1
|
Canuto GAB, Dörr F, Pinto E, Alves MJM, Farah JPS, Tavares MFM. Collection of optimizations for untargeted metabolomics analysis of Leishmania promastigotes using gas chromatography-mass spectrometry. Talanta 2025; 287:127603. [PMID: 39862521 DOI: 10.1016/j.talanta.2025.127603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/10/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
There is no consensus in the literature regarding the ideal protocol for obtaining and preparing cell samples for untargeted metabolomics. Nevertheless, the procedures must be carefully evaluated for proper and reliable results for each organism under study. This work proposes a novel protocol for determining intracellular metabolites in Leishmania promastigotes and is fully optimized for application in conjunction with gas chromatography-mass spectrometry platforms. Sample harvesting consisted of stopping metabolic activity by placing the parasite cells in a dry ice bath and removing extracellular interferants with two wash steps using cold PBS. The extraction is carried out with 1.0x108 promastigotes per sample using a mixture of cold 1:1 methanol:water and ultrasound mixing (1 min at 30 % power). Dried extracts were derivatized by oximation (at room temperature for 90 min), followed by silylation (at 40 °C for 30 min). The method developed here can cover a wide range of the Leishmania parasite metabolome, including amino acids and derivatives, organic and fatty acids, carbohydrates and derivatives, and steroids.
Collapse
Affiliation(s)
- Gisele André Baptista Canuto
- Center for Multiplatform Metabolomics Studies (CEMM) at the Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil.
| | - Fabiane Dörr
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Ernani Pinto
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil
| | - Maria Júlia Manso Alves
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - João Pedro Simon Farah
- Center for Multiplatform Metabolomics Studies (CEMM) at the Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Marina Franco Maggi Tavares
- Center for Multiplatform Metabolomics Studies (CEMM) at the Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
2
|
Ghosh S, Chigicherla KV, Dasgupta S, Goto Y, Mukherjee B. Oxidative stress-driven enhanced iron production and scavenging through Ferroportin reorientation worsens anemia in antimony-resistant Leishmania donovani infection. PLoS Pathog 2025; 21:e1012858. [PMID: 39888953 PMCID: PMC11785346 DOI: 10.1371/journal.ppat.1012858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/23/2024] [Indexed: 02/02/2025] Open
Abstract
Despite the withdrawal of pentavalent-antimonials in treating Visceral leishmaniasis from India, recent clinical isolates of Leishmania donovani (LD) exhibit unresponsiveness towards pentavalent-antimony (LD-R). This antimony-unresponsiveness points towards a genetic adaptation that underpins LD-R's evolutionary persistence and dominance over sensitive counterparts (LD-S). This study highlights how LD evolutionarily tackled antimony exposure and gained increased potential of scavenging host-iron within its parasitophorous vacuoles (PV) to support its aggressive proliferation. Even though anti-leishmanial activity of pentavalent antimonials relies on triggering oxidative outburst, LD-R exhibits a surprising strategy of promoting reactive oxygen species (ROS) generation in infected macrophages. An inherent metabolic shift from glycolysis to Pentose Phosphate shunt allows LD-R to withstand elevated ROS by sustaining heightened levels of NADPH. Elevated ROS levels on the other hand trigger excess iron production, and LD-R capitalizes on this surplus iron by selectively reshuffling macrophage-surface iron exporter, Ferroportin, around its PV thereby gaining a survival edge as a heme-auxotroph. Higher iron utilization by LD-R leads to subsequent iron insufficiency, compensated by increased erythrophagocytosis through the breakdown of SIRPα-CD47 surveillance, orchestrated by a complex interplay of two proteases, Furin and ADAM10. Understanding these mechanisms is crucial for managing LD-R-infections and their associated complications like severe anemia, and may also provide valuable mechanistic insights into understanding drug unresponsiveness developed in other intracellular pathogens that rely on host iron.
Collapse
Affiliation(s)
- Souradeepa Ghosh
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | | | - Shirin Dasgupta
- Dr B C Roy Multispeciality Medical Research Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| |
Collapse
|
3
|
Metabolite Biomarkers of Leishmania Antimony Resistance. Cells 2021; 10:cells10051063. [PMID: 33946139 PMCID: PMC8146733 DOI: 10.3390/cells10051063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Leishmania parasites cause leishmaniasis, one of the most epidemiologically important neglected tropical diseases. Leishmania exhibits a high ability of developing drug resistance, and drug resistance is one of the main threats to public health, as it is associated with increased incidence, mortality, and healthcare costs. The antimonial drug is the main historically implemented drug for leishmaniasis. Nevertheless, even though antimony resistance has been widely documented, the mechanisms involved are not completely understood. In this study, we aimed to identify potential metabolite biomarkers of antimony resistance that could improve leishmaniasis treatment. Here, using L. tropica promastigotes as the biological model, we showed that the level of response to antimony can be potentially predicted using 1H-NMR-based metabolomic profiling. Antimony-resistant parasites exhibited differences in metabolite composition at the intracellular and extracellular levels, suggesting that a metabolic remodeling is required to combat the drug. Simple and time-saving exometabolomic analysis can be efficiently used for the differentiation of sensitive and resistant parasites. Our findings suggest that changes in metabolite composition are associated with an optimized response to the osmotic/oxidative stress and a rearrangement of carbon-energy metabolism. The activation of energy metabolism can be linked to the high energy requirement during the antioxidant stress response. We also found that metabolites such as proline and lactate change linearly with the level of resistance to antimony, showing a close relationship with the parasite's efficiency of drug resistance. A list of potential metabolite biomarkers is described and discussed.
Collapse
|
4
|
Haindrich AC, Ernst V, Naguleswaran A, Oliveres QF, Roditi I, Rentsch D. Nutrient availability regulates proline/alanine transporters in Trypanosoma brucei. J Biol Chem 2021; 296:100566. [PMID: 33745971 PMCID: PMC8094907 DOI: 10.1016/j.jbc.2021.100566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022] Open
Abstract
Trypanosoma brucei is a species of unicellular parasite that can cause severe diseases in livestock and humans, including African trypanosomiasis and Chagas disease. Adaptation to diverse environments and changes in nutritional conditions is essential for T. brucei to establish an infection when changing hosts or during invasion of different host tissues. One such adaptation is the ability of T. brucei to rapidly switch its energy metabolism from glucose metabolism in the mammalian blood to proline catabolism in the insect stages and vice versa. However, the mechanisms that support the parasite's response to nutrient availability remain unclear. Using RNAseq and qRT-PCR, we investigated the response of T. brucei to amino acid or glucose starvation and found increased mRNA levels of several amino acid transporters, including all genes of the amino acid transporter AAT7-B subgroup. Functional characterization revealed that AAT7-B members are plasma membrane-localized in T. brucei and when expressed in Saccharomyces cerevisiae supported the uptake of proline, alanine, and cysteine, while other amino acids were poorly recognized. All AAT7-B members showed a preference for proline, which is transported with high or low affinity. RNAi-mediated AAT7-B downregulation resulted in a reduction of intracellular proline concentrations and growth arrest under low proline availability in cultured procyclic form parasites. Taken together, these results suggest a role of AAT7-B transporters in the response of T. brucei to proline starvation and proline catabolism.
Collapse
Affiliation(s)
| | - Viona Ernst
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | | | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Pesko BK, Weidt S, McLaughlin M, Wescott DJ, Torrance H, Burgess K, Burchmore R. Postmortomics: The Potential of Untargeted Metabolomics to Highlight Markers for Time Since Death. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:649-659. [PMID: 33095683 PMCID: PMC7687049 DOI: 10.1089/omi.2020.0084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The success of forensic investigations involving fatalities very often depends on the establishment of the correct timeline of events. Currently used methods for estimating the postmortem interval (PMI) are mostly dependent on the professional and tacit experience of the investigator, and often with poor reliability in the absence of robust biological markers. The aim of this study was to investigate the potential of metabolomic approaches to highlight molecular markers for PMI. Rat and human muscle tissues, collected at various times postmortem, were analyzed using an untargeted metabolomics approach. Levels of certain metabolites (skatole, xanthine, n-acetylneuraminate, 1-methylnicotinamide, choline phosphate, and uracil) as well as most proteinogenic amino acids increased steadily postmortem. Threonine, tyrosine, and lysine show the most predictable evolution over the postmortem period, and may thus have potential for possible PMI markers in the future. This study demonstrates how a biomarker discovery approach can be extended to forensic investigations using untargeted metabolomics.
Collapse
Affiliation(s)
- Bogumila K Pesko
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Stefan Weidt
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Mark McLaughlin
- Veterinary Biosciences, School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Daniel J Wescott
- Department of Anthropology, Forensic Anthropology Center at Texas State (FACTS), Texas State University, San Marcos, Texas, USA
| | - Hazel Torrance
- Forensic Medicine and Science Department, University of Glasgow, Glasgow, United Kingdom
| | - Karl Burgess
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Richard Burchmore
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
6
|
Van den Kerkhof M, Sterckx YGJ, Leprohon P, Maes L, Caljon G. Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms 2020; 8:E950. [PMID: 32599761 PMCID: PMC7356981 DOI: 10.3390/microorganisms8060950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| |
Collapse
|
7
|
Pountain AW, Barrett MP. Untargeted metabolomics to understand the basis of phenotypic differences in amphotericin B-resistant Leishmania parasites. Wellcome Open Res 2020; 4:176. [PMID: 32133420 PMCID: PMC7041363 DOI: 10.12688/wellcomeopenres.15452.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Protozoan
Leishmania parasites are responsible for a range of clinical infections that represent a substantial challenge for global health. Amphotericin B (AmB) is increasingly used to treat
Leishmania infection, so understanding the potential for resistance to this drug is an important priority. Previously we described four independently-derived AmB-resistant
L. mexicana lines that exhibited resistance-associated genetic lesions resulting in altered sterol content. However, substantial phenotypic variation between these lines, including differences in virulence attributes, were not fully explained by these changes. Methods: To identify alterations in cellular metabolism potentially related to phenotypic differences between wild-type and AmB-resistant lines, we extracted metabolites and performed untargeted metabolomics by liquid chromatography-mass spectrometry. Results: We observed substantial differences in metabolite abundance between lines, arising in an apparently stochastic manner. Concerted remodeling of central carbon metabolism was not observed; however, in three lines, decreased abundance of several oligohexoses was observed. Given that the oligomannose mannogen is an important virulence factor in
Leishmania, this could relate to loss of virulence in these lines. Increased abundance of the reduced forms of the oxidative stress-protective thiols trypanothione and glutathione was also observed in multiple lines. Conclusions: This dataset will provide a useful resource for understanding the molecular basis of drug resistance in
Leishmania, and suggests a role for metabolic changes separate from the primary mechanism of drug resistance in determining the phenotypic profile of parasite lines subjected to experimental selection of resistance.
Collapse
Affiliation(s)
- Andrew W Pountain
- Wellcome Center for Integrative Parasitology, University of Glasgow, Glasgow, G12 8TA, UK.,Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Michael P Barrett
- Wellcome Center for Integrative Parasitology, University of Glasgow, Glasgow, G12 8TA, UK.,Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| |
Collapse
|
8
|
Patassini S, Begley P, Xu J, Church SJ, Kureishy N, Reid SJ, Waldvogel HJ, Faull RLM, Snell RG, Unwin RD, Cooper GJS. Cerebral Vitamin B5 (D-Pantothenic Acid) Deficiency as a Potential Cause of Metabolic Perturbation and Neurodegeneration in Huntington's Disease. Metabolites 2019; 9:E113. [PMID: 31212603 PMCID: PMC6630497 DOI: 10.3390/metabo9060113] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the HTT gene. HD usually manifests in mid-life with loss of GABAergic projection neurons from the striatum accompanied by progressive atrophy of the putamen followed by other brain regions, but linkages between the genetics and neurodegeneration are not understood. We measured metabolic perturbations in HD-human brain in a case-control study, identifying pervasive lowering of vitamin B5, the obligatory precursor of coenzyme A (CoA) that is essential for normal intermediary metabolism. Cerebral pantothenate deficiency is a newly-identified metabolic defect in human HD that could potentially: (i) impair neuronal CoA biosynthesis; (ii) stimulate polyol-pathway activity; (iii) impair glycolysis and tricarboxylic acid cycle activity; and (iv) modify brain-urea metabolism. Pantothenate deficiency could lead to neurodegeneration/dementia in HD that might be preventable by treatment with vitamin B5.
Collapse
Affiliation(s)
- Stefano Patassini
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M19 9NT, UK.
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1142, New Zealand.
- Owlstone Medical, Cambridge Science Park, Cambridge CB4 0GJ, UK.
| | - Paul Begley
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M19 9NT, UK.
| | - Jingshu Xu
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M19 9NT, UK.
- Manchester Cancer Research Centre Building, The University of Manchester, Manchester M20 4GJ, UK.
| | - Stephanie J Church
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M19 9NT, UK.
| | - Nina Kureishy
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M19 9NT, UK.
| | - Suzanne J Reid
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1142, New Zealand.
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Richard L M Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Russell G Snell
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1142, New Zealand.
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Richard D Unwin
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M19 9NT, UK.
| | - Garth J S Cooper
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M19 9NT, UK.
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1142, New Zealand.
- Manchester Cancer Research Centre Building, The University of Manchester, Manchester M20 4GJ, UK.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
9
|
|
10
|
Low CF, Rozaini MZH, Musa N, Syarul Nataqain B. Current knowledge of metabolomic approach in infectious fish disease studies. JOURNAL OF FISH DISEASES 2017; 40:1267-1277. [PMID: 28252175 DOI: 10.1111/jfd.12610] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 05/20/2023]
Abstract
The approaches of transcriptomic and proteomic have been widely used to study host-pathogen interactions in fish diseases, and this is comparable to the recently emerging application of metabolomic in elucidating disease-resistant mechanisms in fish that gives new insight into potential therapeutic strategies to improve fish health. Metabolomic is defined as the large-scale study of all metabolites within an organism and represents the frontline in the 'omics' approaches, providing direct information on the metabolic responses and perturbations in metabolic pathways. In this review, the current research in infectious fish diseases using metabolomic approach will be summarized. The metabolomic approach in economically important fish infected with viruses, bacteria and nematodes will also be discussed. The potential of the metabolomic approach for management of these infectious diseases as well as the challenges and the limitations of metabolomic in fish disease studies will be explored. Current review highlights the impacts of metabolomic studies in infectious fish diseases, which proposed the potential of new therapeutic strategies to enhance disease resistance in fish.
Collapse
Affiliation(s)
- C-F Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - M Z H Rozaini
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - N Musa
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - B Syarul Nataqain
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| |
Collapse
|
11
|
Macedo JP, Currier RB, Wirdnam C, Horn D, Alsford S, Rentsch D. Ornithine uptake and the modulation of drug sensitivity in Trypanosoma brucei. FASEB J 2017; 31:4649-4660. [PMID: 28679527 PMCID: PMC5602898 DOI: 10.1096/fj.201700311r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/27/2017] [Indexed: 12/02/2022]
Abstract
Trypanosoma brucei, protozoan parasites that cause human African trypanosomiasis (HAT), depend on ornithine uptake and metabolism by ornithine decarboxylase (ODC) for survival. Indeed, ODC is the target of the WHO “essential medicine” eflornithine, which is antagonistic to another anti-HAT drug, suramin. Thus, ornithine uptake has important consequences in T. brucei, but the transporters have not been identified. We describe these amino acid transporters (AATs). In a heterologous expression system, TbAAT10-1 is selective for ornithine, whereas TbAAT2-4 transports both ornithine and histidine. These AATs are also necessary to maintain intracellular ornithine and polyamine levels in T. brucei, thereby decreasing sensitivity to eflornithine and increasing sensitivity to suramin. Consistent with competition for histidine, high extracellular concentrations of this amino acid phenocopied a TbAAT2-4 genetic defect. Our findings established TbAAT10-1 and TbAAT2-4 as the parasite ornithine transporters, one of which can be modulated by histidine, but both of which affect sensitivity to important anti-HAT drugs.—Macedo, J. P., Currier, R. B., Wirdnam, C., Horn, D., Alsford, S., Rentsch, D. Ornithine uptake and the modulation of drug sensitivity in Trypanosoma brucei.
Collapse
Affiliation(s)
- Juan P Macedo
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Rachel B Currier
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Corina Wirdnam
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - David Horn
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sam Alsford
- London School of Hygiene and Tropical Medicine, London, United Kingdom;
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland;
| |
Collapse
|
12
|
Untargeted metabolomics analysis reveals key pathways responsible for the synergistic killing of colistin and doripenem combination against Acinetobacter baumannii. Sci Rep 2017; 7:45527. [PMID: 28358014 PMCID: PMC5371981 DOI: 10.1038/srep45527] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Combination therapy is deployed for the treatment of multidrug-resistant Acinetobacter baumannii, as it can rapidly develop resistance to current antibiotics. This is the first study to investigate the synergistic effect of colistin/doripenem combination on the metabolome of A. baumannii. The metabolite levels were measured using LC-MS following treatment with colistin (2 mg/L) or doripenem (25 mg/L) alone, and their combination at 15 min, 1 hr and 4 hr (n = 4). Colistin caused early (15 min and 1 hr) disruption of the bacterial outer membrane and cell wall, as demonstrated by perturbation of glycerophospholipids and fatty acids. Concentrations of peptidoglycan biosynthesis metabolites decreased at 4 hr by doripenem alone, reflecting its mechanism of action. The combination induced significant changes to more key metabolic pathways relative to either monotherapy. Down-regulation of cell wall biosynthesis (via D-sedoheptulose 7-phosphate) and nucleotide metabolism (via D-ribose 5-phosphate) was associated with perturbations in the pentose phosphate pathway induced initially by colistin (15 min and 1 hr) and later by doripenem (4 hr). We discovered that the combination synergistically killed A. baumannii via time-dependent inhibition of different key metabolic pathways. Our study highlights the significant potential of systems pharmacology in elucidating the mechanism of synergy and optimizing antibiotic pharmacokinetics/pharmacodynamics.
Collapse
|
13
|
Akram MI, Vincent IM, Siddiqui AJ, Musharraf SG. Polymeric hydrophilic interaction liquid chromatography coupled with Orbitrap mass spectrometry and chemometric analysis for untargeted metabolite profiling of natural rice variants. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Tang DQ, Zou L, Yin XX, Ong CN. HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS. MASS SPECTROMETRY REVIEWS 2016; 35:574-600. [PMID: 25284160 DOI: 10.1002/mas.21445] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/28/2014] [Indexed: 05/14/2023]
Abstract
Hydrophilic interaction chromatography (HILIC) is an emerging separation mode of liquid chromatography (LC). Using highly hydrophilic stationary phases capable of retaining polar/ionic metabolites, and accompany with high organic content mobile phase that offer readily compatibility with mass spectrometry (MS) has made HILIC an attractive complementary tool to the widely used reverse-phase (RP) chromatographic separations in metabolomic studies. The combination of HILIC and RPLC coupled with an MS detector expands the number of detected analytes and provides more comprehensive metabolite coverage than use of only RP chromatography. This review describes the recent applications of HILIC-MS/MS in metabolomic studies, ranging from amino acids, lipids, nucleotides, organic acids, pharmaceuticals, and metabolites of specific nature. The biological systems investigated include microbials, cultured cell line, plants, herbal medicine, urine, and serum as well as tissues from animals and humans. Owing to its unique capability to measure more-polar biomolecules, the HILIC separation technique would no doubt enhance the comprehensiveness of metabolite detection, and add significant value for metabolomic investigations. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:574-600, 2016.
Collapse
Affiliation(s)
- Dao-Quan Tang
- Department of Pharmaceutical Analysis, Xuzhou Medical College, Xuzhou, 221044, China
- Jiangsu Key Lab for the study of New Drug and Clinical Pharmacy, Xuzhou Medical College, Yunlong, China
- NUS Environmental Research Inst., National University of Singapore, 5 A Engineering Srive 1, Singapore, 117411, Singapore
| | - Ll Zou
- Saw Swee Hock School of Public Health, National University of Singapore, 16 Medical Drive, Singapore, 117597, Singapore
| | - Xiao-Xing Yin
- Jiangsu Key Lab for the study of New Drug and Clinical Pharmacy, Xuzhou Medical College, Yunlong, China
| | - Choon Nam Ong
- NUS Environmental Research Inst., National University of Singapore, 5 A Engineering Srive 1, Singapore, 117411, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, 16 Medical Drive, Singapore, 117597, Singapore
| |
Collapse
|
15
|
Stipetic LH, Dalby MJ, Davies RL, Morton FR, Ramage G, Burgess KEV. A novel metabolomic approach used for the comparison of Staphylococcus aureus planktonic cells and biofilm samples. Metabolomics 2016; 12:75. [PMID: 27013931 PMCID: PMC4783440 DOI: 10.1007/s11306-016-1002-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/16/2016] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Bacterial cell characteristics change significantly during differentiation between planktonic and biofilm states. While established methods exist to detect and identify transcriptional and proteomic changes, metabolic fluctuations that distinguish these developmental stages have been less amenable to investigation. OBJECTIVES The objectives of the study were to develop a robust reproducible sample preparation methodology for high throughput biofilm analysis and to determine differences between Staphylococcus aureus in planktonic and biofilm states. METHODS The method uses bead beating in a chloroform/methanol/water extraction solvent to both disrupt cells and quench metabolism. Verification of the method was performed using liquid-chromatography-mass spectrometry. Raw mass-spectrometry data was analysed using an in-house bioinformatics pipe-line incorporating XCMS, MzMatch and in-house R-scripts, with identifications matched to internal standards and metabolite data-base entries. RESULTS We have demonstrated a novel mechanical bead beating method that has been optimised for the extraction of the metabolome from cells of a clinical Staphylococcus aureus strain existing in a planktonic or biofilm state. This high-throughput method is fast and reproducible, allowing for direct comparison between different bacterial growth states. Significant changes in arginine biosynthesis were identified between the two cell populations. CONCLUSIONS The method described herein represents a valuable tool in studying microbial biochemistry at a molecular level. While the methodology is generally applicable to the lysis and extraction of metabolites from Gram positive bacteria, it is particularly applicable to biofilms. Bacteria that exist as a biofilm are shown to be highly distinct metabolically from their 'free living' counterparts, thus highlighting the need to study microbes in different growth states. Metabolomics can successfully distinguish between a planktonic and biofilm growth state. Importantly, this study design, incorporating metabolomics, could be optimised for studying the effects of antimicrobials and drug modes of action, potentially providing explanations and mechanisms of antibiotic resistance and to help devise new antimicrobials.
Collapse
Affiliation(s)
- Laurence H. Stipetic
- />Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
- />Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, The University of Glasgow, Garscube Estate, Bearsden, Scotland G61 1QH UK
| | - Matthew J. Dalby
- />Institute of Molecular Cell and Systems Biology, The University of Glasgow, Glasgow, UK
| | - Robert L. Davies
- />Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
| | - Fraser R. Morton
- />Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, The University of Glasgow, Garscube Estate, Bearsden, Scotland G61 1QH UK
| | - Gordon Ramage
- />Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
| | - Karl E. V. Burgess
- />Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
- />Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, The University of Glasgow, Garscube Estate, Bearsden, Scotland G61 1QH UK
| |
Collapse
|
16
|
Westrop GD, Williams RAM, Wang L, Zhang T, Watson DG, Silva AM, Coombs GH. Metabolomic Analyses of Leishmania Reveal Multiple Species Differences and Large Differences in Amino Acid Metabolism. PLoS One 2015; 10:e0136891. [PMID: 26368322 PMCID: PMC4569581 DOI: 10.1371/journal.pone.0136891] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/09/2015] [Indexed: 01/09/2023] Open
Abstract
Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts.
Collapse
Affiliation(s)
- Gareth D. Westrop
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Roderick A. M. Williams
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, United Kingdom
| | - Lijie Wang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Ana Marta Silva
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Graham H. Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Canuto GAB, da Cruz PLR, Faccio AT, Klassen A, Tavares MFM. Neglected diseases prioritized in Brazil under the perspective of metabolomics: A review. Electrophoresis 2015; 36:2336-2347. [PMID: 26095472 DOI: 10.1002/elps.201500102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022]
Abstract
This review article compiles in a critical manner literature publications regarding seven neglected diseases (ND) prioritized in Brazil (Chagas disease, dengue, leishmaniasis, leprosy, malaria, schistosomiasis, and tuberculosis) under the perspective of metabolomics. Both strategies, targeted and untargeted metabolomics, were considered in the compilation. The majority of studies focused on biomarker discovery for diagnostic purposes, and on the search of novel or alternative therapies against the ND under consideration, although temporal progression of the infection at metabolic level was also addressed. Tuberculosis, followed by schistosomiasis, malaria and leishmaniasis are the diseases that received larger attention in terms of number of publications. Dengue and leprosy were the least studied and Chagas disease received intermediate attention. NMR and HPLC-MS technologies continue to predominate among the analytical platforms of choice in the metabolomic studies of ND. A plethora of metabolites were identified in the compiled studies, with expressive predominancy of amino acids, organic acids, carbohydrates, nucleosides, lipids, fatty acids, and derivatives.
Collapse
Affiliation(s)
- Gisele A B Canuto
- Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Pedro L R da Cruz
- Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Andrea T Faccio
- Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Aline Klassen
- Federal University of Sao Paulo, Diadema, SP, Brazil
| | | |
Collapse
|
18
|
The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei. Antimicrob Agents Chemother 2015. [PMID: 26195527 DOI: 10.1128/aac.00879-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca(2+), and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei.
Collapse
|
19
|
de Macêdo JP, Schumann Burkard G, Niemann M, Barrett MP, Vial H, Mäser P, Roditi I, Schneider A, Bütikofer P. An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei. PLoS Pathog 2015; 11:e1004875. [PMID: 25946070 PMCID: PMC4422618 DOI: 10.1371/journal.ppat.1004875] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 04/13/2015] [Indexed: 01/27/2023] Open
Abstract
Elucidating the mechanism of action of trypanocidal compounds is an important step in the development of more efficient drugs against Trypanosoma brucei. In a screening approach using an RNAi library in T. brucei bloodstream forms, we identified a member of the mitochondrial carrier family, TbMCP14, as a prime candidate mediating the action of a group of anti-parasitic choline analogs. Depletion of TbMCP14 by inducible RNAi in both bloodstream and procyclic forms increased resistance of parasites towards the compounds by 7-fold and 3-fold, respectively, compared to uninduced cells. In addition, down-regulation of TbMCP14 protected bloodstream form mitochondria from a drug-induced decrease in mitochondrial membrane potential. Conversely, over-expression of the carrier in procyclic forms increased parasite susceptibility more than 13-fold. Metabolomic analyses of parasites over-expressing TbMCP14 showed increased levels of the proline metabolite, pyrroline-5-carboxylate, suggesting a possible involvement of TbMCP14 in energy production. The generation of TbMCP14 knock-out parasites showed that the carrier is not essential for survival of T. brucei bloodstream forms, but reduced parasite proliferation under standard culture conditions. In contrast, depletion of TbMCP14 in procyclic forms resulted in growth arrest, followed by parasite death. The time point at which parasite proliferation stopped was dependent on the major energy source, i.e. glucose versus proline, in the culture medium. Together with our findings that proline-dependent ATP production in crude mitochondria from TbMCP14-depleted trypanosomes was reduced compared to control mitochondria, the study demonstrates that TbMCP14 is involved in energy production in T. brucei. Since TbMCP14 belongs to a trypanosomatid-specific clade of mitochondrial carrier family proteins showing very poor similarity to mitochondrial carriers of mammals, it may represent an interesting target for drug action or targeting. Human and animal trypanosomiases caused by Trypanosoma brucei parasites represent major burdens to human welfare and agricultural development in rural sub-Saharan Africa. Although the numbers of infected humans have decreased continuously during the last decades, emerging resistance and adverse side effects against commonly used drugs require an urgent need for the identification of novel drug targets and the development of new drugs. Using an unbiased genome-wide screen to search for genes involved in the mode of action of trypanocidal compounds, we identified a member of the mitochondrial carrier family, TbMCP14, as prime candidate to mediate the action of a group of anti-parasitic choline analogs against T. brucei. Ablation of TbMCP14 expression by RNA interference or gene deletion decreases the susceptibility of parasites towards the compounds while over-expression of the carrier shows the opposite effect. In addition, down-regulation of TbMCP14 protects mitochondria from drug-induced decrease in mitochondrial membrane potential and reduces proline-dependent ATP production. Together, the results demonstrate that TbMCP14 is involved in energy production in T. brucei, possibly by acting as a mitochondrial proline carrier, and reveal TbMCP14 as candidate protein for drug action or targeting.
Collapse
Affiliation(s)
- Juan P de Macêdo
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Michael P Barrett
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Henri Vial
- Dynamique Moléculaire des Interactions Membranaires, CNRS UMR 5235, Université Montpellier II, Montpellier, France
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Creek DJ, Mazet M, Achcar F, Anderson J, Kim DH, Kamour R, Morand P, Millerioux Y, Biran M, Kerkhoven EJ, Chokkathukalam A, Weidt SK, Burgess KEV, Breitling R, Watson DG, Bringaud F, Barrett MP. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose. PLoS Pathog 2015; 11:e1004689. [PMID: 25775470 PMCID: PMC4361558 DOI: 10.1371/journal.ppat.1004689] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/19/2015] [Indexed: 01/21/2023] Open
Abstract
Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate. In this work we have followed the distribution of carbon derived from glucose in bloodstream form trypanosomes, the causative agent of African trypanosomiasis, revealing it to enter a diverse range of metabolites. The work involved using 13C-labelled glucose and following the fate of the labelled carbon with an LC-MS based metabolomics platform. Beyond glycolysis and the oxidative branch of the pentose phosphate pathway the label entered lipid biosynthesis both through glycerol 3-phosphate and also acetate. Glucose derived carbon also entered nucleotide synthesis through ribose and pyrimidine synthesis through oxaloacetate-derived aspartate. Appreciable quantities of the carboxylic acids succinate and malate were identified, although labelling patterns indicate they are not TCA cycle derived. Amino sugars and sugar nucleotides were also labelled as was inositol used in protein modification but not in inositol phospholipid headgroup production. We confirm active and essential oxaloacetate production in bloodstream form trypanosomes and show that phosphoenolpyruvate carboxykinase is essential to these parasites using RNA interference. The amount of glucose entering these metabolites is minor compared to the quantity that enters pyruvate excreted from the cell, but the observation that enzymes contributing to the metabolism of glucose beyond glycolysis can be essential offers potential new targets for chemotherapy against trypanosomiasis.
Collapse
Affiliation(s)
- Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria, Australia
| | - Muriel Mazet
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Fiona Achcar
- Wellcome Trust Centre of Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jana Anderson
- Department of Public Health, Institute of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Ruwida Kamour
- Department of Medicinal and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Pauline Morand
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Yoann Millerioux
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Eduard J. Kerkhoven
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Achuthanunni Chokkathukalam
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stefan K. Weidt
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Karl E. V. Burgess
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Michael P. Barrett
- Wellcome Trust Centre of Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Hai Y, Kerkhoven E, Barrett MP, Christianson DW. Crystal structure of an arginase-like protein from Trypanosoma brucei that evolved without a binuclear manganese cluster. Biochemistry 2015; 54:458-71. [PMID: 25536859 PMCID: PMC4303290 DOI: 10.1021/bi501366a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/09/2014] [Indexed: 11/28/2022]
Abstract
The X-ray crystal structure of an arginase-like protein from the parasitic protozoan Trypanosoma brucei, designated TbARG, is reported at 1.80 and 2.38 Å resolution in its reduced and oxidized forms, respectively. The oxidized form of TbARG is a disulfide-linked hexamer that retains the overall architecture of a dimer of trimers in the reduced form. Intriguingly, TbARG does not contain metal ions in its putative active site, and amino acid sequence comparisons indicate that all but one of the residues required for coordination to the catalytically obligatory binuclear manganese cluster in other arginases are substituted here with residues incapable of metal ion coordination. Therefore, the structure of TbARG is the first of a member of the arginase/deacetylase superfamily that is not a metalloprotein. Although we show that metal binding activity is easily reconstituted in TbARG by site-directed mutagenesis and confirmed in X-ray crystal structures, it is curious that this protein and its parasitic orthologues evolved away from metal binding function. Knockout of the TbARG gene from the genome demonstrated that its function is not essential to cultured bloodstream-form T. brucei, and metabolomics analysis confirmed that the enzyme has no role in the conversion of l-arginine to l-ornithine in these cells. While the molecular function of TbARG remains enigmatic, the fact that the T. brucei genome encodes only this protein and not a functional arginase indicates that the parasite must import l-ornithine from its host to provide a source of substrate for ornithine decarboxylase in the polyamine biosynthetic pathway, an active target for the development of antiparasitic drugs.
Collapse
Affiliation(s)
- Yang Hai
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Eduard
J. Kerkhoven
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Michael P. Barrett
- Wellcome
Trust Centre of Molecular Parasitology and Glasgow Polyomics, Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - David W. Christianson
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
22
|
Kim DH, Achcar F, Breitling R, Burgess KE, Barrett MP. LC-MS-based absolute metabolite quantification: application to metabolic flux measurement in trypanosomes. Metabolomics 2015; 11:1721-1732. [PMID: 26491423 PMCID: PMC4605981 DOI: 10.1007/s11306-015-0827-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/25/2015] [Indexed: 01/15/2023]
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the protozoan parasite, Trypanosoma brucei. In the mammalian bloodstream, the trypanosome's metabolism differs significantly from that of its host. For example, the parasite relies exclusively on glycolysis for energy source. Recently, computational and mathematical models of trypanosome metabolism have been generated to assist in understanding the parasite metabolism with the aim of facilitating drug development. Optimisation of these models requires quantitative information, including metabolite concentrations and/or metabolic fluxes that have been hitherto unavailable on a large scale. Here, we have implemented an LC-MS-based method that allows large scale quantification of metabolite levels by using U-13C-labelled E.coli extracts as internal standards. Known amounts of labelled E. coli extract were added into the parasite samples, as well as calibration standards, and used to obtain calibration curves enabling us to convert intensities into concentrations. This method allowed us to reliably quantify the changes of 43 intracellular metabolites and 32 extracellular metabolites in the medium over time. Based on the absolute quantification, we were able to compute consumption and production fluxes. These quantitative data can now be used to optimise computational models of parasite metabolism.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA UK
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Fiona Achcar
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA UK
| | - Rainer Breitling
- Manchester Centre of Synthetic Biology for Fine and Speciality Chemicals, Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, M1 7DN UK
| | - Karl E. Burgess
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH UK
| | - Michael P. Barrett
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA UK
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH UK
| |
Collapse
|
23
|
Vincent IM, Barrett MP. Metabolomic-based strategies for anti-parasite drug discovery. ACTA ACUST UNITED AC 2014; 20:44-55. [PMID: 25281738 DOI: 10.1177/1087057114551519] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metabolomics-based studies are proving of great utility in the analysis of modes of action (MOAs) and resistance mechanisms of drugs in parasitic protozoa. They have helped to determine the MOA of eflornithine, half of the gold standard combination therapy in use against human African trypanosomiasis (HAT), as well as the mechanism of resistance to this drug. In Leishmania, metabolomics has also given insight into the MOA of miltefosine, an alkylphospholipid. Several studies on antimony resistance in Leishmania have been conducted, analyzing the metabolic content of resistant lines, offering clues as to the MOA of this class of drugs. A study of chloroquine resistance in Plasmodium falciparum combined metabolomics techniques with other genetic and proteomic techniques to offer new insight into the role of the PfCRT protein. The MOA and mechanism of resistance to a group of halogenated pyrimidines in Trypanosoma brucei have also recently been elucidated. Effective as metabolomics techniques are, care must be taken in the design and implementation of these experiments, to ensure the resulting data are meaningful. This review outlines the steps required to conduct a metabolomics experiment as well as provide an overview of metabolomics-based drug research in protozoa to date.
Collapse
Affiliation(s)
- Isabel M Vincent
- The Glasgow Polyomics Facility and Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, UK
| | - Michael P Barrett
- The Glasgow Polyomics Facility and Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, UK
| |
Collapse
|
24
|
Zhang R, Watson DG, Wang L, Westrop GD, Coombs GH, Zhang T. Evaluation of mobile phase characteristics on three zwitterionic columns in hydrophilic interaction liquid chromatography mode for liquid chromatography-high resolution mass spectrometry based untargeted metabolite profiling of Leishmania parasites. J Chromatogr A 2014; 1362:168-79. [DOI: 10.1016/j.chroma.2014.08.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/30/2022]
|
25
|
Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics. PLoS Negl Trop Dis 2014; 8:e2844. [PMID: 24853684 PMCID: PMC4031082 DOI: 10.1371/journal.pntd.0002844] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/24/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn. METHODOLOGY/PRINCIPAL FINDINGS Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected. CONCLUSIONS/SIGNIFICANCE Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi.
Collapse
|
26
|
Canuto GAB, Castilho-Martins EA, Tavares MFM, Rivas L, Barbas C, López-Gonzálvez Á. Multi-analytical platform metabolomic approach to study miltefosine mechanism of action and resistance in Leishmania. Anal Bioanal Chem 2014; 406:3459-76. [PMID: 24722876 DOI: 10.1007/s00216-014-7772-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/03/2014] [Accepted: 03/17/2014] [Indexed: 12/26/2022]
Abstract
Miltefosine (MT) (hexadecylphosphocholine) was implemented to cope with resistance against antimonials, the classical treatment in Leishmaniasis. Given the scarcity of anti- Leishmania (L) drugs and the increasing appearance of resistance, there is an obvious need for understanding the mechanism of action and development of such resistance. Metabolomics is an increasingly popular tool in the life sciences due to it being a relatively fast and accurate technique that can be applied either with a particular focus or in a global manner to reveal new knowledge about biological systems. Three analytical platforms, gas chromatography (GC), liquid chromatography (LC) and capillary electrophoresis (CE) have been coupled to mass spectrometry (MS) to obtain a broad picture of metabolic changes in the parasite. Impairment of the polyamine metabolism from arginine (Arg) to trypanothione in susceptible parasites treated with MT was in some way expected, considering the reactive oxygen species (ROS) production described for MT. Importantly, in resistant parasites an increase in the levels of amino acids was the most outstanding feature, probably related to the adaptation of the resistant strain for its survival inside the parasitophorous vacuole.
Collapse
Affiliation(s)
- Gisele A B Canuto
- Centro de Metabolómica y Bioanálisis (CEMBIO), Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, 28668, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Fischer R, Bowness P, Kessler BM. Two birds with one stone: doing metabolomics with your proteomics kit. Proteomics 2013; 13:3371-86. [PMID: 24155035 PMCID: PMC4265265 DOI: 10.1002/pmic.201300192] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/13/2013] [Accepted: 09/30/2013] [Indexed: 12/31/2022]
Abstract
Proteomic research facilities and laboratories are facing increasing demands for the integration of biological data from multiple ‘-OMICS’ approaches. The aim to fully understand biological processes requires the integrated study of genomes, proteomes and metabolomes. While genomic and proteomic workflows are different, the study of the metabolome overlaps significantly with the latter, both in instrumentation and methodology. However, chemical diversity complicates an easy and direct access to the metabolome by mass spectrometry (MS). The present review provides an introduction into metabolomics workflows from the viewpoint of proteomic researchers. We compare the physicochemical properties of proteins and peptides with metabolites/small molecules to establish principle differences between these analyte classes based on human data. We highlight the implications this may have on sample preparation, separation, ionisation, detection and data analysis. We argue that a typical proteomic workflow (nLC-MS) can be exploited for the detection of a number of aliphatic and aromatic metabolites, including fatty acids, lipids, prostaglandins, di/tripeptides, steroids and vitamins, thereby providing a straightforward entry point for metabolomics-based studies. Limitations and requirements are discussed as well as extensions to the LC-MS workflow to expand the range of detectable molecular classes without investing in dedicated instrumentation such as GC-MS, CE-MS or NMR.
Collapse
Affiliation(s)
- Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
28
|
Berg M, Vanaerschot M, Jankevics A, Cuypers B, Maes I, Mukherjee S, Khanal B, Rijal S, Roy S, Opperdoes F, Breitling R, Dujardin JC. Metabolic adaptations of Leishmania donovani in relation to differentiation, drug resistance, and drug pressure. Mol Microbiol 2013; 90:428-42. [PMID: 24020363 DOI: 10.1111/mmi.12374] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 12/31/2022]
Abstract
Antimonial (sodium stibogluconate, SSG) resistance and differentiation have been shown to be closely linked in Leishmania donovani, with SSG-resistant strains showing an increased capacity to generate infectious (metacyclic) forms. This is the first untargeted LC-MS metabolomics study which integrated both phenomena in one experimental design and provided insights into metabolic differences between three clinical L. donovani strains with a similar genetic background but different SSG-susceptibilities. We performed this analysis at different stages during promastigote growth and in the absence or presence of drug pressure. When comparing SSG-resistant and SSG-sensitive strains, a number of metabolic changes appeared to be constitutively present in all growth stages, pointing towards a clear link with SSG-resistance, whereas most metabolic changes were only detected in the stationary stage. These changes reflect the close intertwinement between SSG-resistance and an increased metacyclogenesis in resistant parasites. The metabolic changes suggest that SSG-resistant parasites have (i) an increased capacity for protection against oxidative stress; (ii) a higher fluidity of the plasma membrane; and (iii) a metabolic survival kit to better endure infection. These changes were even more pronounced in a resistant strain kept under Sb(III) drug pressure.
Collapse
Affiliation(s)
- Maya Berg
- Unit of Molecular Parasitology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Meyer H, Weidmann H, Lalk M. Methodological approaches to help unravel the intracellular metabolome of Bacillus subtilis. Microb Cell Fact 2013; 12:69. [PMID: 23844891 PMCID: PMC3722095 DOI: 10.1186/1475-2859-12-69] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 07/01/2013] [Indexed: 11/16/2022] Open
Abstract
Background Bacillus subtilis (B. subtilis) has become widely accepted as a model organism for studies on Gram-positive bacteria. A deeper insight into the physiology of this prokaryote requires advanced studies of its metabolism. To provide a reliable basis for metabolome investigations, a validated experimental protocol is needed since the quality of the analytical sample and the final data are strongly affected by the sampling steps. To ensure that the sample analyzed precisely reflects the biological condition of interest, outside biases have to be avoided during sample preparation. Results Procedures for sampling, quenching, extraction of metabolites, cell disruption, as well as metabolite leakage were tested and optimized for B. subtilis. In particular the energy status of the bacterial cell, characterized by the adenylate energy charge, was used to evaluate sampling accuracy. Moreover, the results of the present study demonstrate that the cultivation medium can affect the efficiency of the developed sampling procedure. Conclusion The final workflow presented here allows for the reproducible and reliable generation of physiological data. The method with the highest qualitative and quantitative metabolite yield was chosen, and when used together with complementary bioanalytical methods (i.e., GC-MS, LC-MS and 1H-NMR) provides a solid basis to gather information on the metabolome of B. subtilis.
Collapse
Affiliation(s)
- Hanna Meyer
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | | | | |
Collapse
|
30
|
Ejigu BA, Valkenborg D, Baggerman G, Vanaerschot M, Witters E, Dujardin JC, Burzykowski T, Berg M. Evaluation of normalization methods to pave the way towards large-scale LC-MS-based metabolomics profiling experiments. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:473-85. [PMID: 23808607 DOI: 10.1089/omi.2013.0010] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Combining liquid chromatography-mass spectrometry (LC-MS)-based metabolomics experiments that were collected over a long period of time remains problematic due to systematic variability between LC-MS measurements. Until now, most normalization methods for LC-MS data are model-driven, based on internal standards or intermediate quality control runs, where an external model is extrapolated to the dataset of interest. In the first part of this article, we evaluate several existing data-driven normalization approaches on LC-MS metabolomics experiments, which do not require the use of internal standards. According to variability measures, each normalization method performs relatively well, showing that the use of any normalization method will greatly improve data-analysis originating from multiple experimental runs. In the second part, we apply cyclic-Loess normalization to a Leishmania sample. This normalization method allows the removal of systematic variability between two measurement blocks over time and maintains the differential metabolites. In conclusion, normalization allows for pooling datasets from different measurement blocks over time and increases the statistical power of the analysis, hence paving the way to increase the scale of LC-MS metabolomics experiments. From our investigation, we recommend data-driven normalization methods over model-driven normalization methods, if only a few internal standards were used. Moreover, data-driven normalization methods are the best option to normalize datasets from untargeted LC-MS experiments.
Collapse
|
31
|
Tymoshenko S, Oppenheim RD, Soldati-Favre D, Hatzimanikatis V. Functional genomics of Plasmodium falciparum using metabolic modelling and analysis. Brief Funct Genomics 2013; 12:316-27. [PMID: 23793264 PMCID: PMC3743259 DOI: 10.1093/bfgp/elt017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plasmodium falciparum is an obligate intracellular parasite and the leading cause of severe malaria responsible for tremendous morbidity and mortality particularly in sub-Saharan Africa. Successful completion of the P. falciparum genome sequencing project in 2002 provided a comprehensive foundation for functional genomic studies on this pathogen in the following decade. Over this period, a large spectrum of experimental approaches has been deployed to improve and expand the scope of functionally annotated genes. Meanwhile, rapidly evolving methods of systems biology have also begun to contribute to a more global understanding of various aspects of the biology and pathogenesis of malaria. Herein we provide an overview on metabolic modelling, which has the capability to integrate information from functional genomics studies in P. falciparum and guide future malaria research efforts towards the identification of novel candidate drug targets.
Collapse
Affiliation(s)
- Stepan Tymoshenko
- Institute of Chemical Engineering, Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, CH-1015, Switzerland.
| | | | | | | |
Collapse
|
32
|
Abstract
The discovery, development and optimal utilization of pharmaceuticals can be greatly enhanced by knowledge of their modes of action. However, many drugs currently on the market act by unknown mechanisms. Untargeted metabolomics offers the potential to discover modes of action for drugs that perturb cellular metabolism. Development of high resolution LC-MS methods and improved data analysis software now allows rapid detection of drug-induced changes to cellular metabolism in an untargeted manner. Several studies have demonstrated the ability of untargeted metabolomics to provide unbiased target discovery for antimicrobial drugs, in particular for antiprotozoal agents. Furthermore, the utilization of targeted metabolomics techniques has enabled validation of existing hypotheses regarding antiprotozoal drug mechanisms. Metabolomics approaches are likely to assist with optimization of new drug candidates by identification of drug targets, and by allowing detailed characterization of modes of action and resistance of existing and novel antiprotozoal drugs.
Collapse
|
33
|
Metabolomics guides rational development of a simplified cell culture medium for drug screening against Trypanosoma brucei. Antimicrob Agents Chemother 2013; 57:2768-79. [PMID: 23571546 DOI: 10.1128/aac.00044-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro culture methods underpin many experimental approaches to biology and drug discovery. The modification of established cell culture methods to make them more biologically relevant or to optimize growth is traditionally a laborious task. Emerging metabolomic technology enables the rapid evaluation of intra- and extracellular metabolites and can be applied to the rational development of cell culture media. In this study, untargeted semiquantitative and targeted quantitative metabolomic analyses of fresh and spent media revealed the major nutritional requirements for the growth of bloodstream form Trypanosoma brucei. The standard culture medium (HMI11) contained unnecessarily high concentrations of 32 nutrients that were subsequently removed to make the concentrations more closely resemble those normally found in blood. Our new medium, Creek's minimal medium (CMM), supports in vitro growth equivalent to that in HMI11 and causes no significant perturbation of metabolite levels for 94% of the detected metabolome (<3-fold change; α = 0.05). Importantly, improved sensitivity was observed for drug activity studies in whole-cell phenotypic screenings and in the metabolomic mode of action assays. Four-hundred-fold 50% inhibitory concentration decreases were observed for pentamidine and methotrexate, suggesting inhibition of activity by nutrients present in HMI11. CMM is suitable for routine cell culture and offers important advantages for metabolomic studies and drug activity screening.
Collapse
|
34
|
Berg M, Vanaerschot M, Jankevics A, Cuypers B, Breitling R, Dujardin JC. LC-MS metabolomics from study design to data-analysis - using a versatile pathogen as a test case. Comput Struct Biotechnol J 2013; 4:e201301002. [PMID: 24688684 PMCID: PMC3962178 DOI: 10.5936/csbj.201301002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/13/2012] [Accepted: 12/24/2012] [Indexed: 01/03/2023] Open
Abstract
Thanks to significant improvements in LC-MS technology, metabolomics is increasingly used as a tool to discriminate the responses of organisms to various stimuli or drugs. In this minireview we discuss all aspects of the LC-MS metabolomics pipeline, using a complex and versatile model organism, Leishmania donovani, as an illustrative example. The benefits of a hyphenated mass spectrometry platform and a detailed overview of the entire experimental pipeline from sampling, sample storage and sample list set-up to LC-MS measurements and the generation of meaningful results with state-of-the-art data-analysis software will be thoroughly discussed. Finally, we also highlight important pitfalls in the processing of LC-MS data and comment on the benefits of implementing metabolomics in a systems biology approach.
Collapse
Affiliation(s)
- Maya Berg
- Unit of Molecular Parasitology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Manu Vanaerschot
- Unit of Molecular Parasitology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Andris Jankevics
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Joseph Black Building B3.10, G11 8QQ Glasgow, UK ; Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands ; Faculty of Life Sciences, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Bart Cuypers
- Unit of Molecular Parasitology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Rainer Breitling
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Joseph Black Building B3.10, G11 8QQ Glasgow, UK ; Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands ; Faculty of Life Sciences, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jean-Claude Dujardin
- Unit of Molecular Parasitology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium ; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
35
|
Canuto GAB, Castilho-Martins EA, Tavares M, López-Gonzálvez A, Rivas L, Barbas C. CE-ESI-MS metabolic fingerprinting of Leishmania resistance to antimony treatment. Electrophoresis 2012; 33:1901-10. [PMID: 22740478 DOI: 10.1002/elps.201200007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Metabolomics has become an invaluable tool to unveil biology of pathogens, with immediate application to chemotherapy. It is currently accepted that there is not one single technique capable of obtaining the whole metabolic fingerprint of a biological system either due to their different physical-chemical properties or concentrations. In this work, we have explored the capability of capillary electrophoresis mass spectrometry with a sheathless interface with electrospray ionization (CE-ESI-TOF-MS) to separate metabolites in order to be used as a complementary technique to LC. As proof of concept, we have compared the metabolome of Leishmania infantum promastigotes BCN 150 (Sb (III) IC(50) = 20.9 μM) and its variation when treated with 120 μM of Sb(III) potassium tartrate for 12 h, as well as with its Sb(III) resistant counterpart obtained by growth of the parasites under increasing Sb(III) in a step-wise manner up to 180 μM. The number of metabolites compared were of 264 for BCN150 Sb(III) treated versus nontreated and of 195 for Sb(III) resistant versus susceptible parasites. After successive data filtering, differences in seven metabolites identified in databases for Leishmania pathways, showed the highest significant differences, corresponding mainly to amino acids or their metabolite surrogates. Most of them were assigned to sulfur containing amino acids and polyamine biosynthetic pathways, of special relevance considering the deterioration of the thiol-dependent redox metabolism in Leishmania by Sb(III). Given the low concentrations typical for most of these metabolites, the assay can be considered a success that should be explored for new biological questions.
Collapse
Affiliation(s)
- Gisele A B Canuto
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The decoding of the Tritryp reference genomes nearly 7 years ago provided a first peek into the biology of pathogenic trypanosomatids and a blueprint that has paved the way for genome-wide studies. Although 60-70% of the predicted protein coding genes in Trypanosoma brucei, Trypanosoma cruzi and Leishmania major remain unannotated, the functional genomics landscape is rapidly changing. Facilitated by the advent of next-generation sequencing technologies, improved structural and functional annotation and genes and their products are emerging. Information is also growing for the interactions between cellular components as transcriptomes, regulatory networks and metabolomes are characterized, ushering in a new era of systems biology. Simultaneously, the launch of comparative sequencing of multiple strains of kinetoplastids will finally lead to the investigation of a vast, yet to be explored, evolutionary and pathogenomic space.
Collapse
Affiliation(s)
- J Choi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
37
|
Williams RAM, Smith TK, Cull B, Mottram JC, Coombs GH. ATG5 is essential for ATG8-dependent autophagy and mitochondrial homeostasis in Leishmania major. PLoS Pathog 2012; 8:e1002695. [PMID: 22615560 PMCID: PMC3355087 DOI: 10.1371/journal.ppat.1002695] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/01/2012] [Indexed: 01/05/2023] Open
Abstract
Macroautophagy has been shown to be important for the cellular remodelling required for Leishmania differentiation. We now demonstrate that L. major contains a functional ATG12-ATG5 conjugation system, which is required for ATG8-dependent autophagosome formation. Nascent autophagosomes were found commonly associated with the mitochondrion. L. major mutants lacking ATG5 (Δatg5) were viable as promastigotes but were unable to form autophagosomes, had morphological abnormalities including a much reduced flagellum, were less able to differentiate and had greatly reduced virulence to macrophages and mice. Analyses of the lipid metabolome of Δatg5 revealed marked elevation of phosphatidylethanolamines (PE) in comparison to wild type parasites. The Δatg5 mutants also had increased mitochondrial mass but reduced mitochondrial membrane potential and higher levels of reactive oxygen species. These findings indicate that the lack of ATG5 and autophagy leads to perturbation of the phospholipid balance in the mitochondrion, possibly through ablation of membrane use and conjugation of mitochondrial PE to ATG8 for autophagosome biogenesis, resulting in a dysfunctional mitochondrion with impaired oxidative ability and energy generation. The overall result of this is reduced virulence. Leishmaniasis is a disease of humans that is of major significance throughout many parts of the world. It is caused by the protozoan parasite Leishmania and mammals are infected through the bite of a sand fly in which the parasite develops. Parasite remodelling crucial for generation of the human-infective forms is aided by the catabolic process known as autophagy in which cell material is packaged within organelles called autophagosomes and subsequently broken down in the digestive lysosomal compartment. Here we show that autophagy in Leishmania requires the coordinated actions of two pathways, one of which involves a protein called ATG5. We have generated parasite mutants lacking this protein and shown that ATG5 is required for both autophagosome formation and also maintenance of a fully functional mitochondrion. The mutants lacking ATG5 have increased mitochondrial mass and phospholipid content, high levels of oxidants and reduced membrane potential, all being hallmarks of a dysfunctional mitochondrion with impaired ability for energy generation. Our results have thus revealed that a functional autophagic pathway is crucial for phospholipid homeostasis and mitochondrial function in the parasite and important for the parasite's differentiation, infectivity and virulence to its mammalian host.
Collapse
Affiliation(s)
- Roderick A. M. Williams
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Terry K. Smith
- Schools of Biology & Chemistry, The University of St. Andrews, St. Andrews, United Kingdom
| | - Benjamin Cull
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Graham H. Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Abstract
Microorganisms depend on their ability to modulate their metabolic composition according to specific circumstances, such as different phases of the growth cycle and circadian rhythms, fluctuations in environmental conditions, as well as experimental perturbations. A thorough understanding of these metabolic adaptations requires the ability to comprehensively identify and quantify the metabolome of bacterial cells in different states. In this review, we present an overview of the diverse metabolomics approaches recently adopted to explore the metabolism of a wide variety of microorganisms. Focusing on a selection of illustrative case studies, we assess the different experimental designs used and explore the major achievements and remaining challenges in the field. We conclude by discussing the important complementary information provided by computational methods such as genome-scale metabolic modeling, which enable an integrated analysis of metabolic state changes in the context of overall cellular physiology.
Collapse
|
39
|
Vincent IM, Creek DJ, Burgess K, Woods DJ, Burchmore RJS, Barrett MP. Untargeted metabolomics reveals a lack of synergy between nifurtimox and eflornithine against Trypanosoma brucei. PLoS Negl Trop Dis 2012; 6:e1618. [PMID: 22563508 PMCID: PMC3341325 DOI: 10.1371/journal.pntd.0001618] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/05/2012] [Indexed: 01/08/2023] Open
Abstract
A non-targeted metabolomics-based approach is presented that enables the study of pathways in response to drug action with the aim of defining the mode of action of trypanocides. Eflornithine, a polyamine pathway inhibitor, and nifurtimox, whose mode of action involves its metabolic activation, are currently used in combination as first line treatment against stage 2, CNS-involved, human African trypanosomiasis (HAT). Drug action was assessed using an LC-MS based non-targeted metabolomics approach. Eflornithine revealed the expected changes to the polyamine pathway as well as several unexpected changes that point to pathways and metabolites not previously described in bloodstream form trypanosomes, including a lack of arginase activity and N-acetylated ornithine and putrescine. Nifurtimox was shown to be converted to a trinitrile metabolite indicative of metabolic activation, as well as inducing changes in levels of metabolites involved in carbohydrate and nucleotide metabolism. However, eflornithine and nifurtimox failed to synergise anti-trypanosomal activity in vitro, and the metabolomic changes associated with the combination are the sum of those found in each monotherapy with no indication of additional effects. The study reveals how untargeted metabolomics can yield rapid information on drug targets that could be adapted to any pharmacological situation.
Collapse
Affiliation(s)
- Isabel M. Vincent
- The Wellcome Trust Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Darren J. Creek
- The Wellcome Trust Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics Facility, University of Glasgow, Glasgow, United Kingdom
| | - Karl Burgess
- The Wellcome Trust Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics Facility, University of Glasgow, Glasgow, United Kingdom
| | - Debra J. Woods
- Pfizer Animal Health, Pfizer Inc, Kalamazoo, Michigan, United States of America
| | - Richard J. S. Burchmore
- The Wellcome Trust Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics Facility, University of Glasgow, Glasgow, United Kingdom
| | - Michael P. Barrett
- The Wellcome Trust Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics Facility, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
40
|
Silva AM, Cordeiro-da-Silva A, Coombs GH. Metabolic variation during development in culture of Leishmania donovani promastigotes. PLoS Negl Trop Dis 2011; 5:e1451. [PMID: 22206037 PMCID: PMC3243725 DOI: 10.1371/journal.pntd.0001451] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/10/2011] [Indexed: 11/28/2022] Open
Abstract
The genome sequencing of several Leishmania species has provided immense amounts of data and allowed the prediction of the metabolic pathways potentially operating. Subsequent genetic and proteomic studies have identified stage-specific proteins and putative virulence factors but many aspects of the metabolic adaptations of Leishmania remain to be elucidated. In this study, we have used an untargeted metabolomics approach to analyze changes in the metabolite profile as promastigotes of L. donovani develop during in vitro cultures from logarithmic to stationary phase. The results show that the metabolomes of promastigotes on days 3–6 of culture differ significantly from each other, consistent with there being distinct developmental changes. Most notable were the structural changes in glycerophospholipids and increase in the abundance of sphingolipids and glycerolipids as cells progress from logarithmic to stationary phase. Leishmania infections are considered neglected tropical diseases as the parasites affect millions of people worldwide but there are limited research efforts aimed at obtaining vaccines and new drugs. Leishmania has a digenetic life cycle alternating between promastigote forms, which develop in the sand-fly, the vector of the disease, and an amastigote form, which grows in mammals after being bitten by an infected sand-fly. In vitro studies with the promastigote forms are routinely used to gain insights about the parasite's cell biology. Little is known about how the different promastigotes forms are metabolically adapted to their particular micro-environment in the host or how they are pre-adapted metabolically for infecting a mammal, thus we have undertaken a study of the metabolite profile of L. donovani promastigotes in order to gain an understanding of the changes that occur during promastigote development. The analysis has revealed that the changes in promastigotes' metabolome between days 3 and 6 take place in a progressive manner; however major differences were observed when comparing the promastigotes on days 3 and 6. An increase in lipid abundance as promastigote development occurred was notable and is likely to reflect remodelling of the parasite's surface in readiness for infecting a mammal.
Collapse
Affiliation(s)
- Ana Marta Silva
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Laboratório de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Laboratório de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Graham H. Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Burgess K, Creek D, Dewsbury P, Cook K, Barrett MP. Semi-targeted analysis of metabolites using capillary-flow ion chromatography coupled to high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3447-3452. [PMID: 22002700 DOI: 10.1002/rcm.5247] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This work describes a novel application of capillary-flow ion chromatography mass spectrometry for metabolomic analysis, and comparison of the technique to octadecyl silica and hydrophilic interaction chromatography (HILIC)-based mass spectrometry. While liquid chromatography/mass spectrometry (LC/MS) is rapidly becoming the standard technique for metabolomic analysis, metabolomic samples are extremely heterogeneous, leading to a requirement for multiple methods of analysis and separation techniques to perform a 'global' metabolomic analysis. While C18 is suitable for hydrophobic metabolites and has been used extensively in pharmaceutical drug metabolism studies, HILIC is, in general, efficient at separating polar metabolites. Phosphorylated species and organic acids are challenging to analyse and effectively quantitate on both systems. There is therefore a requirement for an MS-compatible analytical technique that can separate negatively charged compounds, such as ion-exchange chromatography. Evaluation of capillary flow ion chromatography with electrolytic suppression was performed on a library of metabolite standards and was shown to effectively separate organic acids and sugar di- and tri-phosphates. Limits of detection for these compounds range from 0.01 to 100 pmol on-column. Application of capillary ion chromatography to a comparative analysis of energy metabolism in procyclic forms of the parasitic protozoan Trypanosoma brucei where cells were grown on glucose or proline as a carbon source was demonstrated to be more effective than HILIC for detection of the organic acids that comprise glucose central metabolism and the tricarboxylic acid (TCA) cycle.
Collapse
Affiliation(s)
- Karl Burgess
- Scottish Metabolomics Facility, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
42
|
Creek DJ, Jankevics A, Breitling R, Watson DG, Barrett MP, Burgess KEV. Toward Global Metabolomics Analysis with Hydrophilic Interaction Liquid Chromatography–Mass Spectrometry: Improved Metabolite Identification by Retention Time Prediction. Anal Chem 2011; 83:8703-10. [DOI: 10.1021/ac2021823] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Darren J. Creek
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Andris Jankevics
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
- Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Rainer Breitling
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
- Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Michael P. Barrett
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Karl E. V. Burgess
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
43
|
Creek DJ, Anderson J, McConville MJ, Barrett MP. Metabolomic analysis of trypanosomatid protozoa. Mol Biochem Parasitol 2011; 181:73-84. [PMID: 22027026 DOI: 10.1016/j.molbiopara.2011.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 01/05/2023]
Abstract
Metabolomics aims to measure all low molecular weight chemicals within a given system in a manner analogous to transcriptomics, proteomics and genomics. In this review we highlight metabolomics approaches that are currently being applied to the kinetoplastid parasites, Trypanosoma brucei and Leishmania spp. The use of untargeted metabolomics approaches, made possible through advances in mass spectrometry and informatics, and stable isotope labelling has increased our understanding of the metabolism in these organisms beyond the views established using classical biochemical approaches. Set within the context of metabolic networks, predicted using genome-wide reconstructions of metabolism, new hypotheses on how to target aspects of metabolism to design new drugs against these protozoa are emerging.
Collapse
Affiliation(s)
- Darren J Creek
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | | | | | |
Collapse
|
44
|
Metabolomics and malaria biology. Mol Biochem Parasitol 2010; 175:104-11. [PMID: 20970461 DOI: 10.1016/j.molbiopara.2010.09.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 12/31/2022]
Abstract
Metabolomics has ushered in a novel and multi-disciplinary realm in biological research. It has provided researchers with a platform to combine powerful biochemical, statistical, computational, and bioinformatics techniques to delve into the mysteries of biology and disease. The application of metabolomics to study malaria parasites represents a major advance in our approach towards gaining a more comprehensive perspective on parasite biology and disease etiology. This review attempts to highlight some of the important aspects of the field of metabolomics, and its ongoing and potential future applications to malaria research.
Collapse
|