1
|
Qian W, Tang H, Yao H. Lipidomics and temporal-spatial distribution of organelle lipid. J Biol Methods 2025; 12:e99010049. [PMID: 40200947 PMCID: PMC11973048 DOI: 10.14440/jbm.2025.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/17/2024] [Accepted: 12/16/2024] [Indexed: 04/10/2025] Open
Abstract
Background Lipids are crucial signaling molecules or cellular membrane components orchestrating biological processes. To gain insights into lipid functions and the communication between organelles, it is essential to understand the subcellular localization of individual lipids. Advancements in lipid quantification techniques, improvements in chemical and spatial resolution for detecting various lipid species, and enhancements in organelle isolation speed have allowed for profiling of the organelle lipidome, capturing its temporal-spatial distribution. Objective This review examined approaches used to develop organelle lipidome and aimed to gain insights into cellular lipid homeostasis from an organelle perspective. In addition, this review discussed the advancements in lipid-mediated inter-organelle communication within complex physiological and pathological processes. Conclusion With the advancement of lipidomic technologies, more detailed explorations of organelle structures and the specific lipid-mediating functions they perform are feasible.
Collapse
Affiliation(s)
- Wenjuan Qian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hongyan Yao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Qin S, Zhang Y, Tian Y, Xu F, Zhang P. Subcellular metabolomics: Isolation, measurement, and applications. J Pharm Biomed Anal 2021; 210:114557. [PMID: 34979492 DOI: 10.1016/j.jpba.2021.114557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/26/2022]
Abstract
Metabolomics, a technique that profiles global small molecules in biological samples, has been a pivotal tool for disease diagnosis and mechanism research. The sample type in metabolomics covers a wide range, including a variety of body fluids, tissues, and cells. However, little attention was paid to the smaller, relatively independent partition systems in cells, namely the organelles. The organelles are specific compartments/places where diverse metabolic activities are happening in an orderly manner. Metabolic disorders of organelles were found to occur in various pathological conditions such as inherited metabolic diseases, diabetes, cancer, and neurodegenerative diseases. However, at the cellular level, the metabolic outcomes of organelles and cytoplasm are superimposed interactively, making it difficult to describe the changes in subcellular compartments. Therefore, characterizing the metabolic pool in the compartmentalized system is of great significance for understanding the role of organelles in physiological functions and diseases. So far, there are very few research articles or reviews related to subcellular metabolomics. In this review, subcellular fractionation and metabolite analysis methods, as well as the application of subcellular metabolomics in the physiological and pathological studies are systematically reviewed, as a practical reference to promote the continued advancement in subcellular metabolomics.
Collapse
Affiliation(s)
- Siyuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuxin Zhang
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
3
|
Lang M, Pröschel M, Brüggen N, Sonnewald U. Tagging and catching: rapid isolation and efficient labeling of organelles using the covalent Spy-System in planta. PLANT METHODS 2020; 16:122. [PMID: 32905125 PMCID: PMC7465787 DOI: 10.1186/s13007-020-00663-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/24/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Up-to-now, several biochemical methods have been developed to allow specific organelle isolation from plant tissues. These procedures are often time consuming, require substantial amounts of plant material, have low yield or do not result in pure organelle fractions. Moreover, barely a protocol allows rapid and flexible isolation of different subcellular compartments. The recently published SpySystem enables the in vitro and in vivo covalent linkage between proteins and protein complexes. Here we describe the use of this system to tag and purify plant organelles. RESULTS We developed a simple and specific method to in vivo tag and visualize, as well as isolate organelles of interest from crude plant extracts. This was achieved by expressing the covalent split-isopeptide interaction system, consisting of SpyTag and SpyCatcher, in Nicotiana benthamiana leaves. The functionality of the SpySystem in planta, combined with downstream applications, was proven. Using organelle-specific membrane anchor sequences to program the sub-cellular localization of the SpyTag peptide, we could tag the outer envelope of chloroplasts and mitochondria. By co-expression of a cytosolic, soluble eGFP-SpyCatcher fusion protein, we could demonstrate intermolecular isopeptide formation in planta and proper organelle targeting of the SpyTag peptides to the respective organelles. For one-step organelle purification, recombinantly expressed SpyCatcher protein was immobilized on magnetic microbeads via covalent thiol-etherification. To isolate tagged organelles, crude plant filtrates were mixed with SpyCatcher-coated beads which allowed isolation of SpyTag-labelled chloroplasts and mitochondria. The isolated organelles were intact, showed high yield and hardly contaminants and can be subsequently used for further molecular or biochemical analysis. CONCLUSION The SpySystem can be used to in planta label subcellular structures, which enables the one-step purification of organelles from crude plant extracts. The beauty of the system is that it works as a covalent toolbox. Labeling of different organelles with individual tags under control of cell-specific and/or inducible promoter sequences will allow the rapid organelle and cell-type specific purification. Simultaneous labeling of different organelles with specific Tag/Catcher combinations will enable simultaneous isolation of different organelles from one plant extract in future experiments.
Collapse
Affiliation(s)
- Martina Lang
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Marlene Pröschel
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Nico Brüggen
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Ray GJ, Boydston EA, Shortt E, Wyant GA, Lourido S, Chen WW, Sabatini DM. A PEROXO-Tag Enables Rapid Isolation of Peroxisomes from Human Cells. iScience 2020; 23:101109. [PMID: 32417403 PMCID: PMC7254474 DOI: 10.1016/j.isci.2020.101109] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/08/2020] [Accepted: 04/22/2020] [Indexed: 11/26/2022] Open
Abstract
Peroxisomes are metabolic organelles that perform a diverse array of critical functions in human physiology. Traditional isolation methods for peroxisomes can take more than 1 h to complete and can be laborious to implement. To address this, we have now extended our prior work on rapid organellar isolation to peroxisomes via the development of a peroxisomally localized 3XHA epitope tag ("PEROXO-Tag") and associated immunoprecipitation ("PEROXO-IP") workflow. Our PEROXO-IP workflow has excellent reproducibility, is easy to implement, and achieves highly rapid (~10 min post homogenization) and specific isolation of human peroxisomes, which we characterize here via proteomic profiling. By offering speed, specificity, reproducibility, and ease of use, the PEROXO-IP workflow should facilitate studies on the biology of peroxisomes.
Collapse
Affiliation(s)
- G Jordan Ray
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA
| | - Elizabeth A Boydston
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Gregory A Wyant
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Walter W Chen
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA.
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Islinger M, Manner A, Völkl A. The Craft of Peroxisome Purification-A Technical Survey Through the Decades. Subcell Biochem 2018; 89:85-122. [PMID: 30378020 DOI: 10.1007/978-981-13-2233-4_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Purification technologies are one of the working horses in organelle proteomics studies as they guarantee the separation of organelle-specific proteins from the background contamination by other subcellular compartments. The development of methods for the separation of organelles was a major prerequisite for the initial detection and characterization of peroxisome as a discrete entity of the cell. Since then, isolated peroxisomes fractions have been used in numerous studies in order to characterize organelle-specific enzyme functions, to allocate the peroxisome-specific proteome or to unravel the organellar membrane composition. This review will give an overview of the fractionation methods used for the isolation of peroxisomes from animals, plants and fungi. In addition to "classic" centrifugation-based isolation methods, relying on the different densities of individual organelles, the review will also summarize work on alternative technologies like free-flow-electrophoresis or flow field fractionation which are based on distinct physicochemical parameters. A final chapter will further describe how different separation methods and quantitative mass spectrometry have been used in proteomics studies to assign the proteome of PO.
Collapse
Affiliation(s)
- Markus Islinger
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Andreas Manner
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alfred Völkl
- Department of Medical Cell Biology, Institute of Anatomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Yang JS, Lee JY, Moon MH. High Speed Size Sorting of Subcellular Organelles by Flow Field-Flow Fractionation. Anal Chem 2015; 87:6342-8. [DOI: 10.1021/acs.analchem.5b01207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Joon Seon Yang
- Department of Chemistry, Yonsei University, Seoul, 120-749 South Korea
| | - Ju Yong Lee
- Department of Chemistry, Yonsei University, Seoul, 120-749 South Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul, 120-749 South Korea
| |
Collapse
|
7
|
Monitoring subcellular biotransformation of N-L-leucyldoxorubicin by micellar electrokinetic capillary chromatography coupled to laser-induced fluorescence detection. Anal Bioanal Chem 2014; 406:2389-97. [PMID: 24573576 DOI: 10.1007/s00216-014-7615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/09/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Development of prodrugs is a promising alternative to address cytotoxicity and nonspecificity of common anticancer agents. N-L-leucyldoxorubicin (LeuDox) is a prodrug that is biotransformed to the anticancer drug doxorubicin (Dox) in the extracellular space; however, its biotransformation may also occur intracellularly in endocytic organelles. Such organelle-specific biotransformation is yet to be determined. In this study, magnetically enriched endocytic organelle fractions from human uterine sarcoma cells were treated with LeuDox. Micellar electrokinetic chromatography with laser-induced fluorescence detection (MEKC-LIF) was used to determine that 10% of LeuDox was biotransformed to Dox, accounting for ~43% of the biotransformation occurring in the post-nuclear fraction. This finding suggests that endocytic organelles also participate in the intracellular biotransformation of LeuDox to Dox.
Collapse
|
8
|
Sun L, Zhu G, Yan X, Dovichi NJ. High sensitivity capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for the rapid analysis of complex proteomes. Curr Opin Chem Biol 2013; 17:795-800. [PMID: 23911612 DOI: 10.1016/j.cbpa.2013.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 12/15/2022]
Abstract
The vast majority of bottom-up proteomic studies employ reversed-phase separation of tryptic digests coupled with electrospray ionization tandem mass spectrometry. These studies are remarkably successful for the analysis of samples containing micrograms of protein. However, liquid chromatography tends to perform poorly for samples containing nanogram amounts of protein, presumably due to loss of trace-level peptides within the chromatographic system. Capillary zone electrophoresis provides a much simpler flow system and would appear to be an attractive alternative to liquid chromatography for separation of small peptide samples before electrospray ionization and mass spectrometry detection. However, capillary zone electrophoresis has received very little attention as a tool for analysis of complex proteomes. In 2012, we reported the use of capillary zone electrophoresis for the analysis of the secretome of Mycobacterium marinum, a model system for tuberculosis. Roughly 400 peptides and over 100 proteins were identified from this medium-complexity proteome; this identification required analysis of a set of 11 fractions and occupied three hours of mass spectrometer time. We have recently employed an improved capillary zone electrophoresis system for the analysis of 100 ng of the Escherichia coli proteome and observed over 1300 peptides and nearly 350 proteins in a single separation. More interestingly, analysis of 1 ng of the E. coli proteome yielded over 600 peptide and 140 protein groups. This sample size approaches that of a large eukaryotic cell, suggesting that capillary zone electrophoresis may ultimately be a useful tool for chemical cytometry.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xiaojing Yan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
9
|
Satori CP, Henderson MM, Krautkramer EA, Kostal V, Distefano MM, Arriaga EA. Bioanalysis of eukaryotic organelles. Chem Rev 2013; 113:2733-811. [PMID: 23570618 PMCID: PMC3676536 DOI: 10.1021/cr300354g] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chad P. Satori
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Michelle M. Henderson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Elyse A. Krautkramer
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Vratislav Kostal
- Tescan, Libusina trida 21, Brno, 623 00, Czech Republic
- Institute of Analytical Chemistry ASCR, Veveri 97, Brno, 602 00, Czech Republic
| | - Mark M. Distefano
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Edgar A. Arriaga
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| |
Collapse
|
10
|
Satori CP, Kostal V, Arriaga EA. Review on recent advances in the analysis of isolated organelles. Anal Chim Acta 2012; 753:8-18. [PMID: 23107131 PMCID: PMC3484375 DOI: 10.1016/j.aca.2012.09.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/22/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
The analysis of isolated organelles is one of the pillars of modern bioanalytical chemistry. This review describes recent developments on the isolation and characterization of isolated organelles both from living organisms and cell cultures. Salient reports on methods to release organelles focused on reproducibility and yield, membrane isolation, and integrated devices for organelle release. New developments on organelle fractionation after their isolation were on the topics of centrifugation, immunocapture, free flow electrophoresis, flow field-flow fractionation, fluorescence activated organelle sorting, laser capture microdissection, and dielectrophoresis. New concepts on characterization of isolated organelles included atomic force microscopy, optical tweezers combined with Raman spectroscopy, organelle sensors, flow cytometry, capillary electrophoresis, and microfluidic devices.
Collapse
Affiliation(s)
- Chad P Satori
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
11
|
Anand RK, Chiu DT. Analytical tools for characterizing heterogeneity in organelle content. Curr Opin Chem Biol 2012; 16:391-9. [PMID: 22694875 DOI: 10.1016/j.cbpa.2012.05.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/10/2012] [Indexed: 11/16/2022]
Abstract
Heterogeneity in the content and function of subcellular organelles on the intercellular and intracellular level plays an important role in determining cell fate. These variations extend to normal-state and disease-state cellular functions and responses to environmental stimuli, such as oxidative stress and therapeutic drugs. Analytical tools to characterize variation in all types of organelles are essential to provide insights that can lead to advances in medicine, such as therapies targeted to specific subcellular regions. In this review, we discuss analytical techniques for interrogating individual intact organelles (e.g. mitochondria and synaptic vesicles) and lysates in a high-throughput manner, including a recently developed nanoscale fluorescence-activated subcellular sorter and techniques based on capillary electrophoresis with laser-induced fluorescence detection. We then highlight the advantages that droplet microfluidics offers for probing subcellular heterogeneity.
Collapse
Affiliation(s)
- Robbyn K Anand
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | | |
Collapse
|