1
|
Ampe A, Bandini E, Broeckhoven K, Lynen F. On-column modification for the creation of temperature-responsive stationary phases. Anal Chim Acta 2023; 1283:341961. [PMID: 37977785 DOI: 10.1016/j.aca.2023.341961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Temperature-responsive liquid chromatography (TRLC) offers an alternative for retention and selectivity optimisation in HPLC. This approach thereby exploits temperature gradients on stimuli-responsive stationary phases and forfeits the necessity for solvent gradients, allowing analyses to be performed using aqueous mobile phases. Consequently, it can be employed as a green alternative to reversed-phase separations. However, current production to obtain temperature-responsive columns inherently require dedicated column packing processes with polymer-modified particles. To facilitate the development of temperature-responsive phases, a flow-through modification procedure was developed allowing on-column modification of aminopropyl silica columns. Three columns were manufactured using this novel flow-through approach, which achieved identical column efficiencies compared to existing TRLC column. Demonstrating the possibility of bypassing the dedicated packing processes without losing efficiency. Additionally, it was observed that flow-through produced columns yielded higher retention at elevated temperatures despite their reduced carbon load. Further investigation of the carbon load revealed the presence of stationary phase gradients, whose influence was studied via novel developed retention experiments, which revealed a negligible change reduction in retention upon a change of polymer modification from 19.8% to 14.5%. However, further decrease from 14.5% to 12.3% resulted in a larger change. Interestingly, a further enhancement in apparent plate numbers was observed when operating the column under a reversed flow, yielding an increasing stationary phase gradient. This on-column modification procedure demonstrates the potential for modification of existing (commercial) packed columns to achieve temperature-responsive phases without loss of efficiency or retention. Thus, not only facilitating accessibility to temperature-responsive phases, but also aiding with development of further generations of temperature-responsive phases by removing the need for packing optimisation. Additionally, a novel experiment was set up to easily investigate the effect of inhomogeneous stationary phases retention.
Collapse
Affiliation(s)
- Adriaan Ampe
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Krijgslaan 281, Ghent, Belgium
| | - Elena Bandini
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Krijgslaan 281, Ghent, Belgium
| | - Ken Broeckhoven
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, Brussel, Belgium
| | - Frédéric Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Krijgslaan 281, Ghent, Belgium.
| |
Collapse
|
2
|
Le Droumaguet B, Guerrouache M, Carbonnier B. Contribution of the "Click Chemistry" Toolbox for the Design, Synthesis, and Resulting Applications of Innovative and Efficient Separative Supports: Time for Assessment. Macromol Rapid Commun 2022; 43:e2200210. [PMID: 35700224 DOI: 10.1002/marc.202200210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Indexed: 12/21/2022]
Abstract
The last two decades have seen the rapid expansion of click chemistry methodology in various domains closely related to organic chemistry. It has notably been widely developed in the area of surface chemistry, mainly because of the high-yielding character of reactions of the "click" type. Especially, this powerful chemical reaction toolbox has been adapted to the preparation of stationary phases from the corresponding chromatographic supports. A plethora of selectors can thus be immobilized on either organic, inorganic, or hybrid stationary phases that can be used in different chromatographic modes. This review first highlights the few different chemical ligation strategies of the "click" type that are up to now mainly devoted to the development of functionalized supports for separation sciences. Then, it gives in a second part an up-to-date survey of the different studies dedicated to the preparation of click chemistry-based chromatographic supports while highlighting the powerful and versatile character of the "click" ligation strategy for the design, synthesis, and developments of more and more complex systems that can find promising applications in the area of analytical sciences, in domains as varied as enantioselective separation, glycomics, proteomics, genomics, metabolomics, etc.
Collapse
Affiliation(s)
- Benjamin Le Droumaguet
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| | - Mohamed Guerrouache
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| | - Benjamin Carbonnier
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| |
Collapse
|
3
|
Sun YL, Zhao LY, Lian HZ, Mao L, Cui XB. Carboxyl-functionalized hybrid monolithic column prepared by "thiol-ene" click reaction for noninvasive speciation analysis of chromium with inductively coupled plasma-mass spectrometry. Anal Chim Acta 2020; 1137:85-93. [PMID: 33153612 DOI: 10.1016/j.aca.2020.08.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022]
Abstract
A novel carboxyl-functionalized hybrid monolithic column was developed based on "thiol-ene" click reaction via "one-pot" by choosing mercaptosuccinic acid, γ-methyl methacrylate trimethoxysilane and tetramethoxysilane as reaction monomers. The design of the hybrid monolithic column was assisted by the comparison in computational simulation with existing carboxyl-functionalized materials. The characterization by scanning electron microscopy, energy dispersive X-ray spectroscopy, N2 adsorption-desorption measurement, Fourier-transform infrared spectroscopy and elemental analysis showed that the carboxyl-functionalized material has the advantages of good permeability and high mechanical strength. Then, we used the prepared carboxyl-hybrid monolith column as solid phase microextraction adsorbent for separation of trace inorganic chromium species. Under pH 4.5, the hybrid monolith column can selectively enrich Cr(III) without adsorbing Cr(VI) and afterwards, Cr(III) can be eluted by 1.0 mol L-1 HCl. The chromium speciation separation method based on carboxyl-hybrid monolith column followed by inductively coupled plasma-mass spectrometry possessed the merits of facile preparation, low cost, simple and mild extraction condition, and sensitive detection, which has been successfully applied to the separation, enrichment and detection of inorganic chromium in environmental waters.
Collapse
Affiliation(s)
- Yue-Lun Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Ling-Yu Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China.
| | - Li Mao
- Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiao-Bing Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
4
|
Various Strategies in Post-Polymerization Functionalization of Organic Polymer-Based Monoliths Used in Liquid Phase Separation Techniques. Molecules 2020; 25:molecules25061323. [PMID: 32183194 PMCID: PMC7144949 DOI: 10.3390/molecules25061323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/28/2022] Open
Abstract
This review article is aimed at summarizing the various strategies that have been developed so far for post-polymerization functionalization (PPF) of organic polymer-based monoliths used in liquid phase separation techniques, namely HPLC at all scales and capillary electrochromatography (CEC). The reader will find the organic reactions performed on monolithic columns for grafting the chromatographic ligands needed for solving the separation problems on hand. This process involves therefore the fabrication of template monoliths that carry reactive functional groups to which chromatographic ligands can be covalently attached in a post-polymerization kind of approach. That is, the template monolith that has been optimized in terms of pore structure and other morphology can be readily modified and tailor made on column to fit a particular separation. The review article will not only cover the various strategies developed so far but also describe their separation applications. To the best of our knowledge, this review article will be the first of its kind.
Collapse
|
5
|
Ghamat SN, Talebpour Z, Mehdi A. Click reactions: Recent trends in preparation of new sorbents and stationary phases for extraction and chromatographic applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Lan D, Bai L, Pang X, Liu H, Yan H, Guo H. In situ synthesis of a monolithic material with multi-sized pores and its chromatographic properties for the separation of intact proteins from human plasma. Talanta 2019; 194:406-414. [DOI: 10.1016/j.talanta.2018.10.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022]
|
7
|
Gao M, Ren J, Tian K, Jia L. Characterization of non-specific protein adsorption induced by triazole groups on the chromatography media using Cu (I)-catalyzed alkyne-azide cycloaddition reaction for ligand immobilization. J Chromatogr A 2016; 1476:63-68. [DOI: 10.1016/j.chroma.2016.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/01/2016] [Accepted: 11/11/2016] [Indexed: 11/16/2022]
|
8
|
Groarke RJ, Brabazon D. Methacrylate Polymer Monoliths for Separation Applications. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E446. [PMID: 28773570 PMCID: PMC5456823 DOI: 10.3390/ma9060446] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/10/2016] [Accepted: 05/20/2016] [Indexed: 01/10/2023]
Abstract
This review summarizes the development of methacrylate-based polymer monoliths for separation science applications. An introduction to monoliths is presented, followed by the preparation methods and characteristics specific to methacrylate monoliths. Both traditional chemical based syntheses and emerging additive manufacturing methods are presented along with an analysis of the different types of functional groups, which have been utilized with methacrylate monoliths. The role of methacrylate based porous materials in separation science in industrially important chemical and biological separations are discussed, with particular attention given to the most recent developments and challenges associated with these materials. While these monoliths have been shown to be useful for a wide variety of applications, there is still scope for exerting better control over the porous architectures and chemistries obtained from the different fabrication routes. Conclusions regarding this previous work are drawn and an outlook towards future challenges and potential developments in this vibrant research area are presented. Discussed in particular are the potential of additive manufacturing for the preparation of monolithic structures with pre-defined multi-scale porous morphologies and for the optimization of surface reactive chemistries.
Collapse
Affiliation(s)
- Robert J Groarke
- Advanced Processing Technology Research Centre, Dublin City University, Collins Avenue, Dublin 9, Ireland.
- National Sensor Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Dermot Brabazon
- Advanced Processing Technology Research Centre, Dublin City University, Collins Avenue, Dublin 9, Ireland.
- National Sensor Research Centre, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
9
|
Poupart R, Nour El Houda D, Chellapermal D, Guerrouache M, Carbonnier B, Le Droumaguet B. Novel in-capillary polymeric monoliths arising from glycerol carbonate methacrylate for flow-through catalytic and chromatographic applications. RSC Adv 2016. [DOI: 10.1039/c5ra27248c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In-capillary reactive polymer monoliths have been prepared from glycerol carbonate methacrylate functional monomer, suitably functionalized and further applied to separation science and flow-through catalysis, respectively.
Collapse
Affiliation(s)
- Romain Poupart
- Université Paris Est
- ICMPE (UMR 7182)
- CNRS
- UPEC
- F-94320 Thiais
| | | | | | | | | | | |
Collapse
|
10
|
Yu R, Hu W, Lin G, Xiao Q, Zheng J, Lin Z. One-pot synthesis of polymer monolithic column by combination of free radical polymerization and azide–alkyne cycloaddition “click” reaction and its application in capillary liquid chromatography. RSC Adv 2015. [DOI: 10.1039/c4ra12891e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile “one-pot” method was developed for the preparation of polymer monoliths by combination of free radical polymerization and CuAAC click reaction.
Collapse
Affiliation(s)
- Ruifang Yu
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Wenli Hu
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Guo Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Qi Xiao
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Jiangnan Zheng
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Zian Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou 350116
| |
Collapse
|
11
|
Jo H, Theato P. Post-polymerization Modification of Surface-Bound Polymers. CONTROLLED RADICAL POLYMERIZATION AT AND FROM SOLID SURFACES 2015. [DOI: 10.1007/12_2015_315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Huang BY, Yang CK, Liu CP, Liu CY. Stationary phases for the enrichment of glycoproteins and glycopeptides. Electrophoresis 2014; 35:2091-107. [PMID: 24729282 DOI: 10.1002/elps.201400034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 12/20/2022]
Abstract
The analysis of protein glycosylation is important for biomedical and biopharmaceutical research. Recent advances in LC-MS analysis have enabled the identification of glycosylation sites, the characterisation of glycan structures and the identification and quantification of glycoproteins and glycopeptides. However, this type of analysis remains challenging due to the low abundance of glycopeptides in complex protein digests, the microheterogeneity at glycosylation sites, ion suppression effects and the competition for ionisation by co-eluting peptides. Specific sample preparation is necessary for comprehensive and site-specific glycosylation analyses using MS. Therefore, researchers continue to pursue new columns to broaden their applications. The current manuscript covers recent literature published from 2008 to 2013. The stationary phases containing various chemical bonding methods or ligands immobilisation strategies on solid supports that selectively enrich N-linked or sialylated N-glycopeptides are categorised with either physical or chemical modes of binding. These categories include lectin affinity, hydrophilic interactions, boronate affinity, titanium dioxide affinity, hydrazide chemistry and other separation techniques. This review should aid in better understanding the syntheses and physicochemical properties of each type of stationary phases for enriching glycoproteins and glycopeptides.
Collapse
Affiliation(s)
- Bao-Yu Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
13
|
Zhang S, He X, Chen L, Zhang Y. Boronic acid functionalized magnetic nanoparticles via thiol–ene click chemistry for selective enrichment of glycoproteins. NEW J CHEM 2014. [DOI: 10.1039/c4nj00424h] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
|
15
|
Lei H, Bai L, Zhang X, Yang G. Preparation of a Tetrazolyl Monolithic Column via the Combination of ATRP and Click Chemistry for the Separation of Proteins. J Chromatogr Sci 2014; 52:1211-6. [DOI: 10.1093/chromsci/bmt179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Zhang X, He X, Chen L, Zhang Y. A combination of distillation–precipitation polymerization and click chemistry: fabrication of boronic acid functionalized Fe3O4 hybrid composites for enrichment of glycoproteins. J Mater Chem B 2014; 2:3254-3262. [DOI: 10.1039/c4tb00379a] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Guan X, Zhao C, Liu X, Zhang H. Hyperbranched polymers containing stereocontorted cores as on-line solid-phase microextraction adsorbent for polycyclic aromatic hydrocarbons. J Chromatogr A 2013; 1302:28-33. [DOI: 10.1016/j.chroma.2013.06.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/14/2013] [Accepted: 06/14/2013] [Indexed: 11/30/2022]
|
18
|
Laaniste A, Kruve A, Leito I. Ensuring repeatability and robustness of poly(glycidyl methacrylate-co-ethylene dimethacrylate) HPLC monolithic columns of 3 mm id through covalent bonding to the column wall. J Sep Sci 2013; 36:2458-63. [DOI: 10.1002/jssc.201300133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Asko Laaniste
- Institute of Chemistry; University of Tartu; Tartu Estonia
| | - Anneli Kruve
- Institute of Chemistry; University of Tartu; Tartu Estonia
| | - Ivo Leito
- Institute of Chemistry; University of Tartu; Tartu Estonia
| |
Collapse
|
19
|
Yang F, Mao J, He XW, Chen LX, Zhang YK. Preparation of a boronate-functionalized affinity hybrid monolith for specific capture of glycoproteins. Anal Bioanal Chem 2013; 405:5321-31. [DOI: 10.1007/s00216-013-6917-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 01/24/2023]
|
20
|
Preparation of a butyl–silica hybrid monolithic column with a “one-pot” process for bioseparation by capillary liquid chromatography. Anal Bioanal Chem 2012; 405:2265-71. [DOI: 10.1007/s00216-012-6589-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
|
21
|
Jian G, Liu Y, He X, Chen L, Zhang Y. Click chemistry: a new facile and efficient strategy for the preparation of Fe3O4 nanoparticles covalently functionalized with IDA-Cu and their application in the depletion of abundant protein in blood samples. NANOSCALE 2012; 4:6336-42. [PMID: 22941423 DOI: 10.1039/c2nr31430d] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this study, we report a novel method to synthesize core-shell structured Fe(3)O(4) nanoparticles (NPs) covalently functionalized with iminodiacetic acid (IDA) via click chemistry between the azide and alkyne groups and charged with Cu(2+). Firstly, the Fe(3)O(4)@SiO(2) NPs were obtained using tetraethoxysilane (TEOS) to form a silica shell on the surface of the Fe(3)O(4) core. The azide group-modified Fe(3)O(4)@SiO(2) NPs were obtained by a sol-gel process using 3-azidopropyltriethoxysilane (AzPTES) as the silane agent. Fe(3)O(4)@SiO(2)-N(3) was directly reacted with N-propargyl iminodiacetic via click chemistry, in the presence of a Cu(I) catalyst, to acquire the IDA-modified Fe(3)O(4) NPs. Finally, through the addition of Cu(2+), the Fe(3)O(4)@SiO(2)-IDA-Cu NP product was obtained. The morphology, structure and composition of the NPs were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The resulting NPs showed a strong magnetic response to an externally applied magnetic field, a high adsorption capacity and excellent specificity towards hemoglobin (Hb). In addition, the Fe(3)O(4)@SiO(2)-IDA-Cu NPs can be used for the selective removal of abundant Hb protein in bovine and human blood samples.
Collapse
Affiliation(s)
- Guiqin Jian
- State Key Laboratory of Medical Chemical Biology, Nankai University, Tianjin 300071, China
| | | | | | | | | |
Collapse
|
22
|
Çelebi B, Bayraktar A, Tuncel A. Synthesis of a monolithic, micro-immobilised enzyme reactor via click-chemistry. Anal Bioanal Chem 2012; 403:2655-63. [DOI: 10.1007/s00216-012-6075-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 04/19/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
|
23
|
Zhang X, He X, Chen L, Zhang Y. Boronic acid modified magnetic nanoparticles for enrichment of glycoproteins via azide and alkyne click chemistry. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm32987e] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|