1
|
Zhang L, Yu L, Peng J, Hou X, Du H. Highly sensitive and simultaneous detection of ascorbic acid, dopamine, and uric acid using Pt@g-C 3N 4/N-CNTs nanocomposites. iScience 2024; 27:109241. [PMID: 38433909 PMCID: PMC10907839 DOI: 10.1016/j.isci.2024.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
The detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) is crucial for understanding and managing various illnesses. In this research, Pt@g-C3N4 nanoparticles were synthesized via hydrothermal method and combined with N-doped carbon nanotubes (N-CNTs). The Pt@g-C3N4/N-CNTs-modified glassy carbon (GC) electrode was fabricated as an electrochemical sensor for the determination of AA, DA, and UA. The linear response range of AA, DA, and UA in the optimal condition was 100-3,000 μM, 1-100 μM, and 2-215 μM boasting a low detection limit (S/N = 3) of 29.44 μM (AA), 0.21 μM (UA), and 2.99 μM (DA), respectively. Additionally, the recoveries of AA, DA, and UA in serum sample were 100.4%-106.7%. These results corroborate the feasibility of the proposed method for the simultaneous, sensitive, and reliable detection of AA, DA, and UA. Our Pt@g-C3N4/N-CNTs/GC electrode can provide a potential strategy for disease diagnosis and health monitoring in clinical settings.
Collapse
Affiliation(s)
- Lin Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Liu Yu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Junyang Peng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiaoying Hou
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan 430065, China
| |
Collapse
|
2
|
do Nascimento MP, Marchiori Berlande B, Guedes Fraga Lopes M, Cardoso de Lima MF, Teodoro de Souza C, Leal de Oliveira MA. Malondialdehyde Analysis in Biological Samples by Capillary Electrophoresis: The State of Art. Crit Rev Anal Chem 2023; 55:489-501. [PMID: 38147303 DOI: 10.1080/10408347.2023.2296948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Lipid peroxidation occurs when substances, such as reactive oxygen species, attack lipids. Polyunsaturated fatty acids are the main targets. Several products are formed, including primary products such as lipid hydroperoxides and secondary products such as malondialdehyde (MDA), the most used lipid peroxidation biomarker. As MDA levels are elevated in several diseases, MDA is an essential indicator for assessing pathological states. The thiobarbituric acid reactive substances assay is the most widely used method for MDA determination. However, it lacks specificity. Capillary Electrophoresis (CE) is a separation technique that has been used to quantify MDA in biological samples. This technique has advantages such as the low amount of biological sample required, absence or low volume of organic solvent, short analysis time, separation of interferents, sample preparation step with only protein precipitation, and the possibility of direct detection of the MDA, without derivatization. To our knowledge, this review article is the first to show the CE background for analyzing MDA in biological samples. Therefore, given the potential of MDA in evaluating pathological states, this article demonstrates the potential of CE to become a reference method for MDA determination in clinical analysis laboratories, which will play a significant role in diagnosing and monitoring diseases.
Collapse
Affiliation(s)
- Maria Patrícia do Nascimento
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Bruna Marchiori Berlande
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Marina Guedes Fraga Lopes
- Post Graduate program in Health, Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Mário Flávio Cardoso de Lima
- Post Graduate program in Health, Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Claudio Teodoro de Souza
- Post Graduate program in Health, Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcone Augusto Leal de Oliveira
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
- National Institute of Science and Technology for Bioanalytics - INCTBio, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
3
|
Verma R, Singh KR, Verma R, Singh J. Electro-optical behaviour of CuFe 2 O 4 @rGO nanocomposite for nonenzymatic detection of uric acid via the electrochemical method. LUMINESCENCE 2023; 38:1393-1404. [PMID: 36918255 DOI: 10.1002/bio.4479] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/22/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
Uric acid (UA) is a blood and urine component obtained as a metabolic by-product of purine nucleotides. Abnormalities in UA metabolism cause crystal deposition as monosodium urate and lead to various diseases such as gout, hyperuricemia, Lesch-Nyhan syndrome, etc. Monitoring these diseases requires a rapid, sensitive, selective, and portable detection approach. Therefore, this study demonstrates the hydrothermal synthesis of CuFe2 O4 /reduced graphene oxide (rGO) nanocomposite for selective detection of UA. After the nanocomposite synthesis, characterization was performed by X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, UV-visible spectrometry, atomic force spectroscopy, scanning electron microscopy, and electrochemical analysis. Furthermore, from the electrochemical analysis using cyclic voltammetry (CV), kinetic studies were carried out by varying the scan rate to obtain the diffusion coefficient, surface concentration, and rate of charge transfer to achieve a calibration curve that indicates the quasi reversible nature of the fabricated electrode with a linear regression coefficient of oxidation (R2 : 0.9992) and reduction (R2 : 0.9971) peaks. Moreover, the fabricated nonenzymatic amperometric sensor to detect UA with a linearity (R2 : 0.9989) of 1-400 μM was highly sensitive (2.75 × 10-4 mAμM-1 cm-2 ) and had a lower limit of detection (0.01231 μM) at pH 7.5 in phosphate-buffered saline solution. Therefore, the CuFe2 O4 /rGO/ITO-based nonenzymatic sensor could detect interfering agents and spiked real bovine serum samples with higher sensitivity and selectivity for UA detection.
Collapse
Affiliation(s)
- Rahul Verma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Kshitij Rb Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ranjana Verma
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
4
|
La(OH)3 Multi-Walled Carbon Nanotube/Carbon Paste-Based Sensing Approach for the Detection of Uric Acid—A Product of Environmentally Stressed Cells. BIOSENSORS 2022; 12:bios12090705. [PMID: 36140095 PMCID: PMC9496040 DOI: 10.3390/bios12090705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
Abstract
This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.
Collapse
|
5
|
Nishan U, Ullah W, Muhammad N, Asad M, Afridi S, Khan M, Shah M, Khan N, Rahim A. Development of a Nonenzymatic Colorimetric Sensor for the Detection of Uric Acid Based on Ionic Liquid-Mediated Nickel Nanostructures. ACS OMEGA 2022; 7:26983-26991. [PMID: 35936421 PMCID: PMC9352337 DOI: 10.1021/acsomega.2c04070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 05/21/2023]
Abstract
Uric acid (UA) is a metabolic byproduct of purine nucleotides and is excreted as a urine component. Abnormalities in UA metabolism cause localized inflammation due to crystal deposition and can lead to various diseases. In the current study, we successfully fabricated a biosensor based on 1-H-3-methylimidazolium acetate (ionic liquid, IL)-capped nickel nanoparticles (NiNPs) for the detection of uric acid in test samples. The structures of IL-capped NiNPs and their precursors were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The IL-capped NiNPs possessed intrinsic peroxidase-like properties and displayed selective UA quenching after interacting with 3,3',5,5'-tetramethylbenzidine (TMB) solution. Different parameters such as pH, time, IL, TMB, and UA concentration were optimized to obtain the best results for the proposed sensor. The UA biosensor shows good responses in the linear range from 1 × 10-8 to 2.40 × 10-6 M, with a lower limit of detection of 1.30 × 10-7 M, a limit of quantification of 4.3 × 10-7 M, and an R 2 value of 0.9994. For the colorimetric detection of UA, the proposed sensor gave a short time response of 4 min at room temperature and pH 7.5. The proposed sensing probe detects UA in real serum samples and could be used as a selective sensor for UA in the real sample detection.
Collapse
Affiliation(s)
- Umar Nishan
- Department
of Chemistry, Kohat University of Science
and Technology, Kohat, KP 26000, Pakistan
| | - Wajid Ullah
- Department
of Chemistry, Kohat University of Science
and Technology, Kohat, KP 26000, Pakistan
| | - Nawshad Muhammad
- Department
of Dental Materials, Institute of Basic
Medical Sciences Khyber Medical University, Peshawar, KP 25100, Pakistan
| | - Muhammad Asad
- Department
of Chemistry, Kohat University of Science
and Technology, Kohat, KP 26000, Pakistan
| | - Saifullah Afridi
- Department
of Chemistry, Kohat University of Science
and Technology, Kohat, KP 26000, Pakistan
| | - Muslim Khan
- Department
of Chemistry, Kohat University of Science
and Technology, Kohat, KP 26000, Pakistan
| | - Mohibullah Shah
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Naeem Khan
- Department
of Chemistry, Kohat University of Science
and Technology, Kohat, KP 26000, Pakistan
| | - Abdur Rahim
- Interdisciplinary
Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
6
|
Rapid and reliable HILIC-MS/MS method for monitoring allantoin as a biomarker of oxidative stress. Anal Biochem 2020; 589:113509. [DOI: 10.1016/j.ab.2019.113509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
|
7
|
Zinellu A, Sotgia S, Sotgiu E, Assaretti S, Baralla A, Mangoni AA, Satta AE, Carru C. Cholesterol lowering treatment restores blood global DNA methylation in chronic kidney disease (CKD) patients. Nutr Metab Cardiovasc Dis 2017; 27:822-829. [PMID: 28755807 DOI: 10.1016/j.numecd.2017.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Chronic kidney disease (CKD) is characterized by increased oxidative stress (OS). In consideration of the well-known link between OS and DNA methylation we assessed DNA methylcytosine (mCyt) concentrations in CKD patients at baseline and during cholesterol lowering treatment. METHODS AND RESULTS DNA methylation and OS indices (malonyldialdehyde, MDA; allantoin/uric acid ratio, All/UA) were measured in 30 CKD patients randomized to three cholesterol lowering regimens for 12 months (simvastatin 40 mg/day, ezetimibe/simvastatin 10/20 mg/day, or ezetimibe/simvastatin 10/40 mg/day) and 30 age- and sex-matched healthy controls. DNA methylation was significantly lower in CKD patients vs. controls (4.06 ± 0.20% vs. 4.27 ± 0.17% mCyt, p = 0.0001). Treatment significantly increased mCyt DNA concentrations in all patients (4.06 ± 0.04% at baseline; 4.12 ± 0.03% at 4 months; 4.17 ± 0.03% at 8 months; and 4.20 ± 0.02% at 12 months, p = 0.0001 for trend). A trend for a greater effect on DNA methylation was observed with combined treatment ezetimibe/simvastatin 10/40 mg/day (+5.2% after one year treatment). The treatment-associated mCyt increase was significantly correlated with the concomitant reduction in MDA concentrations and All/AU ratios. CONCLUSION Our results demonstrate that CKD patients have a lower degree of DNA methylation and that cholesterol lowering treatment restores mCyt DNA concentrations to levels similar to healthy controls. The treatment-associated increase in DNA methylation is correlated with a concomitant reduction in OS markers. The study was registered at clinicaltrials.gov (NCT00861731).
Collapse
Affiliation(s)
- A Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | - S Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - E Sotgiu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - S Assaretti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - A Baralla
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - A A Mangoni
- Department of Clinical Pharmacology, School of Medicine, Flinders University, Adelaide, Australia
| | - A E Satta
- Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari, Italy
| | - C Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Quality Control Unit, University Hospital Sassari (AOU), Sassari, Italy
| |
Collapse
|
8
|
Lačná J, Foret F, Kubáň P. Sensitive determination of malondialdehyde in exhaled breath condensate and biological fluids by capillary electrophoresis with laser induced fluorescence detection. Talanta 2017; 169:85-90. [DOI: 10.1016/j.talanta.2017.03.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/17/2017] [Indexed: 12/16/2022]
|
9
|
Zinellu A, Sotgia S, Mangoni AA, Sotgiu E, Ena S, Satta AE, Carru C. Effect of cholesterol lowering treatment on plasma markers of endothelial dysfunction in chronic kidney disease. J Pharm Biomed Anal 2016; 129:383-388. [DOI: 10.1016/j.jpba.2016.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/29/2016] [Accepted: 07/16/2016] [Indexed: 12/22/2022]
|
10
|
Simultaneous Determination of Indole-3-Acetic Acid and Indole-3-Butyric Acid in Plant by Field-Amplified Sample Stacking Open-Tubular Capillary Electrochromatography Based on Solid-Phase Extraction with Calixarene Sorbent. Chromatographia 2016. [DOI: 10.1007/s10337-015-2999-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Chen J, Zeng L, Xia T, Li S, Yan T, Wu S, Qiu G, Liu Z. Toward a biomarker of oxidative stress: a fluorescent probe for exogenous and endogenous malondialdehyde in living cells. Anal Chem 2015. [PMID: 26200908 DOI: 10.1021/acs.analchem.5b02032] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Malondialdehyde (MDA) is a significant biomarker of oxidative stress. Variations of MDA level in biological systems often represent pathological changes that are related with many types of diseases. Although a variety of techniques have been developed for MDA detection, the probing of this biomarker in living cells remains unexplored. Herein, we report a turn-on fluorescent probe, MDAP-1, with a synergistic photoinduced electron transfer (PET)-hydrogen bonding mechanism, which for the first time realizes MDA sensing under physiological conditions with excellent sensitivity and specificity. The probe responds to MDA with a fluorescence enhancement factor (FEF) of up to >170-fold and a large Stokes shift (∼180 nm). Further biological evaluations show that MDAP-1 is able to detect both endogenous and exogenous MDA in living cells. It can be used to track the generation of MDA under oxidative stress, as stimulated by H2O2. We believe the results of this work will be helpful to the studies of MDA-related biological events and the elucidation of the underlying pathological mechanism in the future.
Collapse
Affiliation(s)
- Jin Chen
- †School of Pharmaceutical Sciences, ‡Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and §College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Lingyu Zeng
- †School of Pharmaceutical Sciences, ‡Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and §College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Tian Xia
- †School of Pharmaceutical Sciences, ‡Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and §College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Shuang Li
- †School of Pharmaceutical Sciences, ‡Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and §College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Tengfei Yan
- †School of Pharmaceutical Sciences, ‡Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and §College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Song Wu
- †School of Pharmaceutical Sciences, ‡Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and §College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Guofu Qiu
- †School of Pharmaceutical Sciences, ‡Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and §College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhihong Liu
- †School of Pharmaceutical Sciences, ‡Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and §College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
12
|
Application of capillary electrophoresis with electrokinetic supercharging and sweeping for the on-line preconcentration of phenolic acids. Anal Bioanal Chem 2015; 407:7093-100. [DOI: 10.1007/s00216-015-8869-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/03/2015] [Accepted: 06/18/2015] [Indexed: 11/27/2022]
|
13
|
Zhang Y, Yang L, Tian X, Guo Y, Tang W, Yu A, Zhang W, Sun B, Zhang S. Determination of trace nitrites and nitrates in human urine and plasma by field-amplified sample stacking open-tubular capillary electrochromatography in a nano-latex coated capillary. JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1134/s1061934815070199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Zinellu A, Sotgia S, Mangoni AA, Sanna M, Satta AE, Carru C. Impact of cholesterol lowering treatment on plasma kynurenine and tryptophan concentrations in chronic kidney disease: relationship with oxidative stress improvement. Nutr Metab Cardiovasc Dis 2015; 25:153-159. [PMID: 25534866 DOI: 10.1016/j.numecd.2014.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/02/2014] [Accepted: 11/16/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIM Tryptophan (Trp) degradation via indoleamine (2,3)-dioxygenase (IDO), with consequent increased in kynurenine (Kyn) concentrations, has been proposed as marker of immune system activation. Oxidative stress (OS) might contribute to the pro-inflammatory state in chronic kidney disease (CKD) through the activation of NF-kB, with consequent activation and recruitment of immune cells. METHODS AND RESULTS Serum concentrations of Trp and Kyn, oxidative stress indices malondialdehyde (MDA) and allantoin/uric acid (All/UA) ratio and anti-oxidant amino acid taurine were measured in 30 CKD patients randomized to 40 mg/day simvastatin (group 1), ezetimibe/simvastatin 10/20 mg/day (group 2) or ezetimibe/simvastatin 10/40 mg/day (group 3) and treated for 12 months. Baseline Kyn and Kyn/Trp ratio were higher in CKD patients vs. healthy controls (1.67 ± 0.62 μmol/L vs 1.25 ± 0.40 μmol/L, p < 0.01 and 0.036 ± 0.016 vs 0.023 ± 0.010, p < 0.001 respectively). Both Kyn and Kyn/Trp ratio significantly decreased after cholesterol lowering treatment, to values comparable with healthy controls after one year treatment (1.67 ± 0.62 μmol/L vs 1.31 ± 0.51 μmol/L, p < 0.0001 and 0.036 ± 0.016 vs 0.028 ± 0.012 p < 0.0001, respectively). This was paralleled by a significant decrease in MDA (218 ± 143 nmol/L vs 176 ± 123 nmol/L, p < 0.01) and All/UA ratio (1.47 ± 0.72 vs 1.19 ± 0.51, p < 0.01) in CKD patients. CONCLUSIONS Amelioration of both oxidative and inflammation status after cholesterol lowering treatment in CKD might be mediated by restoration of antioxidant taurine concentrations during therapy (from 51.1 ± 13.3 μmol/L at baseline to 63.1 ± 16.4 μmol/L, p < 0.001 by ANOVA), suggesting that improvement of both oxidative and inflammation status in CKD patients could be explained, at least partly, by the cholesterol lowering effects.
Collapse
Affiliation(s)
- A Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | - S Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - A A Mangoni
- Department of Clinical Pharmacology, School of Medicine, Flinders University, Adelaide, Australia
| | - M Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - A E Satta
- Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari, Italy
| | - C Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Quality Control Unit, Hospital University of Sassari (AOU), Sassari, Italy.
| |
Collapse
|
15
|
Progress in stacking techniques based on field amplification of capillary electrophoresis. Anal Bioanal Chem 2014; 406:6129-50. [DOI: 10.1007/s00216-014-8062-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 02/07/2023]
|
16
|
A chemiluminescence method to detect malondialdehyde in plasma and urine. Anal Biochem 2013; 443:16-21. [DOI: 10.1016/j.ab.2013.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 11/24/2022]
|
17
|
Guo Y, Meng L, Zhang Y, Tang W, Zhang W, Xia Y, Ban F, Wu N, Zhang S. Sensitive determination of four tetracycline antibiotics in pig plasma by field-amplified sample stacking open-tubular capillary electrochromatography with dimethylethanolamine aminated polychloromethyl styrene nano-latex coated capillary column. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 942-943:151-7. [DOI: 10.1016/j.jchromb.2013.10.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
|
18
|
Guo Y, Xu F, Meng L, Tang W, Xia Y, Wu Y, Zhang S. Preparation and application of trimethylamine amination polychloromethyl styrene nanolatex coated capillary column for the determination of bromate by field-amplified sample stacking open-tubular capillary electrochromatography. Electrophoresis 2013; 34:1312-8. [DOI: 10.1002/elps.201200541] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/02/2013] [Accepted: 02/02/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Yaxiao Guo
- Chemistry Department; Key Laboratory of Chemical Biology and Organic Chemistry of Henan; Zhengzhou University; Zhengzhou; P. R. China
| | - Feifei Xu
- Chemistry Department; Key Laboratory of Chemical Biology and Organic Chemistry of Henan; Zhengzhou University; Zhengzhou; P. R. China
| | - Lei Meng
- Chemistry Department; Key Laboratory of Chemical Biology and Organic Chemistry of Henan; Zhengzhou University; Zhengzhou; P. R. China
| | - Wei Tang
- Chemistry Department; Key Laboratory of Chemical Biology and Organic Chemistry of Henan; Zhengzhou University; Zhengzhou; P. R. China
| | - Yan Xia
- School of Chemistry; Nankai University; Tianjin; P. R. China
| | - Yangjie Wu
- Chemistry Department; Key Laboratory of Chemical Biology and Organic Chemistry of Henan; Zhengzhou University; Zhengzhou; P. R. China
| | - Shusheng Zhang
- Chemistry Department; Key Laboratory of Chemical Biology and Organic Chemistry of Henan; Zhengzhou University; Zhengzhou; P. R. China
| |
Collapse
|
19
|
LDL S-homocysteinylation decrease in chronic kidney disease patients undergone lipid lowering therapy. Eur J Pharm Sci 2012; 47:117-23. [DOI: 10.1016/j.ejps.2012.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 05/04/2012] [Accepted: 05/12/2012] [Indexed: 11/24/2022]
|
20
|
Zinellu A, Sotgia S, Loriga G, Deiana L, Satta AE, Carru C. Oxidative stress improvement is associated with increased levels of taurine in CKD patients undergoing lipid-lowering therapy. Amino Acids 2012; 43:1499-507. [DOI: 10.1007/s00726-012-1223-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/12/2012] [Indexed: 12/01/2022]
|
21
|
He W, Jia H, Guo S, Zheng Z. Ultrasensitive Detection of Nickel(II) Ion by Capillary Electrophoresis–Post Chemiluminescence with Field-amplified Sample Injection. CHEM LETT 2011. [DOI: 10.1246/cl.2011.676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|