolases involved in plant deconstruction and proteases and lipases involved in food digestion. First, to expand the enzyme repertoire to fit bioproduct complexity, novel enzymes are mined from biodiversity and can be artificially engineered. Enzymes are further characterized by exploring sequence/structure/dynamics/function relationships together with the environmental factors influencing enzyme interactions with their substrates. Then, the most advanced experimental and theoretical approaches developed for exploring bioproducts at various scales (from nanometer to millimeter) using active and inactive enzymes as probes are illustrated. Overall, combining multimodal and multiscale approaches brings a better understanding of native-form or transformed bioproduct architecture and composition, and paves the way to mainstream the use of enzymes as probes.
Collapse
|
4
|
Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJD, Cranston ED, Eichhorn SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J. Current characterization methods for cellulose nanomaterials. Chem Soc Rev 2018; 47:2609-2679. [PMID: 29658545 DOI: 10.1039/c6cs00895j] [Citation(s) in RCA: 412] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.
Collapse
Affiliation(s)
- E Johan Foster
- Department of Materials Science and Engineering, Virginia Tech, 445 Old Turner St, 203 Holden Hall, Blacksburg, 24061, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Terryn C, Paës G, Spriet C. FRET-SLiM on native autofluorescence: a fast and reliable method to study interactions between fluorescent probes and lignin in plant cell wall. PLANT METHODS 2018; 14:74. [PMID: 30154910 PMCID: PMC6109981 DOI: 10.1186/s13007-018-0342-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/17/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Lignocellulosic biomass is a complex network of polymers making the cell walls of plants. It represents a feedstock of sustainable resources to be converted into fuels, chemicals and materials. Because of its complex architecture, lignocellulose is a recalcitrant material that necessitates some pretreatments and several types of catalysts to be transformed efficiently. In particular, enzymes degrading lignocellulose can become inactivated due to their binding to lignin through non-specific interactions, leading to a loss in catalytic efficiency of industrial processes. Gaining more knowledge in the strength of interactions would allow optimizing enzymes and selecting appropriate pretreatments. RESULTS Measuring interactions directly in plant cell wall can theoretically be performed using confocal fluorescence techniques by evaluating fluorescence resonance energy transfer (FRET) between compatible fluorophores. In this study, autofluorescence of plant cell wall, mainly originating from lignin, was considered as a donor fluorophore while the acceptor was a common rhodamine-based fluorescent probe. To overcome complex plant cell wall fluorescence, which limits FRET analysis by standard techniques, we have developed an original approach, combining spectral and lifetime measurements. It consists in (1) dissecting autofluorescence signal in each spectral channel, (2) optimizing spectral channel choice for lifetime measurements and (3) achieving an unambiguous FRET signature with an autofluorescent donor fluorophore. Interactions between rhodamine-based probes of various sizes and untreated or pretreated wheat sample were evaluated, showing it was possible to discriminate interactions at the nano-scale, revealing some accessibility differences and the effect of pretreatment. CONCLUSIONS SLiM measurement allows precise estimation of the optimal spectral range for FRET measurement. SLiM response allows for the first time doubtless FRET measurements between lignin as a donor, and an acceptor fluorophore with high accuracy and sensitivity related to lifetime decrease studies. As demonstrated, it thus becomes possible to measure interactions of fluorescent probes directly inside plant cell wall samples. This approach can thus be applied to various fields such as lignocellulose deconstruction to optimize the action of enzymes or plant cell wall development to assay in situ the biosynthesis of lignin.
Collapse
Affiliation(s)
- Christine Terryn
- PICT Platform, University of Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51100 Reims, France
| | - Gabriel Paës
- Fractionation of AgroResources and Environment (FARE) Laboratory, INRA, University of Reims Champagne-Ardenne, 2 Esplanade Roland-Garros, 51100 Reims, France
| | - Corentin Spriet
- TISBio, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), CNRS, UMR 8576, Université de Lille, 59000 Lille, France
| |
Collapse
|
6
|
Paës G. Bioinspired Assemblies of Plant Cell Walls for Measuring Protein-Carbohydrate Interactions by FRAP. Methods Mol Biol 2017; 1588:169-179. [PMID: 28417368 DOI: 10.1007/978-1-4939-6899-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The interactions of proteins involved in plant cell wall hydrolysis, such as enzymes and CBMs, significantly determine their role and efficiency. In order to go beyond the characterization of interactions with simple ligands, bioinspired assemblies combined with the measurement of diffusion and interaction by FRAP offer a relevant alternative for highlighting the importance of different parameters related to the protein affinity and to the assembly.
Collapse
Affiliation(s)
- Gabriel Paës
- FARE laboratory, INRA, University of Reims Champagne-Ardenne, 2 esplanade Roland-Garros, 51100, Reims, France.
| |
Collapse
|
7
|
Cellulases: Classification, Methods of Determination and Industrial Applications. Appl Biochem Biotechnol 2016; 179:1346-80. [PMID: 27068832 DOI: 10.1007/s12010-016-2070-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 03/31/2016] [Indexed: 10/22/2022]
Abstract
Microbial cellulases have been receiving worldwide attention, as they have enormous potential to process the most abundant cellulosic biomass on this planet and transform it into sustainable biofuels and other value added products. The synergistic action of endoglucanases, exoglucanases, and β-glucosidases is required for the depolymerization of cellulose to fermentable sugars for transformation in to useful products using suitable microorganisms. The lack of a better understanding of the mechanisms of individual cellulases and their synergistic actions is the major hurdles yet to be overcome for large-scale commercial applications of cellulases. We have reviewed various microbial cellulases with a focus on their classification with mechanistic aspects of cellulase hydrolytic action, insights into novel approaches for determining cellulase activity, and potential industrial applications of cellulases.
Collapse
|
8
|
Analytical Methods for Lignocellulosic Biomass Structural Polysaccharides. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
9
|
Paës G. Fluorescent probes for exploring plant cell wall deconstruction: a review. Molecules 2014; 19:9380-402. [PMID: 24995923 PMCID: PMC6271034 DOI: 10.3390/molecules19079380] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 11/16/2022] Open
Abstract
Plant biomass is a potential resource of chemicals, new materials and biofuels that could reduce our dependency on fossil carbon, thus decreasing the greenhouse effect. However, due to its chemical and structural complexity, plant biomass is recalcitrant to green biological transformation by enzymes, preventing the establishment of integrated bio-refineries. In order to gain more knowledge in the architecture of plant cell wall to facilitate their deconstruction, many fluorescent probes bearing various fluorophores have been devised and used successfully to reveal the changes in structural motifs during plant biomass deconstruction, and the molecular interactions between enzymes and plant cell wall polymers. Fluorescent probes are thus relevant tools to explore plant cell wall deconstruction.
Collapse
Affiliation(s)
- Gabriel Paës
- INRA (French National Institute for Agricultural Research), UMR0614 Fractionation of AgroResources and Environment, 2 esplanade Roland-Garros, 51100 Reims, France.
| |
Collapse
|
10
|
Lupoi JS. Analytical Methods for Lignocellulosic Biomass Structural Polysaccharides. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_30-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Perera AS, Wang H, Shrestha TB, Troyer DL, Bossmann SH. Nanoscopic surfactant behavior of the porin MspA in aqueous media. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2013; 4:278-284. [PMID: 23766950 PMCID: PMC3678404 DOI: 10.3762/bjnano.4.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
The mycobacterial porin MspA is one of the most stable channel proteins known to date. MspA forms vesicles at low concentrations in aqueous buffers. Evidence from dynamic light scattering, transmission electron microscopy and zeta-potential measurements by electrophoretic light scattering indicate that MspA behaves like a nanoscale surfactant. The extreme thermostability of MspA allows these investigations to be carried out at temperatures as high as 343 K, at which most other proteins would quickly denature. The principles of vesicle formation of MspA as a function of temperature and the underlying thermodynamic factors are discussed here. The results obtained provide crucial evidence in support of the hypothesis that, during vesicle formation, nanoscopic surfactant molecules, such as MspA, deviate from the principles underlined in classical surface chemistry.
Collapse
Affiliation(s)
- Ayomi S Perera
- Kansas State University, Department of Chemistry, CBC Building 201, Manhattan, KS 66506, USA
| | - Hongwang Wang
- Kansas State University, Department of Chemistry, CBC Building 201, Manhattan, KS 66506, USA
| | - Tej B Shrestha
- Kansas State University, Department of Anatomy & Physiology, Coles 130, Manhattan, KS 66506, USA
| | - Deryl L Troyer
- Kansas State University, Department of Anatomy & Physiology, Coles 130, Manhattan, KS 66506, USA
| | - Stefan H Bossmann
- Kansas State University, Department of Chemistry, CBC Building 201, Manhattan, KS 66506, USA
| |
Collapse
|
12
|
Foston M, Ragauskas AJ. Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance. Ind Biotechnol (New Rochelle N Y) 2012. [DOI: 10.1089/ind.2012.0015] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marcus Foston
- BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA
| | - Arthur J. Ragauskas
- BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
13
|
Mohan T, Kargl R, Doliška A, Ehmann HMA, Ribitsch V, Stana-Kleinschek K. Enzymatic digestion of partially and fully regenerated cellulose model films from trimethylsilyl cellulose. Carbohydr Polym 2012; 93:191-8. [PMID: 23465919 DOI: 10.1016/j.carbpol.2012.02.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 02/08/2012] [Accepted: 02/17/2012] [Indexed: 11/24/2022]
Abstract
Partially and fully regenerated cellulose model films from trimethylsilyl cellulose (TMSC) were prepared by a time dependent regeneration approach. These thin films were characterized with contact angle measurements and attenuated total reflectance infrared spectroscopy (ATR-IR). In order to get further insights into the completeness of the regeneration we studied the interaction of cellulase enzymes from Trichoderma viride with the cellulose films using a quartz crystal microbalance with dissipation (QCM-D). To support the results from the QCM-D experiments capillary zone electrophoresis (CZE) and atomic force microscopy (AFM) were applied. The changes in mass and energy dissipation due to the interaction of the enzymes with the substrates were correlated with the surface wettability and elemental composition of the regenerated films. The highest interaction activity between the films and the enzyme, as well as the highest cellulose degradation, was observed on fully regenerated cellulose films, but some degradation also occurred on pure TMSC films. The enzymatic degradation rate correlated well with the rate of regeneration. It was demonstrated that CZE can be used to support QCM-D data via the detection of enzyme hydrolysis products in the eluates of the QCM-D cells. Glucose release peaked at the same time as the maximum mass loss was detected via QCM-D. It was shown that a combination of QCM-D and CZE together with enzymatic digestion is a reliable method to determine the conversion rate of TMSC to cellulose. In addition QCM-D and AFM revealed that cellulase is irreversibly bound to hydrophobic TMSC surfaces, while pure cellulose is digested almost completely in the course of hydrolysis.
Collapse
Affiliation(s)
- Tamilselvan Mohan
- Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | | | | | | | | | | |
Collapse
|
14
|
Wang L, Wang Y, Ragauskas AJ. Determination of cellulase colocalization on cellulose fiber with quantitative FRET measured by acceptor photobleaching and spectrally unmixing fluorescence microscopy. Analyst 2012; 137:1319-24. [PMID: 22311108 DOI: 10.1039/c2an15938d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The determination of cellulase distribution on the surface of cellulose fiber is an important parameter to understand when determining the interaction between cellulase and cellulose and/or the cooperation of different types of cellulases during the enzymatic hydrolysis of cellulose. In this communication, a strategy is presented to quantitatively determine the cellulase colocalization using the fluorescence resonance energy transfer (FRET) methodology, which is based on acceptor photobleaching and spectrally unmixing fluorescence microscopy. FRET monitoring of cellulase colocalization was achieved by labeling cellulases with an appropriate pair of FRET dyes and by adopting an appropriate FRET model. We describe here that the adapted acceptor photobleaching FRET method can be successfully used to quantify cellulase colocalization regarding their binding to a cellulose fiber at a resolution <10 nm. This developed quantitative FRET method is promising for further studying the interactions between cellulase and cellulose and between different types of cellulases.
Collapse
Affiliation(s)
- Liqun Wang
- BioEnergy Science Center, Institute of Paper Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | |
Collapse
|