1
|
Fedorov II, Protasov SA, Tarasova IA, Gorshkov MV. Ultrafast Proteomics. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1349-1361. [PMID: 39245450 DOI: 10.1134/s0006297924080017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 09/10/2024]
Abstract
Current stage of proteomic research in the field of biology, medicine, development of new drugs, population screening, or personalized approaches to therapy dictates the need to analyze large sets of samples within the reasonable experimental time. Until recently, mass spectrometry measurements in proteomics were characterized as unique in identifying and quantifying cellular protein composition, but low throughput, requiring many hours to analyze a single sample. This was in conflict with the dynamics of changes in biological systems at the whole cellular proteome level upon the influence of external and internal factors. Thus, low speed of the whole proteome analysis has become the main factor limiting developments in functional proteomics, where it is necessary to annotate intracellular processes not only in a wide range of conditions, but also over a long period of time. Enormous level of heterogeneity of tissue cells or tumors, even of the same type, dictates the need to analyze biological systems at the level of individual cells. These studies involve obtaining molecular characteristics for tens, if not hundreds of thousands of individual cells, including their whole proteome profiles. Development of mass spectrometry technologies providing high resolution and mass measurement accuracy, predictive chromatography, new methods for peptide separation by ion mobility and processing of proteomic data based on artificial intelligence algorithms have opened a way for significant, if not radical, increase in the throughput of whole proteome analysis and led to implementation of the novel concept of ultrafast proteomics. Work done just in the last few years has demonstrated the proteome-wide analysis throughput of several hundred samples per day at a depth of several thousand proteins, levels unimaginable three or four years ago. The review examines background of these developments, as well as modern methods and approaches that implement ultrafast analysis of the entire proteome.
Collapse
Affiliation(s)
- Ivan I Fedorov
- Moscow Institute of Physics and Technology (National University), Dolgoprudny, Moscow Region, 141700, Russia
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Sergey A Protasov
- Moscow Institute of Physics and Technology (National University), Dolgoprudny, Moscow Region, 141700, Russia
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Irina A Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
2
|
Andries JPM, Goodarzi M, Heyden YV. Improvement of quantitative structure-retention relationship models for chromatographic retention prediction of peptides applying individual local partial least squares models. Talanta 2020; 219:121266. [PMID: 32887157 DOI: 10.1016/j.talanta.2020.121266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
In Reversed-Phase Liquid Chromatography, Quantitative Structure-Retention Relationship (QSRR) models for retention prediction of peptides can be built, starting from large sets of theoretical molecular descriptors. Good predictive QSRR models can be obtained after selecting the most informative descriptors. Reliable retention prediction may be an aid in the correct identification of proteins/peptides in proteomics and in chromatographic method development. Traditionally, global QSRR models are built, using a calibration set containing a representative range of analytes. In this study, a strategy is presented to build individual local Partial Least Squares (PLS) models for peptides, based on selected local calibration samples, most similar to the specific query peptide to be predicted. Similar local calibration peptides are selected from a possible calibration set. The calibration samples with the lowest Euclidian distances to the query peptide are considered as most similar. Two Euclidian distances are investigated as similarity parameter, (i) in the autoscaled descriptor space and, (ii) in the PLS factor space of the global calibration samples, both after variable selection by the Final Complexity Adapted Models (FCAM) method. The predictive abilities of individual local QSRR PLS models for peptides, developed with both Euclidian distances, are found significantly better than those of two global models, i.e. before and after FCAM variable selection. The predictive abilities of the local models, developed with distances calculated in the PLS factor space, were best.
Collapse
Affiliation(s)
- Jan P M Andries
- Research Group Analysis Techniques in the Life Sciences, Avans Hogeschool, University of Professional Education, P.O. Box 90116, 4800, RA Breda, the Netherlands.
| | - Mohammad Goodarzi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090, Brussels, Belgium
| |
Collapse
|
3
|
Chen D, Lubeckyj RA, Yang Z, McCool EN, Shen X, Wang Q, Xu T, Sun L. Predicting Electrophoretic Mobility of Proteoforms for Large-Scale Top-Down Proteomics. Anal Chem 2020; 92:3503-3507. [PMID: 32043875 PMCID: PMC7543059 DOI: 10.1021/acs.analchem.9b05578] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Large-scale top-down proteomics characterizes proteoforms in cells globally with high confidence and high throughput using reversed-phase liquid chromatography (RPLC)-tandem mass spectrometry (MS/MS) or capillary zone electrophoresis (CZE)-MS/MS. The false discovery rate (FDR) from the target-decoy database search is typically deployed to filter identified proteoforms to ensure high-confidence identifications (IDs). It has been demonstrated that the FDRs in top-down proteomics can be drastically underestimated. An alternative approach to the FDR can be useful for further evaluating the confidence of proteoform IDs after the database search. We argue that predicting retention/migration time of proteoforms from the RPLC/CZE separation accurately and comparing their predicted and experimental separation time could be a useful and practical approach. Based on our knowledge, there is still no report in the literature about predicting separation time of proteoforms using large top-down proteomics data sets. In this pilot study, for the first time, we evaluated various semiempirical models for predicting proteoforms' electrophoretic mobility (μef) using large-scale top-down proteomics data sets from CZE-MS/MS. We achieved a linear correlation between experimental and predicted μef of E. coli proteoforms (R2 = 0.98) with a simple semiempirical model, which utilizes the number of charges and molecular mass of each proteoform as the parameters. Our modeling data suggest that the complete unfolding of proteoforms during CZE separation benefits the prediction of their μef. Our results also indicate that N-terminal acetylation and phosphorylation both decrease the proteoforms' charge by roughly one charge unit.
Collapse
Affiliation(s)
- Daoyang Chen
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Rachele A Lubeckyj
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Elijah N McCool
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Tian Xu
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Ivanov MV, Bubis JA, Gorshkov V, Tarasova IA, Levitsky LI, Lobas AA, Solovyeva EM, Pridatchenko ML, Kjeldsen F, Gorshkov MV. DirectMS1: MS/MS-Free Identification of 1000 Proteins of Cellular Proteomes in 5 Minutes. Anal Chem 2020; 92:4326-4333. [DOI: 10.1021/acs.analchem.9b05095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mark V. Ivanov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Julia A. Bubis
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Irina A. Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Lev I. Levitsky
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anna A. Lobas
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta M. Solovyeva
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina L. Pridatchenko
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Mikhail V. Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia
| |
Collapse
|
5
|
Tarasova IA, Masselon CD, Gorshkov AV, Gorshkov MV. Predictive chromatography of peptides and proteins as a complementary tool for proteomics. Analyst 2018; 141:4816-4832. [PMID: 27419248 DOI: 10.1039/c6an00919k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the last couple of decades, considerable effort has been focused on developing methods for quantitative and qualitative proteome characterization. The method of choice in this characterization is mass spectrometry used in combination with sample separation. One of the most widely used separation techniques at the front end of a mass spectrometer is high performance liquid chromatography (HPLC). A unique feature of HPLC is its specificity to the amino acid sequence of separated peptides and proteins. This specificity may provide additional information about the peptides or proteins under study which is complementary to the mass spectrometry data. The value of this information for proteomics has been recognized in the past few decades, which has stimulated significant effort in the development and implementation of computational and theoretical models for the prediction of peptide retention time for a given sequence. Here we review the advances in this area and the utility of predicted retention times for proteomic applications.
Collapse
Affiliation(s)
- Irina A Tarasova
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Christophe D Masselon
- CEA, iRTSV-BGE, Laboratoire d'Etude de la Dynamique des Protéomes, Grenoble, F-38000, France and INSERM, U1038-BGE, F-38000, Grenoble, France
| | - Alexander V Gorshkov
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Mikhail V Gorshkov
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia. and Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region 141700, Russia
| |
Collapse
|
6
|
Gorshkov AV, Pridatchenko ML, Perlova TY, Tarasova IA, Levitsky LI, Gorshkov MV, Evreinov VV. Applicability of the critical chromatography concept to proteomic problems. II. Effect of mobile phase on the separation of peptides and proteins taking into account the amino acid sequence. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s106193481610004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|