1
|
James VK, van der Zon AAM, Escobar EE, Dunham SD, Gargano AFG, Brodbelt JS. Hydrophilic Interaction Chromatography Coupled to Ultraviolet Photodissociation Affords Identification, Localization, and Relative Quantitation of Glycans on Intact Glycoproteins. J Proteome Res 2024; 23:4684-4693. [PMID: 39312773 DOI: 10.1021/acs.jproteome.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Protein glycosylation is implicated in a wide array of diseases, yet glycoprotein analysis remains elusive owing to the extreme heterogeneity of glycans, including microheterogeneity of some of the glycosites (amino acid residues). Various mass spectrometry (MS) strategies have proven tremendously successful for localizing and identifying glycans, typically utilizing a bottom-up workflow in which glycoproteins are digested to create glycopeptides to facilitate analysis. An emerging alternative is top-down MS that aims to characterize intact glycoproteins to allow precise identification and localization of glycans. The most comprehensive characterization of intact glycoproteins requires integration of a suitable separation method and high performance tandem mass spectrometry to provide both protein sequence information and glycosite localization. Here, we couple ultraviolet photodissociation and hydrophilic interaction chromatography with high resolution mass spectrometry to advance the characterization of intact glycoproteins ranging from 15 to 34 kDa, offering site localization of glycans, providing sequence coverages up to 93%, and affording relative quantitation of individual glycoforms.
Collapse
Affiliation(s)
- Virginia K James
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Annika A M van der Zon
- van 't Hoff Institute for Molecular Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Centre of Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Edwin E Escobar
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sean D Dunham
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrea F G Gargano
- van 't Hoff Institute for Molecular Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Centre of Analytical Sciences Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Higuchi J, Kurogochi M, Yamaguchi T, Fujio N, Mitsuduka S, Ishida Y, Fukudome H, Nonoyama N, Gota M, Mizuno M, Sakai F. Qualitative and Quantitative Analyses of Sialyl O-Glycans in Milk-Derived Sialylglycopeptide Concentrate. Foods 2024; 13:2792. [PMID: 39272557 PMCID: PMC11395400 DOI: 10.3390/foods13172792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Sialyl glycans have several biological functions. We have previously reported on the preparation and bifidogenic activity of milk-derived sialylglycopeptide (MSGP) concentrate containing sialyl O-glycans. The current study qualitatively and quantitatively analyzed the sialyl O-glycans present in the MSGP concentrate. Notably, our quantitative analysis indicated that a majority of O-glycopeptides in the MSGP concentrate were derived from glycomacropeptides. The concentrate was found to contain mainly three types of sialyl core 1 O-glycans, with the disialyl core 1 O-glycan being the most abundant. We successfully quantified three types of sialyl core 1 O-glycans using a meticulous method that used homogeneous O-glycopeptides as calibration standards. Our results provide valuable insights into assessment strategies for the quality control of O-glycans in dietary products and underscore the potential applications of MSGP concentrate in the food industry and other industries.
Collapse
Affiliation(s)
- Junichi Higuchi
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| | - Masaki Kurogochi
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi-ku, Tokyo 173-0003, Japan
| | - Toshiyuki Yamaguchi
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| | - Noriki Fujio
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| | - Sho Mitsuduka
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| | - Yuko Ishida
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| | - Hirofumi Fukudome
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| | - Noriko Nonoyama
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| | - Masayuki Gota
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi-ku, Tokyo 173-0003, Japan
| | - Fumihiko Sakai
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe-shi 350-1165, Saitama, Japan
| |
Collapse
|
3
|
Bi M, Tian Z. Mass spectrometry-based structure-specific N-glycoproteomics and biomedical applications. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1172-1183. [PMID: 39118567 PMCID: PMC11464918 DOI: 10.3724/abbs.2024133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
N-linked glycosylation is a common posttranslational modification of proteins that results in macroheterogeneity of the modification site. However, unlike simpler modifications, N-glycosylation introduces an additional layer of complexity with tens of thousands of possible structures arising from various dimensions, including different monosaccharide compositions, sequence structures, linking structures, isomerism, and three-dimensional conformations. This results in additional microheterogeneity of the modification site of N-glycosylation, i.e., the same N-glycosylation site can be modified with different glycans with a certain stoichiometric ratio. N-glycosylation regulates the structure and function of N-glycoproteins in a site- and structure-specific manner, and differential expression of N-glycosylation under disease conditions needs to be characterized through site- and structure-specific quantitative analysis. Numerous advanced methods ranging from sample preparation to mass spectrum analysis have been developed to distinguish N-glycan structures. Chemical derivatization of monosaccharides, online liquid chromatography separation and ion mobility spectrometry enable the physical differentiation of samples. Tandem mass spectrometry further analyzes the macro/microheterogeneity of intact N-glycopeptides through the analysis of fragment ions. Moreover, the development of search engines and AI-based software has enhanced our understanding of the dissociation patterns of intact N-glycopeptides and the clinical significance of differentially expressed intact N-glycopeptides. With the help of these modern methods, structure-specific N-glycoproteomics has become an important tool with extensive applications in the biomedical field.
Collapse
Affiliation(s)
- Ming Bi
- />School of Chemical Science and EngineeringTongji UniversityShanghai200092China
| | - Zhixin Tian
- />School of Chemical Science and EngineeringTongji UniversityShanghai200092China
| |
Collapse
|
4
|
Kim BJ, Kuhfeld RF, Haas JL, Anaya YM, Martinez RR, Sah BNP, Breen B, Newsham K, Malinczak CA, Dallas DC. Digestive Profiles of Human Milk, Recombinant Human and Bovine Lactoferrin: Comparing the Retained Intact Protein and Peptide Release. Nutrients 2024; 16:2360. [PMID: 39064803 PMCID: PMC11280017 DOI: 10.3390/nu16142360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Lactoferrin (LF) is a major component of human milk. LF supplementation (currently bovine) supports the immune system and helps maintain iron homeostasis in adults. No recombinant human lactoferrin (rhLF) is available for commercial food use. To determine the extent to which rhLF (Effera™) produced by Komagataella phaffii digests similarly to hmLF, a validated in vitro digestion protocol was carried out. Bovine LF (bLF) was used as an additional control, as it is approved for use in various food categories. This study compared the extent of intact protein retention and the profile of peptides released in hmLF, bLF and rhLF (each with low and high iron saturation) across simulated adult gastric and intestinal digestion using gel electrophoresis, ELISA and LC-MS. Intact LF retention across digestion was similar across LF types, but the highest iron-saturated hmLF had greater retention in the simulated gastric fluid than all other sample types. Peptides identified in digested hmLF samples strongly correlated with digested rhLF samples (0.86 < r < 0.92 in the gastric phase and 0.63 < r < 0.70 in the intestinal phase), whereas digested bLF samples were significantly different. These findings support the potential for rhLF as a food ingredient for human consumption.
Collapse
Affiliation(s)
- Bum Jin Kim
- Nutrition Program, School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR 97331, USA; (B.J.K.); (R.F.K.); (B.N.P.S.)
| | - Russell F. Kuhfeld
- Nutrition Program, School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR 97331, USA; (B.J.K.); (R.F.K.); (B.N.P.S.)
| | - Joanna L. Haas
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA;
| | - Yanisa M. Anaya
- Helaina, New York, NY 10010, USA; (Y.M.A.); (R.R.M.); (B.B.); (K.N.); (C.-A.M.)
| | | | - Baidya Nath P. Sah
- Nutrition Program, School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR 97331, USA; (B.J.K.); (R.F.K.); (B.N.P.S.)
| | - Bella Breen
- Helaina, New York, NY 10010, USA; (Y.M.A.); (R.R.M.); (B.B.); (K.N.); (C.-A.M.)
| | - Kahler Newsham
- Helaina, New York, NY 10010, USA; (Y.M.A.); (R.R.M.); (B.B.); (K.N.); (C.-A.M.)
| | | | - David C. Dallas
- Nutrition Program, School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR 97331, USA; (B.J.K.); (R.F.K.); (B.N.P.S.)
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
5
|
Lee J, Park JE, Lee D, Seo N, An HJ. Advancements in protein glycosylation biomarkers for ovarian cancer through mass spectrometry-based approaches. Expert Rev Mol Diagn 2024; 24:249-258. [PMID: 38112537 DOI: 10.1080/14737159.2023.2297933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Ovarian cancer, characterized by metastasis and reduced 5-year survival rates, stands as a substantial factor in the mortality of gynecological malignancies worldwide. The challenge of delayed diagnosis originates from vague early symptoms and the absence of efficient screening and diagnostic biomarkers for early cancer detection. Recent studies have explored the intricate interplay between ovarian cancer and protein glycosylation, unveiling the potential significance of glycosylation-oriented biomarkers. AREAS COVERED This review examines the progress in glycosylation biomarker research, with particular emphasis on advances driven by mass spectrometry-based technologies. We document milestones achieved, discuss encountered limitations, and also highlight potential areas for future research and development of protein glycosylation biomarkers for ovarian cancer. EXPERT OPINION The association of glycosylation in ovarian cancer is well known, but current research lacks desired sensitivity and specificity for early detection. Notably, investigations into protein-specific and site-specific glycoproteomics have the potential to significantly enhance our understanding of ovarian cancer and facilitate the identification of glycosylation-based biomarkers. Furthermore, the integration of advanced mass spectrometry techniques with AI-driven analysis and glycome databases holds the promise for revolutionizing biomarker discovery for ovarian cancer, ultimately transforming diagnosis and improving patient outcomes.
Collapse
Affiliation(s)
- Jua Lee
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Ji Eun Park
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia Glycomics Reference Site, Daejeon, Republic of Korea
| | - Daum Lee
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia Glycomics Reference Site, Daejeon, Republic of Korea
| | - Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia Glycomics Reference Site, Daejeon, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia Glycomics Reference Site, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Althnaibat RM, Bruce HL, Wu J, Gänzle MG. Bioactive peptides in hydrolysates of bovine and camel milk proteins: A review of studies on peptides that reduce blood pressure, improve glucose homeostasis, and inhibit pathogen adhesion. Food Res Int 2024; 175:113748. [PMID: 38129050 DOI: 10.1016/j.foodres.2023.113748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The prevalence of diet-related chronic conditions including hypertension and cardiovascular disease, and diabetes mellitus has increased worldwide. Research regarding the use of food-derived bioactive peptides as an alternative strategy to mitigate chronic diseases is on the rise. Milk is recognized as one of the main dietary protein sources for health beneficial bioactive compounds. Hundreds of in vitro studies have suggested that milk-derived bioactive peptides offer multiple biological and physiological benefits, and some but not all were confirmed in vivo with animal models for hypertension, hyperglycemia, and pathogen adhesion. However, only a limited number of health benefits have been confirmed by randomized clinical trials. This review provides an overview of the current clinical studies that target hypertension, postprandial hyperglycemic, and adhesion of enteric pathogen with bioactive peptides derived from bovine and camel milk, with a focus on the factors affecting the efficacy of orally ingested products.
Collapse
Affiliation(s)
- Rami M Althnaibat
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, AB, Canada
| | - Heather L Bruce
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, AB, Canada
| | - Jianping Wu
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, AB, Canada
| | - Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Morozumi M, Wada Y, Tsuda M, Tabata F, Ehara T, Nakamura H, Miyaji K. Cross-feeding among bifidobacteria on glycomacropeptide. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
8
|
Peng W, Reyes CDG, Gautam S, Yu A, Cho BG, Goli M, Donohoo K, Mondello S, Kobeissy F, Mechref Y. MS-based glycomics and glycoproteomics methods enabling isomeric characterization. MASS SPECTROMETRY REVIEWS 2023; 42:577-616. [PMID: 34159615 PMCID: PMC8692493 DOI: 10.1002/mas.21713] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is one of the most significant and abundant posttranslational modifications in mammalian cells. It mediates a wide range of biofunctions, including cell adhesion, cell communication, immune cell trafficking, and protein stability. Also, aberrant glycosylation has been associated with various diseases such as diabetes, Alzheimer's disease, inflammation, immune deficiencies, congenital disorders, and cancers. The alterations in the distributions of glycan and glycopeptide isomers are involved in the development and progression of several human diseases. However, the microheterogeneity of glycosylation brings a great challenge to glycomic and glycoproteomic analysis, including the characterization of isomers. Over several decades, different methods and approaches have been developed to facilitate the characterization of glycan and glycopeptide isomers. Mass spectrometry (MS) has been a powerful tool utilized for glycomic and glycoproteomic isomeric analysis due to its high sensitivity and rich structural information using different fragmentation techniques. However, a comprehensive characterization of glycan and glycopeptide isomers remains a challenge when utilizing MS alone. Therefore, various separation methods, including liquid chromatography, capillary electrophoresis, and ion mobility, were developed to resolve glycan and glycopeptide isomers before MS. These separation techniques were coupled to MS for a better identification and quantitation of glycan and glycopeptide isomers. Additionally, bioinformatic tools are essential for the automated processing of glycan and glycopeptide isomeric data to facilitate isomeric studies in biological cohorts. Here in this review, we discuss commonly employed MS-based techniques, separation hyphenated MS methods, and software, facilitating the separation, identification, and quantitation of glycan and glycopeptide isomers.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Kaitlyn Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
9
|
Oh MJ, Lee SH, Kim U, An HJ. In-depth investigation of altered glycosylation in human haptoglobin associated cancer by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:496-518. [PMID: 34037272 DOI: 10.1002/mas.21707] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 05/08/2023]
Abstract
Serum haptoglobin (Hp), a highly sialylated biomolecule with four N-glycosylation sites, is a positive acute-phase response glycoprotein that acts as an immunomodulator. Hp has gained considerable attention due to its potential as a signature molecule that exhibits aberrant glycosylation in inflammatory disorders and malignancies. Its glycosylation can be analyzed qualitatively and quantitatively by various methods using mass spectrometry. In this review, we have provided a brief overview of Hp structure and biological function and described mass spectrometry-based techniques for analyzing glycosylation ranging from macroheterogeneity to microheterogeneity of Hp in diseases and cancer. The sugars on haptoglobin can be a sweet bridge to link the potential of cancer-specific biomarkers to clinically relevant applications.
Collapse
Affiliation(s)
- Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Sung Hyeon Lee
- Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, South Korea
| | - Unyoung Kim
- Division of Bioanalysis, Biocomplete Inc., Seoul, South Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
10
|
Runthala A, Mbye M, Ayyash M, Xu Y, Kamal-Eldin A. Caseins: Versatility of Their Micellar Organization in Relation to the Functional and Nutritional Properties of Milk. Molecules 2023; 28:molecules28052023. [PMID: 36903269 PMCID: PMC10004547 DOI: 10.3390/molecules28052023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
The milk of mammals is a complex fluid mixture of various proteins, minerals, lipids, and other micronutrients that play a critical role in providing nutrition and immunity to newborns. Casein proteins together with calcium phosphate form large colloidal particles, called casein micelles. Caseins and their micelles have received great scientific interest, but their versatility and role in the functional and nutritional properties of milk from different animal species are not fully understood. Caseins belong to a class of proteins that exhibit open and flexible conformations. Here, we discuss the key features that maintain the structures of the protein sequences in four selected animal species: cow, camel, human, and African elephant. The primary sequences of these proteins and their posttranslational modifications (phosphorylation and glycosylation) that determine their secondary structures have distinctively evolved in these different animal species, leading to differences in their structural, functional, and nutritional properties. The variability in the structures of milk caseins influence the properties of their dairy products, such as cheese and yogurt, as well as their digestibility and allergic properties. Such differences are beneficial to the development of different functionally improved casein molecules with variable biological and industrial utilities.
Collapse
Affiliation(s)
- Ashish Runthala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vijayawada 522302, India
- Correspondence: (A.R.); (A.K.-E.); Tel.: +971-5-0138-9248 (A.K.-E.)
| | - Mustapha Mbye
- Department of Food Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100871, China
| | - Afaf Kamal-Eldin
- Department of Food Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (A.R.); (A.K.-E.); Tel.: +971-5-0138-9248 (A.K.-E.)
| |
Collapse
|
11
|
Umar M, Ruktanonchai U, Makararpong D, Anal AK. Enhancing Immunity Against Pathogens Through Glycosylated Bovine Colostrum Proteins. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2169866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Muhammad Umar
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Pathumthani, Thailand
| | - Uracha Ruktanonchai
- NANOTEC, National Science and Technology Development Agency, Pathumthani, Thailand
| | | | - Anil Kumar Anal
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Pathumthani, Thailand
| |
Collapse
|
12
|
Park DB, Kim L, Hwang JH, Kim KT, Park JE, Choi JS, An HJ. Temporal quantitative profiling of sialyllactoses and sialic acids after oral administration of sialyllactose to mini-pigs with osteoarthritis. RSC Adv 2023; 13:1115-1124. [PMID: 36686942 PMCID: PMC9811936 DOI: 10.1039/d2ra05912f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Sialyllactose (SL) is the most abundant acidic oligosaccharide in human breast milk and plays a primary role in various biological processes. Recently, SL has attracted attention as an excellent dietary supplement for arthritis because it is effective in cartilage protection and treatment. Despite the superior function of SL, there are few pharmacological studies of SL according to blood concentrations in arthritis models. In this study, we investigated quantitative changes in SL and sialic acids in the plasma obtained from mini-pigs with osteoarthritis throughout exogenous administration of SL using liquid chromatography-multiple reaction monitoring mass spectrometry. Plasma concentrations of SL and sialic acids in the SL-fed group showed a significant difference compared to the control group. Mini pigs were fed only Neu5Ac bound to SL, but the concentration patterns of the two types of sialic acid, Neu5Ac and Neu5Gc, were similar. In addition, the relative mRNA expression level of matrix metalloproteinases (MMPs), which is known as a critical factor in cartilage matrix degradation, was remarkably decreased in the synovial membrane of the SL-fed group. Consequently, the temporal quantitative profiling suggests that dietary SL can be metabolized and utilized in the body and may protect against cartilage degradation by suppressing MMP expression during osteoarthritis progression.
Collapse
Affiliation(s)
- Dan Bi Park
- GeneChem Inc. Yuseong-gu Daejeon 34025 Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
| | - Lila Kim
- GeneChem Inc. Yuseong-gu Daejeon 34025 Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology Jeollabukdo 56212 Republic of Korea
| | - Kyung-Tai Kim
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology Jeollabukdo 56212 Republic of Korea
| | - Ji Eun Park
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
- Asia Glycomics Reference Site Daejeon 34134 Republic of Korea
| | - Jong-Soon Choi
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
- Research Center for Materials Analysis, Korea Basic Science Institute Daejeon 34133 Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
- Asia Glycomics Reference Site Daejeon 34134 Republic of Korea
| |
Collapse
|
13
|
Althnaibat RM, Koch M, Bruce HL, Wefers D, Gänzle MG. Glycomacropeptide from camel milk inhibits the adhesion of enterotoxigenic Escherichia coli K88 to porcine cells. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
The Influence of Clusterin Glycosylation Variability on Selected Pathophysiological Processes in the Human Body. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7657876. [PMID: 36071866 PMCID: PMC9441386 DOI: 10.1155/2022/7657876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
The present review gathers together the most important information about variability in clusterin molecular structure, its profile, and the degree of glycosylation occurring in human tissues and body fluids in the context of the utility of these characteristics as potential diagnostic biomarkers of selected pathophysiological conditions. The carbohydrate part of clusterin plays a crucial role in many biological processes such as endocytosis and apoptosis. Many pathologies associated with neurodegeneration, carcinogenesis, metabolic diseases, and civilizational diseases (e.g., cardiovascular incidents and male infertility) have been described as causes of homeostasis disturbance, in which the glycan part of clusterin plays a very important role. The results of the discussed studies suggest that glycoproteomic analysis of clusterin may help differentiate the severity of hippocampal atrophy, detect the causes of infertility with an immune background, and monitor the development of cancer. Understanding the mechanism of clusterin (CLU) action and its binding epitopes may enable to indicate new therapeutic goals. The carbohydrate part of clusterin is considered necessary to maintain its proper molecular conformation, structural stability, and proper systemic and/or local biological activity. Taking into account the wide spectrum of CLU action and its participation in many processes in the human body, further studies on clusterin glycosylation variability are needed to better understand the molecular mechanisms of many pathophysiological conditions. They can also provide the opportunity to find new biomarkers and enrich the panel of diagnostic parameters for diseases that still pose a challenge for modern medicine.
Collapse
|
15
|
Lyman DF, Bell A, Black A, Dingerdissen H, Cauley E, Gogate N, Liu D, Joseph A, Kahsay R, Crichton DJ, Mehta A, Mazumder R. Modeling and integration of N-glycan biomarkers in a comprehensive biomarker data model. Glycobiology 2022; 32:855-870. [PMID: 35925813 PMCID: PMC9487899 DOI: 10.1093/glycob/cwac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Molecular biomarkers measure discrete components of biological processes that can contribute to disorders when impaired. Great interest exists in discovering early cancer biomarkers to improve outcomes. Biomarkers represented in a standardized data model, integrated with multi-omics data, may improve understanding and use of novel biomarkers such as glycans and glycoconjugates. Among altered components in tumorigenesis, N-glycans exhibit substantial biomarker potential, when analyzed with their protein carriers. However, such data are distributed across publications and databases of diverse formats, which hampers their use in research and clinical application. Mass spectrometry measures of fifty N-glycans, on seven serum proteins in liver disease, were integrated (as a panel) into a cancer biomarker data model, providing a unique identifier, standard nomenclature, links to glycan resources, and accession and ontology annotations to standard protein, gene, disease, and biomarker information. Data provenance was documented with a standardized FDA-supported BioCompute Object. Using the biomarker data model allows capture of granular information, such as glycans with different levels of abundance in cirrhosis, hepatocellular carcinoma, and transplant groups. Such representation in a standardized data model harmonizes glycomics data in a unified framework, making glycan-protein biomarker data exploration more available to investigators and to other data resources. The biomarker data model we describe can be used by researchers to describe their novel glycan and glycoconjugate biomarkers, can integrate N-glycan biomarker data with multi-source biomedical data, and can foster discovery and insight within a unified data framework for glycan biomarker representation thereby making the data FAIR (Findable, Accessible, Interoperable, Reusable) (https://www.go-fair.org/fair-principles/).
Collapse
Affiliation(s)
- Daniel F Lyman
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Amanda Bell
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Alyson Black
- The Department of Cell & Molecular Pharmacology, The Medical University of South Carolina, Charleston, SC, 29403, United States of America
| | - Hayley Dingerdissen
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Edmund Cauley
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America.,The McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC 20037, United States of America
| | - Nikhita Gogate
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - David Liu
- NASA Jet Propulsion Laboratory, Pasadena, CA 91109, United States of America
| | - Ashia Joseph
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Robel Kahsay
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America
| | - Daniel J Crichton
- NASA Jet Propulsion Laboratory, Pasadena, CA 91109, United States of America
| | - Anand Mehta
- The Department of Cell & Molecular Pharmacology, The Medical University of South Carolina, Charleston, SC, 29403, United States of America
| | - Raja Mazumder
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, United States of America.,The McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC 20037, United States of America
| |
Collapse
|
16
|
Molnarova K, Cokrtova K, Tomnikova A, Krizek T, Kozlik P. Liquid chromatography and capillary electrophoresis in glycomic and glycoproteomic analysis. MONATSHEFTE FUR CHEMIE 2022; 153:659-686. [PMID: 35754790 PMCID: PMC9212196 DOI: 10.1007/s00706-022-02938-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
Glycosylation is one of the most significant and abundant post-translational modifications in cells. Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycomic and glycoproteomic analysis is highly challenging because of the large diversity of structures, low abundance, site-specific heterogeneity, and poor ionization efficiency of glycans and glycopeptides in mass spectrometry (MS). MS is a key tool for characterization of glycans and glycopeptides. However, MS alone does not always provide full structural and quantitative information for many reasons, and thus MS is combined with some separation technique. This review focuses on the role of separation techniques used in glycomic and glycoproteomic analyses, liquid chromatography and capillary electrophoresis. The most important separation conditions and results are presented and discussed. Graphical abstract
Collapse
Affiliation(s)
- Katarina Molnarova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Cokrtova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alice Tomnikova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Krizek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
17
|
Romo EZ, Zivkovic AM. Glycosylation of HDL-Associated Proteins and Its Implications in Cardiovascular Disease Diagnosis, Metabolism and Function. Front Cardiovasc Med 2022; 9:928566. [PMID: 35694676 PMCID: PMC9184513 DOI: 10.3389/fcvm.2022.928566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 01/09/2023] Open
Abstract
High-density lipoprotein (HDL) particles, long known for their critical role in the prevention of cardiovascular disease (CVD), were recently identified to carry a wide array of glycosylated proteins, and the importance of this glycosylation in the structure, function and metabolism of HDL are starting to emerge. Early studies have demonstrated differential glycosylation of HDL-associated proteins in various pathological states, which may be key to understanding their etiological role in these diseases and may be important for diagnostic development. Given the vast array and specificity of glycosylation pathways, the study of HDL-associated glycosylation has the potential to uncover novel mechanisms and biomarkers of CVD. To date, no large studies examining the relationships between HDL glycosylation profiles and cardiovascular outcomes have been performed. However, small pilot studies provide promising preliminary evidence that such a relationship may exist. In this review article we discuss the current state of the evidence on the glycosylation of HDL-associated proteins, the potential for HDL glycosylation profiling in CVD diagnostics, how glycosylation affects HDL function, and the potential for modifying the glycosylation of HDL-associated proteins to confer therapeutic value.
Collapse
|
18
|
Lee J, Yeo I, Kim Y, Shin D, Kim J, Kim Y, Lim YS, Kim Y. Comparison of Fucose-Specific Lectins to Improve Quantitative AFP-L3 Assay for Diagnosing Hepatocellular Carcinoma Using Mass Spectrometry. J Proteome Res 2022; 21:1548-1557. [PMID: 35536554 DOI: 10.1021/acs.jproteome.2c00196] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycoproteins have many important biological functions. In particular, aberrant glycosylation has been observed in various cancers, such as liver cancer. A well-known glycoprotein biomarker is α-fetoprotein (AFP), a surveillance biomarker for hepatocellular carcinoma (HCC) that contains a glycosylation site at asparagine 251. The low diagnostic sensitivity of AFP led researchers to focus on AFP-L3, which has the same sequence as conventional AFP but contains a fucosylated glycan. AFP-L3 has high affinity for Lens culinaris agglutinin (LCA) lectin, prompting many groups to use it for detecting AFP-L3. However, a few studies have identified more effective lectins for fractionating AFP-L3. In this study, we compared the amounts of enriched AFP-L3 with five fucose-specific lectins─LCA, Lotus tetragonolobus lectin (LTL), Ulex europaeus agglutinin I (UEA I), Aleuria aurantia lectin (AAL), and Aspergillus oryzae lectin (AOL)─to identify better lectins and improve HCC diagnostic assays using mass spectrometry (MS). Our results indicate that LTL was the most effective lectin for capturing AFP-L3 species, yielding approximately 3-fold more AFP-L3 than LCA from the same pool of HCC serum samples. Thus, we recommend the use of LTL for AFP-L3 assays, given its potential to improve the diagnostic sensitivity in patients having limited results by conventional LCA assay. The MS data have been deposited to the PeptideAtlas (PASS01752).
Collapse
Affiliation(s)
- Jihyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, Korea
| | - Injoon Yeo
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, Korea
| | - Yoseop Kim
- Department of Biomedical Engineering, Seoul National University College of Engineering, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Dongyoon Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, Korea
| | - Jaenyeon Kim
- Department of Biomedical Engineering, Seoul National University College of Engineering, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yeongshin Kim
- Department of Biomedical Engineering, Seoul National University College of Engineering, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Young-Suk Lim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, Songpa-gu, Seoul 05505, Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, Korea.,Department of Biomedical Engineering, Seoul National University College of Engineering, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
19
|
Koh J, Kim BJ, Qu Y, Huang H, Dallas DC. Top-Down Glycopeptidomics Reveals Intact Glycomacropeptide Is Digested to a Wide Array of Peptides in Human Jejunum. J Nutr 2022; 152:429-438. [PMID: 34850069 DOI: 10.1093/jn/nxab400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/30/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Bovine milk κ-casein-derived caseinomacropeptide (CMP) is produced in large quantities during cheese-making and has various biological activities demonstrated via in vitro and in vivo experiments. Previous studies examined protein degradation and peptide release after casein or whey protein consumption. However, whether purified intact CMP that is partially glycosylated survives intact to its presumed site of bioactivity within the gut remains unknown. OBJECTIVES The aim of this study was to determine the extent to which purified intact CMP (including glycosylated forms) is digested into peptide fragments within the jejunum of healthy human adults after consumption. METHODS Jejunal fluids were collected from 3 adult participants (2 men and 1 woman, age: 27 ± 7 y; BMI: 23 ± 1 kg/m2) for 3 h after consuming 37.5 g of purified intact CMP. CMP and CMP-derived peptides were isolated from the collected jejunal fluids by ethanol precipitation and solid-phase extraction and identified by MS-based top-down glycopeptidomics. Relative abundances of CMP and CMP-derived peptides were compared qualitatively between the feed and the jejunal fluids. RESULTS Intact CMP was dominant in feeding material, accounting for 90% of the total ion abundance of detected peptides, and in very low abundance (<2%) in the jejunal fluids. CMP-derived fragment peptides ranging from 11 to 20 amino acids in length were predominant (accounting for 68-88% of the total peptide ion abundance) in jejunal fluids during 1-3 h post consumption. CONCLUSIONS This study demonstrates that intact CMP (including glycosylated forms) is mostly digested in the human jejunum, releasing a wide array of CMP-derived peptide fragments. Some of the CMP-derived peptides with high homology to known bioactive peptides consistently survived across 3 h of digestion. Therefore, future research should examine the biological effects of the partially digested form-the CMP-derived fragments-rather than those of intact CMP.
Collapse
Affiliation(s)
- Jeewon Koh
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Bum Jin Kim
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Yunyao Qu
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA.,Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Honggang Huang
- Research and Development, Arla Foods Ingredients Group P/S, Viby J, Denmark
| | - David C Dallas
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA.,Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
20
|
Gutierrez-Reyes CD, Jiang P, Atashi M, Bennett A, Yu A, Peng W, Zhong J, Mechref Y. Advances in mass spectrometry-based glycoproteomics: An update covering the period 2017-2021. Electrophoresis 2021; 43:370-387. [PMID: 34614238 DOI: 10.1002/elps.202100188] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
Protein glycosylation is one of the most common posttranslational modifications, and plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, host-pathogen interaction, and protein stability. Glycoproteomics is a proteomics subfield dedicated to identifying and characterizing the glycans and glycoproteins in a given cell or tissue. Aberrant glycosylation has been associated with various diseases such as Alzheimer's disease, viral infections, inflammation, immune deficiencies, congenital disorders, and cancers. However, glycoproteomic analysis remains challenging because of the low abundance, site-specific heterogeneity, and poor ionization efficiency of glycopeptides during LC-MS analyses. Therefore, the development of sensitive and accurate approaches to efficiently characterize protein glycosylation is crucial. Methods such as metabolic labeling, enrichment, and derivatization of glycopeptides, coupled with different mass spectrometry techniques and bioinformatics tools, have been developed to achieve sophisticated levels of quantitative and qualitative analyses of glycoproteins. This review attempts to update the recent developments in the field of glycoproteomics reported between 2017 and 2021.
Collapse
Affiliation(s)
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Andrew Bennett
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
21
|
Remoroza CA, Burke MC, Liu Y, Mirokhin YA, Tchekhovskoi DV, Yang X, Stein SE. Representing and Comparing Site-Specific Glycan Abundance Distributions of Glycoproteins. J Proteome Res 2021; 20:4475-4486. [PMID: 34327998 PMCID: PMC9830564 DOI: 10.1021/acs.jproteome.1c00442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A method for representing and comparing distributions of N-linked glycans located at specific sites on proteins is presented. The representation takes the form of a simple mass spectrum for a given peptide sequence, with each peak corresponding to a different glycopeptide. The mass (in place of m/z) of each peak is that of the glycan mass, and its abundance corresponds to its relative abundance in the electrospray MS1 spectrum. This provides a facile means of representing all identifiable glycopeptides arising from a single protein "sequon" on a specific sequence, thereby enabling the comparison and searching of these distributions as routinely done for mass spectra. Likewise, these reference glycopeptide abundance distribution spectra (GADS) can be stored in searchable libraries. A set of such libraries created from available data is provided along with an adapted version of the widely used NIST-MS library-search software. Since GADS contain only MS1 abundances and identifications, they are equally suitable for expressing collision-induced fragmentation and electron-transfer dissociation determinations of glycopeptide identity. Comparisons of GADS for N-glycosylated sites on several proteins, especially the SARS-CoV-2 spike protein, demonstrate the potential reproducibility of GADS and their utility for comparing site-specific distributions.
Collapse
|
22
|
Qu Y, Kim BJ, Koh J, Dallas DC. Analysis of Bovine Kappa-Casein Glycomacropeptide by Liquid Chromatography-Tandem Mass Spectrometry. Foods 2021; 10:foods10092028. [PMID: 34574138 PMCID: PMC8469635 DOI: 10.3390/foods10092028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022] Open
Abstract
Caseinomacropeptide (CMP) is released from bovine kappa-casein after rennet treatment and is one of the major peptides in whey protein isolate. CMP has in vitro anti-inflammatory and antibacterial activities. CMP has two major amino acid sequences with different modifications, including glycosylation, phosphorylation and oxidation. However, no previous work has provided a comprehensive profile of intact CMP. Full characterization of CMP composition and structure is essential to understand the bioactivity of CMP. In this study, we developed a top-down glycopeptidomics-based analytical method to profile CMP and CMP-derived peptides using Orbitrap mass spectrometry combined with nano-liquid chromatography with electron-transfer/higher-energy collision dissociation. The liquid chromatography–tandem mass spectrometry (LC–MS/MS) spectra of CMPs were annotated to confirm peptide sequence, glycan composition and other post-translational modifications using automatic data processing. Fifty-one intact CMPs and 159 CMP-derived peptides were identified in four samples (one CMP standard, two commercial CMP products and one whey protein isolate). Overall, this novel approach provides comprehensive characterization of CMP and CMP-derived peptides and glycopeptides, and it can be applied in future studies of product quality, digestive survival and bioactivity.
Collapse
Affiliation(s)
- Yunyao Qu
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA;
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; (B.-J.K.); (J.K.)
| | - Bum-Jin Kim
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; (B.-J.K.); (J.K.)
| | - Jeewon Koh
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; (B.-J.K.); (J.K.)
| | - David C. Dallas
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA; (B.-J.K.); (J.K.)
- Correspondence:
| |
Collapse
|
23
|
Gnanesh Kumar B, Mattad S. Comprehensive analysis of lactoferrin N-glycans with site-specificity from bovine colostrum using specific proteases and RP-UHPLC-MS/MS. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.104999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Valk-Weeber RL, Eshuis-de Ruiter T, Dijkhuizen L, van Leeuwen SS. Dynamic Temporal Variations in Bovine Lactoferrin Glycan Structures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:549-560. [PMID: 31829588 DOI: 10.1021/acs.jafc.9b06762] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
It has been reported previously that glycosylation of bovine lactoferrin changes over time. A detailed structural overview of these changes over the whole course of lactation, including predry period milk, is lacking. In this study, a high-throughput analysis method was applied to the glycoprofile of lactoferrin isolated from colostrum, mature, and predry period mature milk, which was analyzed over two subsequent lactation cycles for 8 cows from diverse genetic backgrounds. In addition, comparisons are made with commercial bovine lactoferrin samples. During the first 72 h, dynamic changes in lactoferrin glycosylation occurred. Shifts in the oligomannose distribution and the number of sialylated and fucosylated glycans were observed. In some cows, we observed (α2,3)-linked sialic acid in the earliest colostrum samples. The glycoprofiles appeared stable from 1 month after delivery, as well as between cows. In addition, the glycosylation profiles of commercial lactoferrins isolated from pooled mature milk were stable over the year. Lactoferrin glycosylation in the predry period resembles colostrum lactoferrin. The variations in lactoferrin glycosylation profiles, lactoferrin concentrations, and other milk parameters provide detailed information that potentially assists in unraveling the functions and biosynthesis regulation of lactoferrin glycosylation.
Collapse
Affiliation(s)
- Rivca L Valk-Weeber
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands
| | | | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands
| | - Sander S van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
25
|
Zhang YY, Senan AM, Wang T, Liu L, Voglmeir J. 1-(2-Aminoethyl)-3-methyl-1 H-imidazol-3-ium tetrafluoroborate: synthesis and application in carbohydrate analysis. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Reductive alkylation of the carbonyl group of carbohydrates with fluorescence or ionizing labels is a prerequisite for the sensitive analysis of carbohydrates by chromatographic and mass spectrometric techniques. Herein, 1-(2-aminoethyl)-3-methyl-1H-imidazol-3-ium tetrafluoroborate ([MIEA][BF4]) was successfully synthesized using tert-butyl N-(2-bromoethyl)carbamate and N-methylimidazole as starting materials. MIEA+ was then investigated as a multifunctional oligosaccharide label for glycan profiling and identification using LC-ESI-ToF and by MALDI-ToF mass spectrometry. The reductive amination of this diazole with carbohydrates was exemplified by labeling N-glycans from the model glycoproteins horseradish peroxidase, RNase B, and bovine lactoferrin. The produced MIEA+ glycan profiles were comparable to the corresponding 2AB labeled glycan derivatives and showed improved ESI-MS ionization efficiency over the respective 2AB derivatives, with detection sensitivity in the low picomol to the high femtomol range.
Collapse
Affiliation(s)
- Yao Y. Zhang
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| | - Ahmed M. Senan
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| | - Ting Wang
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| | - Li Liu
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
26
|
Steady state kinetic analysis of O-linked GalNAc glycan release catalyzed by endo-α-N-acetylgalactosaminidase. Carbohydr Res 2019; 480:54-60. [DOI: 10.1016/j.carres.2019.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022]
|
27
|
Xue Y, Xie J, Fang P, Yao J, Yan G, Shen H, Yang P. Study on behaviors and performances of universal N-glycopeptide enrichment methods. Analyst 2019; 143:1870-1880. [PMID: 29557479 DOI: 10.1039/c7an02062g] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycosylation is a crucial process in protein biosynthesis. However, the analysis of glycopeptides through MS remains challenging due to the microheterogeneity and macroheterogeneity of the glycoprotein. Selective enrichment of glycopeptides from complex samples prior to MS analysis is essential for successful glycoproteome research. In this work, we systematically investigated the behaviors and performances of boronic acid chemistry, ZIC-HILIC, and PGC of glycopeptide enrichment to promote understanding of these methods. We also optimized boronic acid chemistry and ZIC-HILIC enrichment methods and applied them to enrich glycopeptides from mouse liver. The intact N-glycopeptides were interpreted using the in-house analysis software pGlyco 2.0. We found that boronic acid chemistry in this study preferred to capture glycopeptides with high mannose glycans, ZIC-HILIC enriched most N-glycopeptides and did not show significant preference during enrichment and PGC was not suitable for separating glycopeptides with a long amino acid sequence. We performed a detailed study on the behaviors and performances of boronic acid chemistry, ZIC-HILIC, and PGC enrichment methods and provide a better understanding of enrichment methods for further glycoproteomics research.
Collapse
Affiliation(s)
- Yu Xue
- Department of Chemistry, Fudan University, Shanghai, 200433, P.R. China
| | - Juanjuan Xie
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201199, P.R. China.
| | - Pan Fang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201199, P.R. China.
| | - Jun Yao
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201199, P.R. China.
| | - Guoquan Yan
- Department of Chemistry, Fudan University, Shanghai, 200433, P.R. China
| | - Huali Shen
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201199, P.R. China. and Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai, 200032, P.R. China
| | - Pengyuan Yang
- Department of Chemistry, Fudan University, Shanghai, 200433, P.R. China and Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201199, P.R. China.
| |
Collapse
|
28
|
Yu A, Zhao J, Peng W, Banazadeh A, Williamson SD, Goli M, Huang Y, Mechref Y. Advances in mass spectrometry-based glycoproteomics. Electrophoresis 2018; 39:3104-3122. [PMID: 30203847 PMCID: PMC6375712 DOI: 10.1002/elps.201800272] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022]
Abstract
Protein glycosylation, an important PTM, plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, and host-pathogen interaction. Aberrant glycosylation has been correlated with various diseases. However, studying protein glycosylation remains challenging because of low abundance, microheterogeneities of glycosylation sites, and poor ionization efficiency of glycopeptides. Therefore, the development of sensitive and accurate approaches to characterize protein glycosylation is crucial. The identification and characterization of protein glycosylation by MS is referred to as the field of glycoproteomics. Methods such as enrichment, metabolic labeling, and derivatization of glycopeptides in conjunction with different MS techniques and bioinformatics tools, have been developed to achieve an unequivocal quantitative and qualitative characterization of glycoproteins. This review summarizes the recent developments in the field of glycoproteomics over the past 6 years (2012 to 2018).
Collapse
Affiliation(s)
- Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Seth D. Williamson
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
29
|
Riggs DL, Hofmann J, Hahm HS, Seeberger PH, Pagel K, Julian RR. Glycan Isomer Identification Using Ultraviolet Photodissociation Initiated Radical Chemistry. Anal Chem 2018; 90:11581-11588. [PMID: 30179447 PMCID: PMC11216535 DOI: 10.1021/acs.analchem.8b02958] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycans are fundamental biological macromolecules, yet despite their prevalence and recognized importance, a number of unique challenges hinder routine characterization. The multiplicity of OH groups in glycan monomers easily afford branched structures and alternate linkage sites, which can result in isomeric structures that differ by minute details. Herein, radical chemistry is employed in conjunction with mass spectrometry to enable rapid, accurate, and high throughput identification of a challenging series of closely related glycan isomers. The results are compared with analysis by collision-induced dissociation, higher-energy collisional dissociation, and ultraviolet photodissociation (UVPD) at 213 nm. In general, collision-based activation struggles to produce characteristic fragmentation patterns, while UVPD and radical-directed dissociation (RDD) can distinguish all isomers. In the case of RDD, structural differentiation derives from radical mobility and subsequent fragmentation. For glycans, the energetic landscape for radical migration is flat, increasing the importance of the three-dimensional structure. RDD is therefore a powerful and straightforward method for characterizing glycan isomers.
Collapse
Affiliation(s)
- Dylan L. Riggs
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA 92521, USA
| | - Johanna Hofmann
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society Faradayweg 4-6, 14195 Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Heung S. Hahm
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Kevin Pagel
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society Faradayweg 4-6, 14195 Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA 92521, USA
| |
Collapse
|
30
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
31
|
O'Riordan N, O'Callaghan J, Buttò LF, Kilcoyne M, Joshi L, Hickey RM. Bovine glycomacropeptide promotes the growth of Bifidobacterium longum ssp. infantis and modulates its gene expression. J Dairy Sci 2018; 101:6730-6741. [PMID: 29803426 DOI: 10.3168/jds.2018-14499] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/06/2018] [Indexed: 12/21/2022]
Abstract
Bovine milk glycomacropeptide (GMP) is derived from κ-casein, with exclusively o-linked glycosylation. Glycomacropeptide promoted the growth of Bifidobacterium longum ssp. infantis in a concentration-dependent manner, and this activity was lost following periodate treatment of the GMP (GMP-P), which disables biological recognition of the conjugated oligosaccharides. Transcriptional analysis of B. longum ssp. infantis following exposure to GMP revealed a substantial response to GMP relative to bacteria treated with GMP-P, with a greater number of differentially expressed transcripts and larger fold changes versus the control. Therefore, stimulation of B. longum ssp. infantis growth by GMP is intrinsically linked to the peptide's O-linked glycosylation. The pool of differentially expressed transcripts included 2 glycoside hydrolase (family 25) genes, which were substantially upregulated following exposure to GMP, but not GMP-P. These GH25 genes were present in duplicated genomic islands that also contained genes encoding fibronectin type III binding domain proteins and numerous phage-related proteins, all of which were also upregulated. Homologs of this genomic arrangement were present in other Bifidobacterium species, which suggest it may be a conserved domain for the utilization of glycosylated peptides. This study provides insights into the molecular basis for the prebiotic effect of bovine milk GMP on B. longum ssp. infantis.
Collapse
Affiliation(s)
- N O'Riordan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, Co. Cork, Ireland; Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - J O'Callaghan
- Department of Microbiology, University College Cork, T12K8AF Cork, Ireland
| | - L F Buttò
- Department of Microbiology, University College Cork, T12K8AF Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, T12K8AF Cork, Ireland
| | - M Kilcoyne
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - L Joshi
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - R M Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, Co. Cork, Ireland.
| |
Collapse
|
32
|
Frost DC, Li L. Recent advances in mass spectrometry-based glycoproteomics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 95:71-123. [PMID: 24985770 DOI: 10.1016/b978-0-12-800453-1.00003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation plays fundamental roles in many biological processes as one of the most common, and the most complex, posttranslational modification. Alterations in glycosylation profile are now known to be associated with many diseases. As a result, the discovery and detailed characterization of glycoprotein disease biomarkers is a primary interest of biomedical research. Advances in mass spectrometry (MS)-based glycoproteomics and glycomics are increasingly enabling qualitative and quantitative approaches for site-specific structural analysis of protein glycosylation. While the complexity presented by glycan heterogeneity and the wide dynamic range of clinically relevant samples like plasma, serum, cerebrospinal fluid, and tissue make comprehensive analyses of the glycoproteome a challenging task, the ongoing efforts into the development of glycoprotein enrichment, enzymatic digestion, and separation strategies combined with novel quantitative MS methodologies have greatly improved analytical sensitivity, specificity, and throughput. This review summarizes current MS-based glycoproteomics approaches and highlights recent advances in its application to cancer biomarker and neurodegenerative disease research.
Collapse
Affiliation(s)
- Dustin C Frost
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA; Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
33
|
Rashidi M, Bandala-Sanchez E, Lawlor KE, Zhang Y, Neale AM, Vijayaraj SL, O'Donoghue R, Wentworth JM, Adams TE, Vince JE, Harrison LC. CD52 inhibits Toll-like receptor activation of NF-κB and triggers apoptosis to suppress inflammation. Cell Death Differ 2017; 25:392-405. [PMID: 29244050 DOI: 10.1038/cdd.2017.173] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
Soluble CD52 is a small glycoprotein that suppresses T-cell activation, but its effect on innate immune cell function is unknown. Here we demonstrate that soluble CD52 inhibits Toll-like receptor and tumor necrosis factor receptor signaling to limit activation of NF-κB and thereby suppress the production of inflammatory cytokines by macrophages, monocytes and dendritic cells. At higher concentrations, soluble CD52 depletes the short-lived pro-survival protein MCL-1, contributing to activation of the BH3-only proteins BAX and BAK to cause intrinsic apoptotic cell death. In vivo, administration of soluble CD52 suppresses lipopolysaccharide (LPS)-induced cytokine secretion and other features of endotoxic shock, whereas genetic deletion of CD52 exacerbates LPS responses. Thus, soluble CD52 exhibits broad immune suppressive effects that signify its potential as an immunotherapeutic agent.
Collapse
Affiliation(s)
- Maryam Rashidi
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Esther Bandala-Sanchez
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kate E Lawlor
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yuxia Zhang
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alana M Neale
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Swarna L Vijayaraj
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robert O'Donoghue
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John M Wentworth
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Timothy E Adams
- CSIRO Manufacturing and Node of the National Biologics Facility, Parkville, Victoria 3052, Australia
| | - James E Vince
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Leonard C Harrison
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
34
|
Sensitive and comprehensive analysis of O-glycosylation in biotherapeutics: a case study of novel erythropoiesis stimulating protein. Bioanalysis 2017; 9:1373-1383. [PMID: 28920453 DOI: 10.4155/bio-2017-0085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Glycosylation of recombinant human erythropoietins (rhEPOs) is significantly associated with drug's quality and potency. Thus, comprehensive characterization of glycosylation is vital to assess the biotherapeutic quality and establish the equivalency of biosimilar rhEPOs. However, current glycan analysis mainly focuses on the N-glycans due to the absence of analytical tools to liberate O-glycans with high sensitivity. We developed selective and sensitive method to profile native O-glycans on rhEPOs. RESULTS O-glycosylation on rhEPO including O-acetylation on a sialic acid was comprehensively characterized. Details such as O-glycan structure and O-acetyl-modification site were obtained from tandem MS. CONCLUSION This method may be applied to QC and batch analysis of not only rhEPOs but also other biotherapeutics bearing multiple O-glycosylations.
Collapse
|
35
|
Investigation of O-glycosylation heterogeneity of recombinant coagulation factor IX using LC–MS/MS. Bioanalysis 2017; 9:1361-1372. [DOI: 10.4155/bio-2017-0086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Recombinant coagulation factor IX (rFIX) has extraordinarily multiple post-translational modifications including N-glycosylation and O-glycosylation which have a drastic effect on biological functions and in vivo recovery. Unlike N-glycosylation extensively characterized, there are a few studies on O-glycosylation due to its intrinsic complexity. In-depth O-glycosylation analysis is necessary to better understand and assess pharmacological activity of rFIX. Results: We determined unusual O-glycosylations including O-fucosylation and O-glucosylation which were located at Serine 53 and 61, respectively in EGF domain. Other O-glycosylations bearing core 1 glycan moiety were found on activation peptide. Conclusion: This is the first comprehensive study to characterize O-glycosylation of rFIX using MS-based glycomic and glycoproteomic approaches. Site-specific profiling will be a powerful platform to determine bioequivalence of biosimilars.
Collapse
|
36
|
Losfeld ME, Scibona E, Lin CW, Villiger TK, Gauss R, Morbidelli M, Aebi M. Influence of protein/glycan interaction on site-specific glycan heterogeneity. FASEB J 2017; 31:4623-4635. [PMID: 28679530 DOI: 10.1096/fj.201700403r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/19/2017] [Indexed: 01/23/2023]
Abstract
To study how the interaction between N-linked glycans and the surrounding amino acids influences oligosaccharide processing, we used protein disulfide isomerase (PDI), a glycoprotein bearing 5 N-glycosylation sites, as a model system and expressed it transiently in a Chinese hamster ovary (CHO)-S cell line. PDI was produced as both secreted Sec-PDI and endoplasmic reticulum-retained glycoprotein (ER)-PDI, to study glycan processing by ER and Golgi resident enzymes. Quantitative site-specific glycosylation profiles were obtained, and flux analysis enabled modeling site-specific glycan processing. By altering the primary sequence of PDI, we changed the glycan/protein interaction and thus the site-specific glycoprofile because of the improved enzymatic fluxes at enzymatic bottlenecks. Our results highlight the importance of direct interactions between N-glycans and surface-exposed amino acids of glycoproteins on processing in the ER and the Golgi and the possibility of changing a site-specific N-glycan profile by modulating such interactions and thus the associated enzymatic fluxes. Altering the primary protein sequence can therefore be used to glycoengineer recombinant proteins.-Losfeld, M.-E., Scibona, E., Lin, C.-W., Villiger, T. K., Gauss, R., Morbidelli, M., Aebi, M. Influence of protein/glycan interaction on site-specific glycan heterogeneity.
Collapse
Affiliation(s)
- Marie-Estelle Losfeld
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Ernesto Scibona
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology ETH Zürich, Zürich, Switzerland
| | - Chia-Wei Lin
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Thomas K Villiger
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology ETH Zürich, Zürich, Switzerland
| | - Robert Gauss
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology ETH Zürich, Zürich, Switzerland
| | - Markus Aebi
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland;
| |
Collapse
|
37
|
Mulagapati S, Koppolu V, Raju TS. Decoding of O-Linked Glycosylation by Mass Spectrometry. Biochemistry 2017; 56:1218-1226. [PMID: 28196325 DOI: 10.1021/acs.biochem.6b01244] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein glycosylation (N- and O-linked) plays an important role in many biological processes, including protein structure and function. However, the structural elucidation of glycans, specifically O-linked glycans, remains a major challenge and is often overlooked during protein analysis. Recently, mass spectrometry (MS) has matured as a powerful technology for high-quality analytical characterization of O-linked glycans. This review summarizes the recent developments and insights of MS-based glycomics technologies, with a focus on mucin-type O-glycan analysis. Three main MS-based approaches are outlined: O-glycan profiling (structural analysis of released O-glycan), a "bottom-up" approach (analysis of an O-glycan covalently attached to a glycopeptide), and a "top-down" approach (analysis of a glycan attached to an intact glycoprotein). In addition, the most widely used MS ionization techniques, i.e., matrix-assisted laser desorption ionization and electrospray ionization, as well as ion activation techniques like collision-induced dissociation, electron capture dissociation, and electron transfer dissociation during O-glycan analysis are discussed. The MS technical approaches mentioned above are already major improvements for studying O-linked glycosylation and appear to be valuable for in-depth analysis of the type of O-glycan attached, branching patterns, and the occupancy of O-glycosylation sites.
Collapse
Affiliation(s)
- SriHariRaju Mulagapati
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Veerendra Koppolu
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| | - T Shantha Raju
- Bioassay Development and Quality, Analytical Sciences, Biopharmaceutical Development, MedImmune , Gaithersburg, Maryland 20878, United States
| |
Collapse
|
38
|
Abstract
Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection, while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins, while automated software tools started replacing manual processing to improve the reliability and throughput of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted.
Collapse
|
39
|
Stavenhagen K, Hinneburg H, Kolarich D, Wuhrer M. Site-Specific N- and O-Glycopeptide Analysis Using an Integrated C18-PGC-LC-ESI-QTOF-MS/MS Approach. Methods Mol Biol 2017; 1503:109-119. [PMID: 27743362 DOI: 10.1007/978-1-4939-6493-2_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vast heterogeneity of protein glycosylation, even of a single glycoprotein with only one glycosylation site, can give rise to a set of macromolecules with different physicochemical properties. Thus, the use of orthogonal approaches for comprehensive characterization of glycoproteins is a key requirement. This chapter describes a universal workflow for site-specific N- and O-glycopeptide analysis. In a first step glycoproteins are treated with Pronase to generate glycopeptides containing small peptide sequences for enhanced glycosylation site assignment and characterization. These glycopeptides are then separated and detected using an integrated C18-porous graphitized carbon-liquid chromatography (PGC-LC) setup online coupled to a high-resolution electrospray ionization (ESI)-quadrupole time-of-flight (QTOF)-mass spectrometer operated in a combined higher- and lower-energy CID (stepping-energy CID) mode. The LC-setup allows retention of more hydrophobic glycopeptides on C18 followed by subsequent capturing of C18-unbound (glyco)peptides by a downstream placed PGC stationary phase. Glycopeptides eluted from both columns are then analyzed within a single analysis in a combined data acquisition mode. Stepping-energy CID results in B- and Y-ion fragments originating from the glycan moiety as well as b- and y-ions derived from the peptide part. This allows simultaneous site-specific identification of the glycan and peptide sequence of a glycoprotein.
Collapse
Affiliation(s)
- Kathrin Stavenhagen
- Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, Amsterdam, 1081, HV, The Netherlands.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333, ZA, The Netherlands
| | - Hannes Hinneburg
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, 14424, Germany.,Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, 14195, Germany
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids andInterfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Manfred Wuhrer
- Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, Amsterdam, 1081, HV, The Netherlands. .,Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333, ZA, The Netherlands.
| |
Collapse
|
40
|
Wang Y, Park D, Galermo AG, Gao D, Liu H, Lebrilla CB. Changes in cellular glycosylation of leukemia cells upon treatment with acridone derivatives yield insight into drug action. Proteomics 2016; 16:2977-2988. [DOI: 10.1002/pmic.201600218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Yini Wang
- Department of Chemistry; Tsinghua University; Beijing P. R. China
| | - Dayoung Park
- Department of Chemistry; University of California; Davis CA USA
| | - Ace G. Galermo
- Department of Chemistry; University of California; Davis CA USA
| | - Dan Gao
- The Key Laboratory of Tumor Metabolomics at Shenzhen; Shenzhen P. R. China
| | - Hongxia Liu
- The Key Laboratory of Tumor Metabolomics at Shenzhen; Shenzhen P. R. China
| | | |
Collapse
|
41
|
Woo CM, Felix A, Zhang L, Elias JE, Bertozzi CR. Isotope-targeted glycoproteomics (IsoTaG) analysis of sialylated N- and O-glycopeptides on an Orbitrap Fusion Tribrid using azido and alkynyl sugars. Anal Bioanal Chem 2016; 409:579-588. [PMID: 27695962 DOI: 10.1007/s00216-016-9934-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/30/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
Abstract
Protein glycosylation is a post-translational modification (PTM) responsible for many aspects of proteomic diversity and biological regulation. Assignment of intact glycan structures to specific protein attachment sites is a critical step towards elucidating the function encoded in the glycome. Previously, we developed isotope-targeted glycoproteomics (IsoTaG) as a mass-independent mass spectrometry method to characterize azide-labeled intact glycopeptides from complex proteomes. Here, we extend the IsoTaG approach with the use of alkynyl sugars as metabolic labels and employ new probes in analysis of the sialylated glycoproteome from PC-3 cells. Using an Orbitrap Fusion Tribrid mass spectrometer, we identified 699 intact glycopeptides from 192 glycoproteins. These intact glycopeptides represent a total of eight sialylated glycan structures across 126 N- and 576 O-glycopeptides. IsoTaG is therefore an effective platform for identification of intact glycopeptides labeled by alkynyl or azido sugars and will facilitate further studies of the glycoproteome.
Collapse
Affiliation(s)
- Christina M Woo
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Alejandra Felix
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Lichao Zhang
- Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
| | - Joshua E Elias
- Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA. .,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
42
|
Walsh I, Zhao S, Campbell M, Taron CH, Rudd PM. Quantitative profiling of glycans and glycopeptides: an informatics' perspective. Curr Opin Struct Biol 2016; 40:70-80. [PMID: 27522273 DOI: 10.1016/j.sbi.2016.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/25/2016] [Accepted: 07/30/2016] [Indexed: 12/16/2022]
Abstract
Experimental techniques to identify and quantify glycan structures in a given sample are continuously improving. However, as they advance data analysis and annotation seems to become more complex. To address this issue, much progress has been made in developing software for interpretation of quantitative glycan profiles. Here, we focus on these informatics tools for high/ultra performance liquid chromatography (H/UPLC), mass spectrometry (MS), tandem mass spectrometry (MSn) and combinations thereof. Software for biomarker discovery, pathway, genomic and disease analysis and a final note on some future prospects for glycoinformatics are also mentioned.
Collapse
Affiliation(s)
- Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore; New England Biolabs, Ipswich, MA, United States
| | - Sophie Zhao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Matthew Campbell
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Pauline M Rudd
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore; National Institute for Bioprocessing Research & Training, Dublin, Ireland.
| |
Collapse
|
43
|
Lu J, Fu D, Yu L, Cao C, Zou L, Liang X. Determination of N-Glycopeptides by Hydrophilic Interaction Liquid Chromatography and Porous Graphitized Carbon Chromatography with Mass Spectrometry Detection. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1181644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jun Lu
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dongmei Fu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Long Yu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Cuiyan Cao
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lijuan Zou
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
44
|
Analytical detection and characterization of biopharmaceutical glycosylation by MS. Bioanalysis 2016; 8:711-27. [PMID: 26964748 DOI: 10.4155/bio.16.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glycosylation plays an important role in ensuring the proper structure and function of most biotherapeutic proteins. Even small changes in glycan composition, structure, or location can have a drastic impact on drug safety and efficacy. Recently, glycosylation has become the subject of increased focus as biopharmaceutical companies rush to create not only biosimilars, but also biobetters based on existing biotherapeutic proteins. Against this backdrop of ongoing biopharmaceutical innovation, updated methods for accurate and detailed analysis of protein glycosylation are critical for biopharmaceutical companies and government regulatory agencies alike. This review summarizes current methods of characterizing biopharmaceutical glycosylation, including compositional mass profiling, isomer-specific profiling and structural elucidation by MS and hyphenated techniques.
Collapse
|
45
|
Stelzl T, Baranov T, Geillinger KE, Kottra G, Daniel H. Effect of N-glycosylation on the transport activity of the peptide transporter PEPT1. Am J Physiol Gastrointest Liver Physiol 2016; 310:G128-41. [PMID: 26585416 DOI: 10.1152/ajpgi.00350.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/10/2015] [Indexed: 01/31/2023]
Abstract
The intestinal peptide transporter PEPT1 provides bulk quantities of amino acids to epithelial cells. PEPT1 is a high-capacity and low-affinity solute carrier of the SLC15 family found in apical membranes of enterocytes in small intestine and distal colon. Surprisingly, murine PEPT1 (mPEPT1) has an apparent molecular mass of ∼95 kDa in the small intestine but ∼105 kDa in the large intestine. Here we describe studies on mPEPT1 protein glycosylation and how glycans affect transport function. Putative N-glycosylation sites of mPEPT1 were altered by site-directed mutagenesis followed by expression in Xenopus laevis oocytes. Replacement of six asparagine residues (N) at positions N50, N406, N439, N510, N515, and N532 by glutamine (Q) resulted in a decrease of the mPEPT1 mass by around 35 kDa. Electrophysiology revealed all glycosylation-deficient transporters to be functional with comparable expression levels in oocyte membranes. Strikingly, the mutant protein with N50Q exhibited a twofold decreased affinity for Gly-Sar but a 2.5-fold rise in the maximal inward currents compared with the wild-type protein. Elevated maximal transport currents were also recorded for cefadroxil and tri-l-alanine. Tracer flux studies performed with [(14)C]-Gly-Sar confirmed the reduction in substrate affinity and showed twofold increased maximal transport rates for the N50Q transporter. Elimination of individual N-glycosylation sites did not alter membrane expression in oocytes or overall transport characteristics except for the mutant protein N50Q. Because transporter surface density was not altered in N50Q, removal of the glycan at this location appears to accelerate the substrate turnover rate.
Collapse
Affiliation(s)
- Tamara Stelzl
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| | - Tatjana Baranov
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| | - Kerstin E Geillinger
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| | - Gabor Kottra
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| | - Hannelore Daniel
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| |
Collapse
|
46
|
Hang I, Lin CW, Grant OC, Fleurkens S, Villiger TK, Soos M, Morbidelli M, Woods RJ, Gauss R, Aebi M. Analysis of site-specific N-glycan remodeling in the endoplasmic reticulum and the Golgi. Glycobiology 2015; 25:1335-49. [PMID: 26240167 PMCID: PMC4634314 DOI: 10.1093/glycob/cwv058] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/14/2015] [Accepted: 07/27/2015] [Indexed: 11/14/2022] Open
Abstract
The hallmark of N-linked protein glycosylation is the generation of diverse glycan structures in the secretory pathway. Dynamic, non-template-driven processes of N-glycan remodeling in the endoplasmic reticulum and the Golgi provide the cellular setting for structural diversity. We applied newly developed mass spectrometry-based analytics to quantify site-specific N-glycan remodeling of the model protein Pdi1p expressed in insect cells. Molecular dynamics simulation, mutational analysis, kinetic studies of in vitro processing events and glycan flux analysis supported the defining role of the protein in N-glycan processing.
Collapse
Affiliation(s)
- Ivan Hang
- Institute of Microbiology, Department of Biology
| | - Chia-wei Lin
- Institute of Microbiology, Department of Biology
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Thomas K Villiger
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Miroslav Soos
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Massimo Morbidelli
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Robert Gauss
- Institute of Microbiology, Department of Biology
| | - Markus Aebi
- Institute of Microbiology, Department of Biology
| |
Collapse
|
47
|
Zhang L, Luo S, Zhang B. Glycan analysis of therapeutic glycoproteins. MAbs 2015; 8:205-15. [PMID: 26599345 PMCID: PMC4966609 DOI: 10.1080/19420862.2015.1117719] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 11/02/2015] [Indexed: 01/02/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are glycoproteins produced by living cell systems. The glycan moieties attached to the proteins can directly affect protein stability, bioactivity, and immunogenicity. Therefore, glycan variants of a glycoprotein product must be adequately analyzed and controlled to ensure product quality. However, the inherent complexity of protein glycosylation poses a daunting analytical challenge. This review provides an update of recent advances in glycan analysis, including the potential utility of lectin-based microarray for high throughput glycan profiling. Emphasis is placed on comparison of the major types of analytics for use in determining unique glycan features such as glycosylation site, glycan structure, and content.
Collapse
Affiliation(s)
- Lei Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Shen Luo
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
48
|
Nakakita SI, Itoh A, Nakakita Y, Nonaka Y, Ogawa T, Nakamura T, Nishi N. Cooperative Interactions of Oligosaccharide and Peptide Moieties of a Glycopeptide Derived from IgE with Galectin-9. J Biol Chem 2015; 291:968-79. [PMID: 26582205 DOI: 10.1074/jbc.m115.694448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 01/06/2023] Open
Abstract
We previously showed that galectin-9 suppresses degranulation of mast cells through protein-glycan interaction with IgE. To elucidate the mechanism of the interaction in detail, we focused on identification and structural analysis of IgE glycans responsible for the galectin-9-induced suppression using mouse monoclonal IgE (TIB-141). TIB-141 in combination with the antigen induced degranulation of RBL-2H3 cells, which was almost completely inhibited by human and mouse galectin-9. Sequential digestion of TIB-141 with lysyl endopeptidase and trypsin resulted in the identification of a glycopeptide (H-Lys13-Try3; 48 amino acid residues) with a single N-linked oligosaccharide near the N terminus capable of neutralizing the effect of galectin-9 and another glycopeptide with two N-linked oligosaccharides (H-Lys13-Try1; 16 amino acid residues) having lower activity. Enzymatic elimination of the oligosaccharide chain from H-Lys13-Try3 and H-Lys13-Try1 completely abolished the activity. Removal of the C-terminal 38 amino acid residues of H-Lys13-Try3 with glutamyl endopeptidase, however, also resulted in loss of the activity. We determined the structures of N-linked oligosaccharides of H-Lys13-Try1. The galectin-9-binding fraction of pyridylaminated oligosaccharides contained asialo- and monosialylated bi/tri-antennary complex type oligosaccharides with a core fucose residue. The structures of the oligosaccharides were consistent with the sugar-binding specificity of galectin-9, whereas the nonbinding fraction contained monosialylated and disialylated biantennary complex type oligosaccharides with a core fucose residue. Although the oligosaccharides linked to H-Lys13-Try3 could not be fully characterized, these results indicate the possibility that cooperative binding of oligosaccharide and neighboring polypeptide structures of TIB-141 to galectin-9 affects the overall affinity and specificity of the IgE-lectin interaction.
Collapse
Affiliation(s)
| | - Aiko Itoh
- Division of Research Instrument and Equipment, Life Science Research Center, and
| | | | - Yasuhiro Nonaka
- the Department of Endocrinology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Takashi Ogawa
- the Department of Endocrinology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Takanori Nakamura
- the Department of Endocrinology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Nozomu Nishi
- Division of Research Instrument and Equipment, Life Science Research Center, and
| |
Collapse
|
49
|
Stavenhagen K, Plomp R, Wuhrer M. Site-Specific Protein N- and O-Glycosylation Analysis by a C18-Porous Graphitized Carbon–Liquid Chromatography-Electrospray Ionization Mass Spectrometry Approach Using Pronase Treated Glycopeptides. Anal Chem 2015; 87:11691-9. [DOI: 10.1021/acs.analchem.5b02366] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kathrin Stavenhagen
- Division
of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan
1083, 1081 HV Amsterdam, The Netherlands
| | - Rosina Plomp
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Manfred Wuhrer
- Division
of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan
1083, 1081 HV Amsterdam, The Netherlands
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
50
|
Engaging challenges in glycoproteomics: recent advances in MS-based glycopeptide analysis. Bioanalysis 2015; 7:113-31. [PMID: 25558940 DOI: 10.4155/bio.14.272] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The proteomic analysis of glycosylation is uniquely challenging. The numerous and varied biological roles of protein-linked glycans have fueled a tremendous demand for technologies that enable rapid, in-depth structural examination of glycosylated proteins in complex biological systems. In turn, this demand has driven many innovations in wide ranging fields of bioanalytical science. This review will summarize key developments in glycoprotein separation and enrichment, glycoprotein proteolysis strategies, glycopeptide separation and enrichment, the role of mass measurement accuracy in glycopeptide detection, glycopeptide ion dissociation methods for MS/MS, and informatic tools for glycoproteomic analysis. In aggregate, this selection of topics serves to encapsulate the present status of MS-based analytical technologies for engaging the challenges of glycoproteomic analysis.
Collapse
|